
Project 4: Cryptography and Steganography

CSCE 315: Programming Studio

Spring 2015

Your team has been hired by Munchkin Incorporated (Munchkin) to design and develop a set of infor-
mation assurance tools. To protect their data and the data of their clients, Munchkin wants to be able to
send and receive data encrypted using the RSA cryptosystem. To further protect their communications with
valuable, high-pro�le clients, Munchkin also wants to be able to hide their ciphertexts in images. Munchkin's
vibrant and popular social-media presence gives them plenty of reason to be posting images on social media
and other websites, ostensibly so that their brand can maintain its recognizability and relevance.

In addition to the tools for protecting the con�dentiality of their clients, Munchkin is requesting that you
build tools for cracking RSA and detecting images which are hiding secret information. The reason for this,
they tell you, is that they believe their direct competitor, Elphaba International (Elphaba), will attempt to
use ripo�s of Munchkin's security tools to sabotage Munchkin's reputation in the market. If Munchkin has
tools for detecting and decrypting Elphaba's knocko�s, they can expose Elphaba's scammy behavior and
protect both their clients and their brand.

Your contract with Munchkin Incorporated begins on April 6th. You will use both Agile Programming
and Test-Driven Development to design, build, and deliver the 4 tools to Munchkin Incorporated on or before
Cinco De Mayo (the 5th of May).

Agile Programming and Test-Driven Development

Your team will engage in 1-week Sprints. Before each Sprint, you will take your Product Backlog and select
from it the Sprint Backlog, a list of functionality to work on for the upcoming Sprint. During each Sprint, you
will conduct �daily� Scrum meetings. Your team must hold at least 4 Scrums per week. Each Scrum should
last not more than 15-20 minutes. At the Scrum, three questions must be answered by each member (the
Sprint Status Check): What have you done since the last scrum meeting? What has impeded your work?

What do you plan on doing between now and the next Scrum meeting? The answers to these questions
should be recorded. Between daily Scrum meetings (ideally at the end of each day), each team member
should update the team's Sprint Burndown Chart to show the amount of e�ort remaining on each task in
the Spring Backlog as well as the status of the task. At the end of each 1-week Sprint, your team will hold a
Sprint Review Meeting (during a lab session or TA o�ce hours) to demonstrate the new features produced
during the Sprint. At the Sprint Review Meeting, your team will also submit the Backlogs, Burndown Charts,
and Sprint Status Checks to CSNet. After the Sprint Review Meeting, the process repeats, with your team
selecting a new list of functionality from the Product Backlog (including functionality not completed during
the previous Sprint) to become the Sprint backlog for the next Sprint. As soon as a tool is ready to be
released to Munchkin for deployment (as determined at the Sprint Review Meeting), you should submit the
source code to CSNet.

You MUST use Test-Driven Development (TDD). In your �nal presentation to the board of Munchkin
Incorporated (during the Final Exam for CSCE 315), you must provide proof that your team used TDD
during development. This proof should be provided in the form of the source code for the tests as well as
documentation (e.g. timestamped screenshots) showing that your team started with failing tests and then
developed code that would pass the tests. Munchkin Incorporated believes so strongly in TDD that your
contract with them includes a penalty for not convincing them that you used TDD.

1

Important Dates

1. April 6th: Begin Sprint #1. Focus on de�ning requirements and assigning team roles.

2. April 13th: Begin Sprint #2. Submit progress report from Sprint #1 to CSNet.

3. April 20th: Begin Sprint #3. Submit progress report from Sprint #2 to CSNet.

4. April 27th: Begin Sprint #4. Submit progress report from Sprint #3 to CSNet.

5. May 5th: Cinco De Mayo Delivery Day. Submit progress report from Sprint #4 and all deliverables
to CSNet.

6. May 8th: Final Presentations at 3:30pm in HECC 203 (504-506)

7. May 11th: Final Presentations at 10:30am in HRBB 124 (501-503).

Rubric

• RSA cryptosystem: 15 pts

� Generate random primes with approximately k bits, for 16 ≤ k ≤ 512

� Generate correct public and private keys for k-bit moduli, for 32 ≤ k ≤ 1024

� Verify DK (EK (M)) = EK (DK (M)) =M using team's own implementation

� Verify using the openssl command line tool:

∗ Correct encryption of a single block

∗ Correct decryption of a single block

∗ Correct encryption of multiple blocks

∗ Correct decryption of multiple blocks

• Attacks on RSA: 15 pts

� At least 3 working attacks on RSA

• LSB image stegosystem: 15 pts

� Correct embedding of bits in the 1-LSB plane

� Correct extraction of bits from the 1-LSB plane

� Correct embedding of bits in the 2-LSB plane

� Correct extraction of bits from the 2-LSB plane

� Colors: Grayscale and RGB

� Correct PSNR reported

• Attacks on LSB image stego: 15 pts

� At least 3 working attacks on LSB image stego

• Weekly Sprint progress reports: 20 pts

� 5 points per week

� Include Backlogs, Burndown Charts, and Sprint Status Checks

• Final Presentation: 20 pts

� Demonstrate tools for

∗ Encryption, Decryption, Embedding, Extracting, Cryptanalysis, Steganalysis

� Proof of Test-Driven Development

� Do not exceed 10 minutes

2

RSA Encryption

RSA is a public-key cryptosystem proposed in 1977 by Rivest, Shamir, Adleman. It is the most successful
public-key cryptosystem and is based on the idea that the factorization of integers is a hard problem.

A summary of the RSA algorithm:

1. Generate distinct large primes p and q and compute n = pq and φ(n) = (p− 1)(q − 1).

2. Pick public key exponent e such that 1 < e < φ(n) and e and φ(n) are coprime.

3. Compute private key exponent d such that ed ≡ 1 (mod φ(n)).

4. Release {n, e} as the public key. Keep {p, q, d} as secret key.

5. To encrypt a message, �rst convert the plaintext message M to a number m such that 0 ≤ m < n.
Then, compute the ciphertext as c ≡ me (mod n).

6. To decrypt a ciphertext, compute m ≡ cd (mod n) and then convert the number m into the plaintext
M by reversing the procedure which converted M to m.

You must create a command line tool named munchkincrypt which implements the RSA cryptosystem and
related functionality. At minimum, your tool must implement the following functionality:

• generate a prime number of a given approximate bit-length

• generate a public and private key pair of a given approximate bit-length

• encrypt cleartext using a given public key

• decrypt ciphertext using a given private key

You are encouraged to implement functionality in addition to the above list of minimum required function-
ality.

Cryptanalysis of RSA

The security of RSA depends on several factors. Fundamentally, RSA relies on the problem of factorizing
integers being a hard problem. If Eve can factor Alice's public modulus n, then she can easily compute
Alice's private exponent d and can therefore read all of Alice's mail and forge Alice's digital signature. If
integer factorization turns out to be easy (i.e. if there exists a polynomial time algorithm for factoring), the
RSA is completely useless. Another weakness of RSA (and of every cryptosystem) is that the implementation
and application of the cryptosystem can be attacked directly. If not implemented and used correctly, RSA
can be a piece of cake to break. Here are just a few ways that RSA can be broken due to implementation
mistakes.

• If the modulus n is small (less than 512 bits), then a desktop PC and a good factoring algorithm can
factor it in a matter of days.

• If the primes p and q that make up the modulus were created in a way that makes them likely to be
close together, and therefore close to

√
n, then n can be factored using Fermat factorization.

• If either p − 1 or q − 1 has only small prime factors, then n can be factored using Pollard's p − 1
algorithm

• If q < p < 2q and d < n1/4

3 , then n can be factored e�ciently using Wiener's theorem.

• If the public encryption exponent e is small (e.g. e = 3) and the message m is small, so that me < n,
then m can be recovered by �nding the e-th root of the ciphertext.

3

• If the same message is encrypted using the same public exponent, but di�erent public moduli, then
the message can be recovered using the Chinese remainder theorem.

• If the random number generator used to generate the prime factors is not su�ciently random, a large-
enough collection of public keys generated by it will contain pairs of moduli which can be factored by
Euclid's algorithm.

You must create a command line tool named dorothy which implements at least three attacks on the RSA
cryptosystem. You may choose any three of the above attacks, or you may �nd/design others.

LSB Image Stego

Steganography (or Stego, for short) is the art and science of hiding data so that only the sender and intended
receiver are aware of the existence of the data. It is complementary to cryptography. While cryptography
protects what Alice sends to Bob by obfuscating the contents of her messages, steganography protects when
and if Alice sends data to Bob by disguising her messages as innocuous channel usages (e.g. as images, audio,
text, etc.). As in cryptography, the security of a stegosystem should not rely on the secrecy of the method.
You must assume that the adversary knows the system. The strength of the stegosystem is determined by
how di�cult it is for a passive observer to distinguish between legitimate cover-objects which are not hiding
data and stego-objects which contain or encode hidden data. The more di�cult it is to detect the hidden
data, the more secure the stegosystem.

One of the most basic kinds of steganography deals with images. An image is made up of many tiny
picture elements, called pixels. Each pixel is a single color. The color is encoded as a number. For grayscale
images, each pixel is 8-bits long and represents one of 256 possible shades of gray. For RGB images, each pixel
is 24-bits long and represents 256 shades each of red, green, and blue (you can think of RGB pixels as three
8-bit pixels, one for red, one for green, and one for blue). The low order bits of each pixel control di�erences
in shades of color which are beneath the perceptual threshold of the human visual system. Therefore, these
bits can be modi�ed without any perceptible image degradation. This property can be exploited for data
hiding by replacing the least signi�cant bits of each pixel with the bits of the secret data.

Figure 1: One of these is the original image of Lena and the other is hiding 32KB of secret data.

You must create a command line tool namedmunchkinsteg which implements LSB image stego embedding
and extraction for grayscale and RGB images in BMP format. Your tool must support at least 1-LSB (use
only the least signi�cant bit) and 2-LSB (use the two least signi�cant bits) embedding, but may support other
modes in addition to these. Your tool must report the PSNR (peak signal to noise ratio) of the stego-image.

4

Steganalysis and Countermeasures

Since the LSB-plane is beneath the human perceptual threshold, a human adversary will not be able to detect
the modi�cation of an image by sight alone, even if she has both the original and modi�ed versions (and
does not know which is which). However, the de�ciency of the human visual system can be compensated for
by some cleverness and computational power. Any modi�cation to an original object will introduce some
amount of distortion. Given an accurate model of the cover media (e.g. how neighboring pixels in images
relate to each other), this distortion can be detected and used to distinguish between authentic cover-objects
and modi�ed stego-objects. There are also some more straightforward, but less clever, ways to determine if
an image has been modi�ed. In cases where detection may be too di�cult, or not of primary importance,
there are also countermeasures which may be deployed to disrupt or eliminate the ability for an image to
hide data. Some ideas for detection techniques and countermeasures are given below.

• If the original image, or a signature of the original image (e.g. MD5 hash), is known, every version can
be compared to that original to determine if the image was modi�ed.

• If the hidden data is known to be cleartext (unencrypted data), then the data can be extracted from
a suspect image and tested for structure. If an image is clean, the extracted data will be random, but
if the extracted data has an identi�able structure (e.g. ASCII text), then it can be concluded that the
image is hiding data.

• A particularly clever technique for detecting LSB stego in images is Regular-Singular Analysis
(http://www.ws.binghamton.edu/fridrich/Research/acm_2001_03.pdf). RS analysis is able to detect
data hidden at rates as low as 0.05 bits per pixel by looking at the di�erences between neighboring
pixels to estimate the amount (or length) of data hidden in the image. If the length is greater than
some threshold (e.g. 3%), the image is classi�ed as steganographic.

• RS Analysis is a special case of Sample Pairs Analysis
(http://www.ece.mcmaster.ca/∼sorina/papers/LSB�nalTSP.pdf). Both methods compare a kind of
noise in the sample image to an expected level and type of noise in the cover object. Too much noise,
or the wrong kind of noise, indicates that the image has likely been modi�ed.

• If you can't beat 'em, make a giant mess. Since LSB-stego hides data in a place where changes do not
a�ect perceived image quality, the entire LSB-plane can be randomized to destroy any hidden data
also without a�ecting perceived image quality.

You must create a command line tool named toto which implements at least three attacks on LSB image
steganography systems. You may choose any three of the above attacks, or you may �nd/design others.

5

http://www.ws.binghamton.edu/fridrich/Research/acm_2001_03.pdf
http://www.ece.mcmaster.ca/~sorina/papers/LSBfinalTSP.pdf

Reminder about Resource-Intensive Jobs

If you run a resource-intensive program on any CS server other than compute.cse.tamu.edu, your CS
account may be terminated for hogging the machine!

Libraries and Other Resources

You may use libraries for handling large numbers and performing basic mathematical operations on them.
You may use libraries for manipulating image data. You may consider using/contributing to to Virtual
Steganographic Laboratory (http://vsl.sourceforge.net/) or Digital Invisible Ink Toolkit
(http://diit.sourceforge.net/) projects. You may use libraries for unit testing. For now, that is it. If there
is a library or resource you want to use and it is not listed here, you must ask Dr. Ritchey about it before
you may use it. Do not ask about using libraries or code that solve the main problems of this project, the
answer will be �No�.

GitHub

You must use GitHub. Your repository must be set up and active before April 12th. The TAs and the
Instructors must have read access to your repository by April 12th. Your repository must be private until
May 5th. Your repository must be public after May 11th.

Final Report and Presentation

The board of Munchkin Incorporated expects to receive a �nal report of your work and a brief presentation
demonstrating the tools you built. The report should include details about how you solved each problem
in this project, especially with regard to Test-Driven Development and Agile Programming. Your report
also should also include the division of labor, specifying who did what and the value of that contribution
to the overall project. Attached to the report, you should submit copies of your weekly Sprint progress
reports, complete with Backlogs, Burndown charts, and Sprint Status Checks. Your presentation during the
�nal exam should last no more than 10 minutes and should clearly demonstrate your usage of Test-Driven
Development and Agile Programming, as well as the correct operation of your tools. Stay true to the Agile
methodology, do not submit or demo something which is not yet �nished.

Individual Scores

Your individual score will be computed asmin
(
teamScore×

√
yourContribution

100/|group| , 110
)
. The team score will be

calculated by the rubric given above. Your contribution will be computed as the average of your contribution
percentage as given in the report and your contrubution percentages as reported by your team members in
the post-project survey.

Need More Information?

This project speci�cation is by no means intended to instruct you on how to implement the tools required
by this project. You will need to attend lecture, ask questions, and do some independent study is order to
complete this project. If you feel like there is some piece of information you are missing and cannot �nd it
in this document, have not learned it in lecture, do not understand the material you have found online or in
a textbook, or do not even know where to look to �nd it, go to Piazza and ask your question there.

Important Legal Notice

The techniques you are learning in this course and project are for educational purposes only and are not to
be used for any unethical purposes. Please be responsible and use your powers for good.

6

http://vsl.sourceforge.net/
http://diit.sourceforge.net/

