PROJECT 3 - ARTIFICIAL INTELLIGENCE

"Artificial Intelligence" (Al) is basically trying to develop computer systems which
can do things that if humans did them would be considered "intelligent" behavior,
e.g., translate Russian text (or speech!) into English, win at chess, solve a previously
unsolved math problem, etc. This project aims for your team to learn and code
some fundamental Al techniques which search for a solution to a problem.

The problem is to design a circuit to implement a given logic function, using a
genetic algorithm (GA) and another search method of your choice (such as depth-
first, A*, etc.), subject to certain constraints, and to display the progress of the
search graphically. Each circuit may contain only AND, OR, and NOT gates. There
can be any number of AND and OR gates, but no more than two NOT gates. The
AND and OR gates may have any number of inputs per gate.

Results of the two search methods (GA and one other) must be demonstrated for
two goal circuits:

1. A one-bit full adder. The truth table is

INPUTS OUTPUTS
X Y Carry In Carry Out Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

2. A circuit with three inputs A, B, and C, and three outputs A, =B, and -C.

For both circuits, use the following simple description language to represent a
circuit as lines in a text file:

output-1line-number gate-type input 1line number (s)




For example, if the problem were to find an XOR, the truth table is

INPUTS OUTPUT
A B A @ B
0 0 0
0 1 1
1 0 1
1 1 0

and one solution description text file would be

1 NONE 1 (meaning output line 1 is the output of a wire [no gate] from input line 1)
2 NONE 2

3 NOT 1 (meaning output line 3 is the output of a NOT gate whose input is line 1)
4 NOT 2

5AND 14

6 AND 2 3

70R56

to represent

(A |

[r—

(8) Z + li g

Y

Lt b t——s

ot

L
%*T“_G
—7
7 Gon)

For the GA, generate some large initial population of random circuits using this
circuit description language. To "cross" two circuits, cut them at the same random
line of the circuit description and resplice the pieces to generate the two "offspring”
to add to the population pool:



OFFSPRING

You will need to create a fitness function to score the initial population pool and
then the new offspring at each step, discarding the "least fit" at some rate. Some
useful terms in a fitness function (assuming lower values are more fit) might be
things like

1000000 * (number of goal output values missing) +

10000 * (number of NOT's) +

10 * (number of AND's and OR's)

This will prefer shorter circuits to longer ones, and also favor circuits with fewer
NOT's (since that allows more possibilities for an offspring to have another NOT
without exceeding the final limit of 2 NOT's).

Your search programs should display their progress graphically. For example, the
GA could represent each individual as a rectangle of fixed width with height
proportional to the number of gates and its fitness number inside, highlight the pair
chosen to cross in two colors (like the picture above), and add two new rectangles
for the offspring showing both parents' colors and the fitness number. Remove a
rectangle from the screen when it is discarded. This is just an example; you do not
have to do it this way. Another way would be to graph the minimum fitness value
(y) versus number of generations (x).

Similarly, do something appropriate for your second search method to show the
progress of the search graphically. Warning: Fancy graphics updated every
generation might slow down your program; if so, just update the screen periodically,
e.g., every 100 generations.

Three possible graphics packages to consider are FLTK, Java Swing, and OpenGL,
depending on the skills of your team and what is available on compute.cse.tamu.edu.
(This server is where you must run your programs, since they may consume a lot of
resources.) Itis supposed to have the same OS configuration as unix.cse.tamu.edu,
so if there is some software you need which is on unix.cse.tamu.edu but not installed
on compute.cse.tamu.edu, compile on unix.cse.tamu.edu (or sun-new.cse.tamu.edu)
and then run on compute.cse.tamu.edu.



WARNING! If you run a resource-intensive program on any CS server other
than compute.cse.tamu.edu, your CS account may be terminated for hogging
the machine!

Deliverables and due dates:

Design documents 3/15 (no grace period)
Non-GA for circuits 1 and 2 3/29 (no grace period)
GA for circuits 1 and 2 4/5 (no grace period)

Choose clever (but clean) names for your GA program (such as "Gregor's Revenge,"
"Multiplying Wabbits," or "3 NOT's, You're Out") and your other (non-GA) search
program (such as "Inch Wide, Mile Deep," "A-Star-Trekking," etc.).



