
Modeling Computation 

Introduction to Formal Languages and Automata 

Turing Machines and  

Complexity, Computability, and Decidability 

 



Different Types of Turing Machines 
• Allow TM to stay still after reading input. 

– How can this be done with the standard machine? 

• Use multiple tapes. 
– What do transitions look like? 

• Use 2-dimensional tape. 
• Use multiple read/write heads. 
• Allow non-determinism. 
• Restrict tape to be infinite in a single direction. 
• Restrict alphabet to 2 symbols. 

 



What effect do these modifications have 
on the power of a Turing machine? 



Decision Problems 
• Entscheidungsproblem 

– Is a set of first-order logical propositions universally valid 
(can be deduced from the axioms)? 

• The easiest kind of problem to study by using Turing 
machines. 
– Also called: yes-or-no problems 
– Is the input string a member of the language? 
– Is the input string a prime number? 

• Same as recognizing the language of strings which lead to “yes”. 



Decidability 

• Solvable or Decidable: 
– There exists an effective algorithm (Turing 

machine) that solves the problem (decides the 
language). 

• Unsolvable or Undecidable: 
– No effective algorithm that solves the problem 

(decides the language). 

 

 



Halting Problem in Terms of TMs 

• Does a TM exist which can determine whether 
a given TM will halt on some specified input? 

 



Other Undecidable Problems 

• Given two CFGs, do they generate the same 
language? 

 

• Can the plane be tiled by a given set of tiles? 

 

• Are there integer solutions to a given polynomial 
with integer coefficients? 



Computability 

• A function that can be computed by a Turing 
machine is computable. 

• A function that cannot be computed by a 
Turing machine is uncomputable. 

– Example: Busy Beaver Function 

https://www.youtube.com/watch?v=CE8UhcyJS0I


The Complexity Class 𝒫 
Given a Turing machine 𝑀 and an input 𝑤, the running time  𝑡𝑀 𝑤  is the 
number of steps 𝑀 carries out on 𝑤 from the initial configuration to a halting 
configuration. 
 
A deterministic Turing machine 𝑀 is polynomially bounded if there exists a 
polynomial 𝑝 𝑥  such that, for any positive integer 𝑛, 𝑡𝑀 𝑛 ≤  𝑝 𝑛 . 
 
A language 𝐿 is polynomially decidable if there exists a polynomially bounded 
deterministic Turing machine that decides it. 
 
The set of all polynomially decidable languages in denoted by 𝒫. 
 



The Complexity Class 𝒩𝒫 
A nondeterministic Turing machine 𝑀 is polynomially bounded if there exists a polynomial 𝑝 𝑥  
such that, for any input string 𝑤, at least one computation of 𝑀 on input 𝑤 halts in at most 
𝑝 𝑤  steps. 

 

A verification algorithm 𝐴 takes two arguments, 𝑤 and 𝑢. The string 𝑢 is called a certificate.  A 
language 𝐿 is verified by a deterministic verification algorithm 𝐴 if, for every 𝑤 ∈ 𝐿, there exists 
a certificate 𝑢 such that 𝐴 𝑤, 𝑢 = 1. 

 

A language 𝐿 is polynomially verifiable if there exists a deterministic polynomial-time algorithm 
(e.g. a polynomially bounded Turing machine) 𝐴 and a polynomial 𝑞 such that, for every 𝑤 ∈ 𝐿, 
there exists a certificate 𝑢 such that 𝑢 ≤ 𝑞 𝑤  and 𝐴 𝑤, 𝑢 = 1. That is, 𝐴 verifies 𝐿 in 
polynomial time. 

 

The set of all polynomially verifiable languages is denoted by 𝒩𝒫. 



The Complexity Class 𝒩𝒫-Complete 

A function 𝑓: Σ∗ → Σ∗ is polynomial-time computable if there exists a 
polynomially bounded Turing machine which computes it. 
 
Language 𝐿 ⊆ Σ∗ is polynomial-time reducible to language 𝑅 ⊆ Σ∗ if 
there exists a polynomial-time computable function 𝑟 such that, for 
every 𝑤 ∈ Σ∗, 𝑤 ∈ 𝐿 iff 𝑟 𝑤 ∈ 𝑅. The function 𝑟 is called a 
polynomial-time reduction. 
 
𝐿 is 𝓝𝓟-complete if 𝐿 ∈ 𝒩𝒫 and every language 𝐿′ ∈ 𝒩𝒫 is 
polynomial-time reducible to 𝐿. 

 



Review Days 

• 5/4 and 5/5 

• Come bearing bribes questions 

 


