Modeling Computation

Introduction to Formal Languages and Automata
Turing Machines and
Complexity, Computability, and Decidability
Different Types of Turing Machines

• Allow TM to stay still after reading input.
 – How can this be done with the standard machine?
• Use multiple tapes.
 – What do transitions look like?
• Use 2-dimensional tape.
• Use multiple read/write heads.
• Allow non-determinism.
• Restrict tape to be infinite in a single direction.
• Restrict alphabet to 2 symbols.
What effect do these modifications have on the power of a Turing machine?
Decision Problems

• Entscheidungsproblem
 – Is a set of first-order logical propositions universally valid (can be deduced from the axioms)?
• The easiest kind of problem to study by using Turing machines.
 – Also called: yes-or-no problems
 – Is the input string a member of the language?
 – Is the input string a prime number?
 • Same as recognizing the language of strings which lead to “yes”.
Decidability

• **Solvable** or **Decidable**:
 – There exists an effective algorithm (Turing machine) that *solves* the problem (*decides* the language).

• **Unsolvable** or **Undecidable**:
 – No effective algorithm that solves the problem (*decides* the language).
Halting Problem in Terms of TMs

- Does a TM exist which can determine whether a given TM will halt on some specified input?
Other Undecidable Problems

• Given two CFGs, do they generate the same language?

• Can the plane be tiled by a given set of tiles?

• Are there integer solutions to a given polynomial with integer coefficients?
Computability

- A function that can be computed by a Turing machine is *computable*.
- A function that cannot be computed by a Turing machine is *uncomputable*.
 - Example: *Busy Beaver Function*
The Complexity Class \mathcal{P}

Given a Turing machine M and an input w, the **running time** $t_M(w)$ is the number of steps M carries out on w from the initial configuration to a halting configuration.

A deterministic Turing machine M is **polynomially bounded** if there exists a polynomial $p(x)$ such that, for any positive integer n, $t_M(n) \leq p(n)$.

A language L is **polynomially decidable** if there exists a polynomially bounded deterministic Turing machine that decides it.

The set of all polynomially decidable languages is denoted by \mathcal{P}.
The Complexity Class \mathcal{NP}

A nondeterministic Turing machine M is **polynomially bounded** if there exists a polynomial $p(x)$ such that, for any input string w, at least one computation of M on input w halts in at most $p(|w|)$ steps.

A **verification algorithm** A takes two arguments, w and u. The string u is called a **certificate**. A language L is verified by a deterministic verification algorithm A if, for every $w \in L$, there exists a certificate u such that $A(w,u) = 1$.

A language L is **polynomially verifiable** if there exists a deterministic polynomial-time algorithm (e.g. a polynomially bounded Turing machine) A and a polynomial q such that, for every $w \in L$, there exists a certificate u such that $|u| \leq q(|w|)$ and $A(w,u) = 1$. That is, A verifies L in polynomial time.

The set of all polynomially verifiable languages is denoted by \mathcal{NP}.
The Complexity Class \(\mathcal{NP} \)-Complete

A function \(f : \Sigma^* \rightarrow \Sigma^* \) is \textbf{polynomial-time computable} if there exists a polynomially bounded Turing machine which computes it.

Language \(L \subseteq \Sigma^* \) is \textbf{polynomial-time reducible} to language \(R \subseteq \Sigma^* \) if there exists a polynomial-time computable function \(r \) such that, for every \(w \in \Sigma^* \), \(w \in L \) iff \(r(w) \in R \). The function \(r \) is called a \textbf{polynomial-time reduction}.

\(L \) is \textbf{\(\mathcal{NP} \)-complete} if \(L \in \mathcal{NP} \) and every language \(L' \in \mathcal{NP} \) is polynomial-time reducible to \(L \).
Review Days

• 5/4 and 5/5
• Come bearing bribes questions