
Modeling Computation

Introduction to Formal Languages and Automata

Turing Machines and

Complexity, Computability, and Decidability

Different Types of Turing Machines
• Allow TM to stay still after reading input.

– How can this be done with the standard machine?

• Use multiple tapes.
– What do transitions look like?

• Use 2-dimensional tape.
• Use multiple read/write heads.
• Allow non-determinism.
• Restrict tape to be infinite in a single direction.
• Restrict alphabet to 2 symbols.

What effect do these modifications have
on the power of a Turing machine?

Decision Problems
• Entscheidungsproblem

– Is a set of first-order logical propositions universally valid
(can be deduced from the axioms)?

• The easiest kind of problem to study by using Turing
machines.
– Also called: yes-or-no problems
– Is the input string a member of the language?
– Is the input string a prime number?

• Same as recognizing the language of strings which lead to “yes”.

Decidability

• Solvable or Decidable:
– There exists an effective algorithm (Turing

machine) that solves the problem (decides the
language).

• Unsolvable or Undecidable:
– No effective algorithm that solves the problem

(decides the language).

Halting Problem in Terms of TMs

• Does a TM exist which can determine whether
a given TM will halt on some specified input?

Other Undecidable Problems

• Given two CFGs, do they generate the same
language?

• Can the plane be tiled by a given set of tiles?

• Are there integer solutions to a given polynomial
with integer coefficients?

Computability

• A function that can be computed by a Turing
machine is computable.

• A function that cannot be computed by a
Turing machine is uncomputable.

– Example: Busy Beaver Function

https://www.youtube.com/watch?v=CE8UhcyJS0I

The Complexity Class 𝒫
Given a Turing machine 𝑀 and an input 𝑤, the running time 𝑡𝑀 𝑤 is the
number of steps 𝑀 carries out on 𝑤 from the initial configuration to a halting
configuration.

A deterministic Turing machine 𝑀 is polynomially bounded if there exists a
polynomial 𝑝 𝑥 such that, for any positive integer 𝑛, 𝑡𝑀 𝑛 ≤ 𝑝 𝑛 .

A language 𝐿 is polynomially decidable if there exists a polynomially bounded
deterministic Turing machine that decides it.

The set of all polynomially decidable languages in denoted by 𝒫.

The Complexity Class 𝒩𝒫
A nondeterministic Turing machine 𝑀 is polynomially bounded if there exists a polynomial 𝑝 𝑥
such that, for any input string 𝑤, at least one computation of 𝑀 on input 𝑤 halts in at most
𝑝 𝑤 steps.

A verification algorithm 𝐴 takes two arguments, 𝑤 and 𝑢. The string 𝑢 is called a certificate. A
language 𝐿 is verified by a deterministic verification algorithm 𝐴 if, for every 𝑤 ∈ 𝐿, there exists
a certificate 𝑢 such that 𝐴 𝑤, 𝑢 = 1.

A language 𝐿 is polynomially verifiable if there exists a deterministic polynomial-time algorithm
(e.g. a polynomially bounded Turing machine) 𝐴 and a polynomial 𝑞 such that, for every 𝑤 ∈ 𝐿,
there exists a certificate 𝑢 such that 𝑢 ≤ 𝑞 𝑤 and 𝐴 𝑤, 𝑢 = 1. That is, 𝐴 verifies 𝐿 in
polynomial time.

The set of all polynomially verifiable languages is denoted by 𝒩𝒫.

The Complexity Class 𝒩𝒫-Complete

A function 𝑓: Σ∗ → Σ∗ is polynomial-time computable if there exists a
polynomially bounded Turing machine which computes it.

Language 𝐿 ⊆ Σ∗ is polynomial-time reducible to language 𝑅 ⊆ Σ∗ if
there exists a polynomial-time computable function 𝑟 such that, for
every 𝑤 ∈ Σ∗, 𝑤 ∈ 𝐿 iff 𝑟 𝑤 ∈ 𝑅. The function 𝑟 is called a
polynomial-time reduction.

𝐿 is 𝓝𝓟-complete if 𝐿 ∈ 𝒩𝒫 and every language 𝐿′ ∈ 𝒩𝒫 is
polynomial-time reducible to 𝐿.

Review Days

• 5/4 and 5/5

• Come bearing bribes questions

