Modeling Computation

Introduction to Formal Languages and Automata Context Free Languages

Finite automata recognize <u>regular</u> languages.

An example of a language that cannot be recognized by finite automata $L = \left\{ \alpha^n \beta^n \mid \alpha > 0 \right\}$

which is generated or derived by a

Simple English Grammar

- 1. A <u>sentence</u> is a <u>noun phrase</u> followed by a <u>verb</u> <u>phrase</u>.
 - (Sentence) > (noun phrase) (verb phrase)
- 2. A <u>noun phrase</u> is a <u>proper noun</u>, or a <u>determiner</u> followed by <u>adjective</u> followed by a <u>common noun</u>.

- <noun phrase> > < determiner> (adjective> < common noun>
- 3. A <u>verb phrase</u> is a <u>verb</u>, or a <u>verb</u> followed by an <u>adverb</u>.
 _ < verb phrase>→ < verb> | < verb × adverb>

Generating a Sentence

Regular expressions are also a kind of language generator Ex: ba* generates L={bar | n>03

As a set of rules: $S \rightarrow b A$ $A \rightarrow a A$ $A \rightarrow \xi$

Derivation of *baaa*: $S \Rightarrow b A \Rightarrow b a A \Rightarrow b a a A \Rightarrow b a a a A \Rightarrow b a a a$ derivation

Regular Grammars

A regular grammar is a grammar that describes a regular language, and has rules of the form:

$$A \rightarrow \alpha$$
 or $A \rightarrow \alpha B$ or $A \rightarrow \varepsilon$

One-to-one correspondence between regular grammars and NFAs $S \rightarrow 0$ (+A) |-A| |1B| |2B| $|\cdots|$ |9B| $A \rightarrow 1B \mid 2B \mid \cdots \mid 9B$ $B \rightarrow 0B \mid 1B \mid 2B \mid \cdots \mid 9B \mid \epsilon$

Context Free Grammar (CFG) $G = (\Sigma, NT, R, S)$ Σ is a finite set of terminals NT is a -finite set of non-terminals RENTX (ZUNT) is the set of rules SENT is the start symbol

The language
$$L(G)$$
 generated or
derivable by G is the set of all strings
derivable from the start symbol.

CFGs have rules of the form	
$A \rightarrow \gamma$,	$\gamma \in (\Sigma M T)^*$
$Ex: \underbrace{S \to aSb \mid \epsilon}$	What language does this grammar generate?
$\Sigma = \{\alpha, b\}$	S⇒aSb⇒ aqSbb⇒ aqqSbbb =>aqabbb
$NT = \{ S \}$	L= {arbn n >03
$R = \{ S \rightarrow a S + , S \rightarrow E \}$	$= \{ (5, a5b), (5, \epsilon) \}$
S = S	

Construct a grammar that generates strings that have an even number of 0s and an even number

 $S \rightarrow OA | IB | E$ $A \rightarrow OS | IC$ $B \rightarrow IS | OC$ $C \rightarrow OB | IA$ Construct a grammar that generates strings that have an equal number of 0s and 1s.