Modeling Computation

Introduction to Formal Languages and Automata Regular Expressions and Automata

Any regular expression can be converted to a finite automaton A such that L(x) = L(A).

n.b. $\underline{\underline{VegMar}} = \underline{expressions}$ are built from ground elements $\underline{\underline{az}}, \underline{\varepsilon}, \underline{\forall}$ to which operations $\underline{U}, \underline{conct}, \underline{\forall}$ are applied.

Example:

Convert ab^*a to a finite automaton

Algorithm: RegEx to NFA

1. Convert every ground singleton $a \in \Sigma$ or ϵ or \emptyset (if any) to an automaton accepting just this singleton.

$$\{\epsilon\}$$
 becomes

2. Apply concatenations, unions, and Kleene stars.

2. Apply concatenations, unions, and Kleene stars.

2. Apply concatenations, unions, and **Kleene stars**.

Exercise: convert $a(a \cup b)^*b$ to an NFA accepting the specified language. From (a)

Any finite automaton A can be converted to a regular expression X such that L(A) = L(X).

Convert finite state diagram to

expression diagram with a single edge from the

initial state to the favorable state.

Assumptions

- 1. A has a single favorable state
 - If not, make a new favorable state and use ϵ -jumps to connect old favorable states to new one
- 2. A's initial state has no incoming edges
 - If not, make a new initial state and use an ε-jump to connect it to the old initial state
- 3. A's favorable state has no outgoing edges
 - If not, make a new favorable state and use an ε-jump to connect the old favorable state to it
- 4. Nodes are labeled 1 (initial state) to n (favorable state)
 - If not, renumber the nodes

Algorithm: NFA to RegEx

Let $l_{j,k}^i$ denote the label of the *i*-th edge from node *j* to node *k*.

 $l_{i,k}$ is used when there is only 1 edge between the nodes.

Whenever there are multiple edges from node j to node k with labels $l_{j,k}^1, l_{j,k}^2, \dots, l_{j,k}^m$

Replace them with a single edge with label

$$l_{j,k}^1 \cup l_{j,k}^2 \cup \dots \cup l_{j,k}^m$$

for i = 2 to n - 1

for each pair of nodes j, k such that there is an edge from j to i

and an edge from i to k,

if there is no edge from i to i

then add an edge from j to k with label $\left(l_{j,i}l_{i,k}\right)$

else add an edge from j to k with label $\left(l_{j,i}l_{i,i}^*l_{i,k}\right)$

end

combine multiple edges

end

remove from the diagram node i and all edges connected to i

end

Exercise: convert the automaton to a regular expression representing the language accepted by

antibuatible = a(aUb)*b a a & b ((E U a a &) b) not easily simplified Verify Equivalence by Comparing the DFAs