Modeling Computation

Introduction to Formal Languages and Automata

Regular Expressions

Regular Expressions

- Formal Specifications of finite automata.
- Any <u>language</u> that is <u>accepted</u> by a finite automator can be described by a <u>regular</u> expression
- Such $\lfloor \frac{anyuq\varphi s}{y} \rfloor$ are called $\frac{Rqqu|a r \lfloor \frac{anyuq\varphi s}{y} \rfloor}{xq \lfloor \frac{ny}{y} \rfloor}$
- NFAs and DFAs accept $\frac{\gamma e q u \alpha r \log u q \log e S}$.

Operations on Languages (languages are sets)

- Union: L, UL,
- · Intersection: $L_1 \cap L_2$
- Complement L
- · Difference L, L,
- & Concatenation: L, L,

Kleene Star: 1*

Concatenation L_1L_2 of languages L_1, L_2 $is \{uv|u\in L, v\in L_2\}$ $Ex: L_{1} = \{a^{n} | n > 0\}$ $L_{2}=\frac{5}{2}L^{m} |m>0\}$ $L_{1}L_{2}$? $\{a^{n}b^{m}\}$ $n>0, m>0\}$ Lⁿ denotes, L conceptenated with itself

Kleene Star
$$
L^{\#}
$$
 of language L is
\n $\pi_{n\epsilon}$ infinite union
\n $\{\epsilon\} U L U L^{2} U L^{3} U ... = U L^{i}$
\n $\{\epsilon\} U = \{\alpha\}$
\n $L^{\#} = \{\epsilon, \alpha, \alpha\}$ and $\{\epsilon\} = \{\alpha^{n} | n \ge 0\}$
\n $\{\epsilon\} U = \{\alpha, \alpha, \alpha\}$

Theorem: If languages L and M are accepted by finite automata, then so are:

Proof (by construction)

Suppose L, M are accepted by automata A,B.

Concatenation $\angle N$

Complement
$$
\overline{L}
$$
 : every *followable state becomes*

\nAnother example, every *state becomes*

\nAnswerable

\nIntersection $L \cap M = \overline{L \cup \overline{M}} \cap (A \cup B) = A \cap B$

\nDifference $L - M$

\n $L \cap \overline{M} = \overline{L \cup \overline{M}} \cap \overline{M}$

\n $L - M = L \cap \overline{M} = \overline{L \cup M}$

A regular expression is a $\text{String over the alphabet} \geq \bigcup \{(\,),\,),\, \in \{1,1\} \}$

Recursive definition:

Basis Step: \emptyset , ϵ , $\alpha \in \Sigma$ are regular expressions ground dements Recursive Step: $|f \propto_{1} \beta$ are regular expressions, then 50 ave $ex:(a\#b\#)\leftarrow ex\$ $(\alpha \cup \beta)$ $(\alpha \beta)$ 2 notso much \sim $\frac{1}{2}$

 $L(\alpha)$ is the language represented by regular expression α .

$$
L(\emptyset) = \emptyset \qquad L(\epsilon) = \Big\{ \epsilon \Big\}
$$

 $L(a) = \{\alpha\}$

If α , β are regular expressions, then $L(\alpha \cup \beta) = \cup (\alpha) \cup \cup (\beta)$ $L(\alpha\beta) = L(\alpha) L(\beta)$ $L(\alpha^*) =$

Exercise: What language is represented by $(ab^*)\cup(a^*b)$ $L((ab^{\text{up}}) \cup (a^{\text{up}}b))$ $L((aba))UL(ab))$ $(L(a)L(b^{*})\cup(L(a^{*})L(b))$ $(L(a) (L(b))^{*}) \vee ((L(a))^{*} L(b))$ $(5a358)(5a35)$
 $(5a35)(5a35) = 5w/m$ is of the