Divide and Conquer

divide a problem into one or more instances of the same problem of smaller size.

Conquer the problem by using the solutions to the smaller problems to find the solution to the original problem.
Example: Binary Search:
To find an element in a sorted list:
1. Determine if list is empty.
2. Compare.
3. Determine which half of the list should contain the key.
4. Compare recursively search the proper half of problem of size \(\frac{n}{2} \).

\[
f(n) = 2 + f\left(\frac{n}{2} \right) \quad O(\log n)
\]
Example: Max and Min

split the list in half
find the max and min in left
find the max and min in right
compare maxes and mins

\[f(n) = f\left(\frac{n}{2}\right) + f\left(\frac{n}{2}\right) + 2 \]

= \[2 f\left(\frac{n}{2}\right) + 2 \]

\[O(n) \]
Example: Mergesort

- Split the list in half
- Mergesort the left half
- Mergesort the right half
- Merge the halves

\[
f(n) = f\left(\frac{n}{2}\right) + f\left(\frac{n}{2}\right) + n
\]

\[
= 2f\left(\frac{n}{2}\right) + n
\]

\[O(n \log n)\]
f(n)'s were divide and conquer recurrence relations. They have the form

\[f(n) = af \left(\frac{n}{b} \right) + g(n) \]

A D&C algorithm divides a problem into subproblems of size \(\frac{n}{b} \) and does \(g(n) \) operations to conquer the problem (combine solutions).
Suppose \(f \) satisfies

\[
f(n) = af\left(\frac{n}{b}\right) + g(n)
\]

and \(n = b^k \)

\[
f(n) = af\left(\frac{n}{b}\right) + g(n)
\]

\[
= a\left(af\left(\frac{n}{b^2}\right) + g\left(\frac{n}{b^2}\right)\right) + g(n)
\]

\[
= a^2\left(af\left(\frac{n}{b^3}\right) + g\left(\frac{n}{b^3}\right)\right) + ag\left(\frac{n}{b^2}\right) + g(n)
\]

\[
= a^k f\left(\frac{n}{b^k}\right) + \sum_{i=0}^{k-1} a^i g\left(\frac{n}{b^i}\right)
\]
If \(g(n) = c \), a constant,

\[
f(n) = a^k f(1) + \sum_{i=0}^{k-1} a^i c
\]

\[
= a^k f(1) + c \frac{a^k - 1}{a - 1}
\]

Theorem 1: Let \(f \) be an increasing function that satisfies

\[
f(n) = a f\left(\frac{n}{b}\right) + c
\]

\(n \) is divisible by \(b \), \(a > 1 \), \(b > 1 \) integer, \(c > 0 \) real

Then

\[
f(n) = \begin{cases} O(n \log^a b) & \text{if } a > 1 \\ O(\log n) & \text{if } a = 1 \end{cases}
\]
If \(n = b^k \) and \(a \neq 1 \), then \(f(n) = C_1 n^\log_b a + C_2 \)

\[
C_1 = f(1) + \frac{c}{a-1}
\]

\[
C_2 = -\frac{c}{a-1}
\]

Binary Search: \(f(n) = f\left(\frac{n}{2}\right) + 2 \) is \(O(\log n) \)

\(a = 1, \; b = 2, \; c = 2 \)

Max and Min: \(f(n) = 2f\left(\frac{n}{2}\right) + 2 \) is \(O(n^{\log_2 2}) = O(n) \)

\(a = 2, \; b = 2, \; c = 2 \)
More Power!!!

Master Theorem

Let f be an increasing function that satisfies

$$f(n) = af\left(\frac{n}{b}\right) + cn^d$$

$n = b^k$, $k \geq 0$ integer, $a > 1$, $b > 1$ integer,
$c > 0$ real, $d > 0$ real.

Then $f(n)$ is

$$\begin{cases}
O(n^d) & \text{if } a < b^d \\
O(n^d \log n) & \text{if } a = b^d \\
O(n^{\log_b a}) & \text{if } a > b^d
\end{cases}$$
Mergesort: $f(n) = 2f\left(\frac{n}{2}\right) + n$

$a=2, \ b=2, \ c=1, \ d=1$

$b^d = 2^1 = 2$

is $O(n^d \log n)$

$= O(n^1 \log n)$

$= O(n \log n)$
Next Time: √ √
formals languages and automata.

my favorite
so fun!