
CSCE 222
Discrete Structures for Computing

Algorithms

Dr. Philip C. Ritchey

Introduction

• An algorithm is a finite sequence of precise
instructions for performing a computation or for
solving a problem.

– Searching

– Sorting

– Optimizing

– Etc.

Example

• Describe an algorithm for finding the maximum value in
a list (finite sequence) of integers.

• Solution
– Set the temporary maximum to the first element of the list.
– For each remaining element in the list, compare it to the

temporary maximum. If it is larger, set the temporary
maximum to this integer.

– Return the temporary maximum as the answer.

Psuedocode

• Psuedocode is an intermediate between an English
description and an implementation in a particular
language of a an algorithm.

– English is very high-level, not always well-suited to
precise descriptions of algorithms

– Programming languages are very precise, but can make
algorithms hard to understand.

Psuedocode for Finding the Max

procedure max(a_1, a_2, …, a_n)

temp_max = a_1

for i=2 to n do

 if temp_max < a_i

 then temp_max = a_i

return temp_max

Properties of Algorithms
• Input.

– Input values from a specified set.

• Output
– Output values from a specified set. The solution to the problem.

• Definiteness
– Steps are defined precisely.

• Correctness
– Produces correct answer for every input.

• Finiteness
– Terminate after a finite number of steps.

• Effectiveness
– Each step performed in finite time.

• Generality
– Works for all problems of the desired form.

Does the max-finding algorithm have all of
these properties?

• Input.
– A list of integers

• Output
– The largest integer in the list.

• Definiteness
– Assignments, finite loops, and comparisons all have precise definitions.

• Correctness
– Yes. Informal proof: temp_max is updated every time a large value is seen; all values seen; therefore

temp_max is the largest value in the list after the loop ends.

• Finiteness
– Stops after seeing all elements of the list.

• Effectiveness
– Assignments, finite loops, and comparisons all take finite time.

• Generality
– Finds the maximum of any list of integers.

Search

• Search
– Find a given element in a list. Return the location of the element in

the list (index), or -1 if not found.

• Linear Search
– Compare key (element being searched for) with each element in

the list until a match is found, or the end of the list is reached.

• Binary Search
– Compare key only with elements in certain locations. Split list in

half at each comparison. Requires list to be sorted.

Linear Search

procedure linear_search (key , {a_1,…,a_n})

for index = 1 to n

 if a_i equals key

 return index

return -1

Binary Search
procedure binary_search (key , {a_1,…,a_n})
left = 1
right = n
while left < right
 middle = left + right /2
 if key == a_middle, then return middle
 elseif key > a_middle, then left = middle + 1
 else right = middle
if key == a_left, then return left
return -1

Linear Search Exercise

• Write the numbers 1 to 20 on post-it notes.
– 1 number per note.

• Randomly order the notes on the table.

• How many comparisons to find:
– 7?

– 13?

– 1?

– 20?

Binary Search Exercise

• Sort the notes in ascending order

• How many comparisons to find:

– 7?

– 13?

– 1?

– 20?

Sort

• Sort: put the elements of a list in ascending order
– Example:

• List: 7,2,1,4,5,9
• Sorted List: 1,2,4,5,7,9

• Bubble Sort
– Compare every element to its neighbor and swap them if they are

out of order. Repeat until list is sorted.

• Insertion Sort
– For each element of the unsorted portion of the list, insert it in

sorted order in the sorted portion of the list.

Bubble Sort

procedure bubble_sort(𝑎1, … , 𝑎𝑛)

for i = 1 to n-1

 for j = 1 to n-i

 if 𝑎𝑗 > 𝑎𝑗+1

 then, swap 𝑎𝑗 and 𝑎𝑗+1

𝑎1, … , 𝑎𝑛 is in sorted order.

Insertion Sort
procedure insertion_sort(𝑎1, … , 𝑎𝑛)
for j = 2 to n
 i = 1

 while 𝑎𝑗 > 𝑎𝑖
 i = i + 1

 m = 𝑎𝑗
 for k = 0 to j-i-1

 𝑎𝑗−𝑘=𝑎𝑗−𝑘−1
 𝑎𝑖=m
𝑎1, … , 𝑎𝑛 is in sorted order.

Bubble Sort Exercise

• Order the notes on the table as follows:
– 10, 2, 1, 5, 3, 9, 6, 4, 7, 8

• Sort them using Bubble Sort.

• How many comparisons and swaps did you use?

– Don’t count condition checks in for loops.

Insertion Sort Exercise

• Order the notes on the table as follows:
– 10, 2, 1, 5, 3, 9, 6, 4, 7, 8

• Sort them using Insertion Sort.

• How many comparisons and swaps did you use?

– Don’t count condition checks in for loops.

Binary Insertion Sort Exercise

• Order the notes on the table as follows:
– 10, 2, 1, 5, 3, 9, 6, 4, 7, 8

• Sort them using Binary Insertion Sort.

– Use binary search, instead of linear search, when
searching for the correct place to insert each number.

• How many comparisons and swaps did you use?

– Don’t count condition checks in for loops.

The Growth of Functions

• The time required to solve a problem using a procedure
depends on:
– Number of operations used

• Depends on the size of the input

– Speed of the hardware and software
• Does not depend on the size of the input

• Can be accounted for using a constant multiplier

• The growth of functions refers to the number of
operations used by the function to solve the problem.

Big-O Notation

• Estimate the growth of a function without worrying
about constant multipliers or smaller order terms.

– Do not need to worry about hardware or software used

• Assume that different operations take the same
time.

– Addition is actually much faster than division, but for the
purposes of analysis we assume they take the same time.

Big-O

• Let 𝑓 and 𝑔 be functions from ℤ or ℝ, to ℝ.

• We say that 𝑓 𝑥 is 𝑂 𝑔 𝑥 if there are constants C and

k such that 𝑓 𝑥 ≤ 𝐶 𝑔 𝑥 whenever 𝑥 > 𝑘.

– “𝑓 𝑥 is bounded above by 𝑔 𝑥 ”

– “𝑓 𝑥 grows slower than C𝑔 𝑥 , as 𝑥 grows without bound”

– Constants 𝐶 and 𝑘 are called witnesses.

Example: Max

• Let 𝑓 𝑛 be the number of operations to find the maximum
value in a list of 𝑛 elements.

procedure max(a_1, a_2, …, a_n) - assign = depending on implementation, 1 or n op.

temp_max = a_1 - assign = 1 op.

for i=2 to n do - assign + compare = 1+1 = 2 ops.

 if temp_max < a_i - access + comparison = 1+1 = 2 ops. (n-1) times

 then temp_max = a_i - access + assign = 1+1 = 2 ops. (n-1) times

 - increment + compare = 1+1 = 2 ops. (n-1) times

return temp_max - return = 1 op.

𝑓 𝑛 = 1 + 1 + 2 + 𝑛 − 1 (2 + 2 + 2) + 1
𝑓 𝑛 = 6𝑛 − 1

Example: Max

• Let 𝑓 𝑛 be the number of operations to find the
maximum value in a list of 𝑛 elements.

– 𝑓 𝑛 = 6𝑛 − 1

– 𝑓 𝑛 ≤ 𝐶𝑔 𝑛 , ∀𝑛 > 𝑘

– 6𝑛 − 1 ≤ 6𝑛, ∀𝑛 > 0

– Let 𝑔 𝑛 = 𝑛

– 𝒇 𝒏 is 𝑶 𝒏 . Witnesses: 𝑪 = 𝟔, 𝒌 = 𝟎

Example: Sort

• Let 𝑓 𝑛 be the number of operations to sort a list
of 𝑛 elements.

procedure bubble_sort(𝑎1, … , 𝑎𝑛) - 1: assign

for i = 1 to n-1 - 2: assign and compare in loop1

 for j = 1 to n-i - 2(𝑛 − 1): assign and compare in loop2

 if 𝑎𝑗 > 𝑎𝑗+1 - 3(𝑛 − 𝑖)𝑛−1
𝑖=1 : accesses and compare

 then, swap 𝑎𝑗 and 𝑎𝑗+1 - 3(𝑛 − 𝑖)𝑛−1
𝑖=1 : assigns

 - 2(𝑛 − 𝑖)𝑛−1
𝑖=1 : increment and compare in loop 2

 - 2(𝑛 − 1): increment and compare in loop 1

𝑓 𝑛 = 1 + 2 + 2 𝑛 − 1 + 3(𝑛 − 𝑖)

𝑛−1

𝑖=1

+ 3(𝑛 − 𝑖)

𝑛−1

𝑖=1

+ 2 𝑛 − 𝑖

𝑛−1

𝑖=1

+ 2 𝑛 − 1

𝑓 𝑛 = 4𝑛2 − 1

Example: Sort

• Let 𝑓 𝑛 be the number of operations to sort a list
of 𝑛 elements.

– 𝑓 𝑛 = 4𝑛2 − 1

– 𝑓 𝑛 ≤ 𝐶𝑔 𝑛 , ∀𝑛 > 𝑘

– 4𝑛2 − 1 ≤ 4𝑛2, ∀𝑛 > 0

– Let 𝑔 𝑛 = 𝑛2

– 𝒇 𝒏 is 𝑶 𝒏𝟐 . Witnesses: 𝑪 = 𝟒, 𝒌 = 𝟎

Big-𝑂 for Polynomials

• Let 𝑓 𝑥 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0.

• Then, 𝑓 𝑥 is 𝑂 𝑥𝑛 .

• Example: 𝑓 𝑥 = 5𝑥2 − 18𝑥 + 20
– 5𝑥2 − 18𝑥 + 20 ≤ 5𝑥2 + 20 for 𝑥 > 0

– 5𝑥2 + 20 ≤ 5𝑥2 + 20𝑥2 for 𝑥 > 1

– 5𝑥2 + 20𝑥2 = 25𝑥2 ≤ 𝐶𝑔 𝑥 for 𝑥 > 1

– Let 𝑔 𝑥 = 𝑥2

– 𝒇 𝒙 is 𝑶 𝒙𝟐 . Witnesses: 𝑪 = 𝟐𝟓, 𝒌 = 𝟏

Exercise

• Give a big-𝑂 estimate for the sum of the first 𝑛
positive integers.

• Solution:

• 1 + 2 +⋯+ 𝑛 ≤ 𝑛 + 𝑛 +⋯+ 𝑛 = 𝑛2

• 1 + 2 +⋯+ 𝑛 is 𝑂 𝑛2 , 𝐶 = 1, 𝑘 = 1

Exercise

• Give a big-𝑂 estimate for the factorial function,
f 𝑛 = 𝑛!, and the logarithm of the factorial.

• Solution:

• 𝑛! = 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ 𝑛 ≤ 𝑛 ⋅ 𝑛 ⋅ 𝑛 ⋅ ⋯ ⋅ 𝑛 = 𝑛𝑛
– 𝑛! is 𝑂 𝑛𝑛

• log 𝑛! ≤ log 𝑛𝑛 = 𝑛 log 𝑛
– log 𝑛! is 𝑂 𝑛 log 𝑛

Basic Growth Functions

Constant: 𝑂 1
Logarithmic: 𝑂 log 𝑛
Linear: 𝑂 𝑛
Linearithmic: 𝑂 𝑛 log 𝑛
Polynomial: 𝑂 𝑛𝑐
Exponential: 𝑂 2𝑛
Factorial: 𝑂 𝑛!

Useful Big-𝑂 Estimates

• 𝑛𝑐 is 𝑂 𝑛𝑑 , but 𝑛𝑑 is not 𝑂 𝑛𝑐 , 𝑑 > 𝑐 > 1

• log𝑏 𝑛
𝑐 is 𝑂 𝑛𝑑 , but 𝑛𝑑 is not 𝑂 log𝑏 𝑛

𝑐 ,

𝑏 > 1, 𝑐, 𝑑 > 0

• 𝑛𝑑 is 𝑂 𝑏𝑛 , but 𝑏𝑛 is not 𝑂 𝑛𝑑 , 𝑑 > 0, 𝑏 > 1

• 𝑏𝑛 is 𝑂 𝑐𝑛 , but 𝑐𝑛 is not 𝑂 𝑏𝑛 , 𝑐 > 𝑏 > 1

The Growth of Combinations of Functions

• Suppose 𝑓1 𝑛 is 𝑂 𝑔1 𝑛 and 𝑓2 𝑛 is 𝑂 𝑔2 𝑛

– 𝑓1 + 𝑓2 𝑛 is 𝑂 max 𝑔1 𝑛 , 𝑔2 𝑛

• If 𝑔1 𝑛 = 𝑔2 𝑛 = 𝑔 𝑛 , then 𝑓1 + 𝑓2 𝑛 is 𝑂 𝑔 𝑛

– 𝑓1𝑓2 𝑛 is 𝑂 𝑔1 𝑛 𝑔2 𝑛

Exercise
• Which of these functions is 𝑂 𝑥 ?

– 𝑓 𝑥 = 10

• 𝐶 = 1, 𝑘 = 10

– 𝑓 𝑥 = 3𝑥 + 7

• 𝐶 = 4, 𝑘 = 7

– 𝑓 𝑥 = 𝑥2 + 𝑥 + 1
• Not 𝑂 𝑥

– 𝑓 𝑥 = 5 log 𝑥

• 𝐶 = 5, 𝑘 = 2

– 𝑓 𝑥 = ⌊𝑥⌋

• 𝐶 = 1, 𝑘 = 0

– 𝑓 𝑥 =
𝑥

2

• 𝐶 = 1, 𝑘 = 0

Exercise

• Find the least integer 𝑐 such that 𝑓 𝑛 is 𝑂 𝑛𝑐 :

– 𝑓 𝑛 = 2𝑛3 + 𝑛2 log 𝑛

• 𝑐 = 3

• 𝐶 = 3, 𝑘 = 1

– 𝑓 𝑛 =
𝑛4+𝑛2+1

𝑛3+1

• 𝑐 = 1

• 𝐶 = 1.5, 𝑘 = 1

Big-Ω

• Big-𝑂

– ∃𝐶, 𝑘 ∀𝑛 > 𝑘 𝑓 𝑛 ≤ 𝐶𝑔 𝑛

• Big- Ω (big omega)

– ∃𝐶, 𝑘 ∀𝑛 > 𝑘 𝑓 𝑛 ≥ 𝐶𝑔 𝑛

– 𝐶 must be positive.

– 𝑓 𝑛 is Ω 𝑔 𝑛 ↔ 𝑔 𝑛 is 𝑂 𝑓 𝑛

– “𝑓 𝑥 is bounded below by 𝑔 𝑥 ”

Big-Θ

• Big- Θ (big theta)

– 𝑓 𝑛 is 𝑂 𝑔 𝑛 and Ω 𝑔 𝑛

– 𝑓 𝑛 is 𝑂 𝑔 𝑛 and 𝑔 𝑛 is 𝑂 𝑓 𝑛

– 𝑓 𝑛 is Θ 𝑔 𝑛 ↔ g 𝑛 is Θ 𝑓 𝑛

– ∃𝐶1, 𝐶2 , 𝑘 ∀𝑛 > 𝑘 𝐶1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝐶2𝑔 𝑛

– 𝑓 𝑛 is of order 𝑔 𝑛

– 𝑓 𝑛 and 𝑔 𝑛 are of the same order

Big-Θ for Polynomials

• Let 𝑓 𝑥 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0.

• Then, 𝑓 𝑥 is of order 𝑥𝑛.

– “𝑓 𝑥 is bounded [above and below] by 𝑔 𝑥 ”

• Example:

– 3𝑥8 + 10𝑥7 + 221𝑥2 + 1444 is of order 𝑥8

• Witnesses: 𝐶 = 6, 𝑘 = 10

Complexity of Algorithms

• Computational complexity is the amount of time
and space an algorithm uses to solve a problem.

– Space complexity

• Depends on data structures used to implement the algorithm

– Time complexity

• Depends on the number of operations used by the algorithm.

• Use big-𝑂 (or big-Θ, if possible) to specify

Time Complexity

• Elementary operations have constant time (Θ 1)
complexity:

– Assignment

– Arithmetic operations

– Boolean operations

– Comparisons

– Array access

Time Complexity

• Blocks of statements

– 𝐵𝑙𝑜𝑐𝑘1; // takes 𝑇1 time

– 𝐵𝑙𝑜𝑐𝑘2; // takes 𝑇2 time

– …

– 𝐵𝑙𝑜𝑐𝑘𝑘; // takes 𝑇𝑘 time

• To execute the sequence of Blocks 1 through 𝑘 takes
𝑂 𝑇1 + 𝑇2 +⋯+ 𝑇𝑘 time.

Time Complexity

• Control Structures

– if(BoolExpr) // takes 𝑇𝐵 time

• 𝐵𝑙𝑜𝑐𝑘1; // takes 𝑇1 time

– else

• 𝐵𝑙𝑜𝑐𝑘2; // takes 𝑇2 time

• To execute the control structures takes
𝑂 TB +max 𝑇1, 𝑇2 time.

Time Complexity

• For Loops
– for i=a to b

• 𝐵𝑙𝑜𝑐𝑘1; // takes 𝑇1 𝑘 time when i=k

• To execute the loop takes
𝑇1 𝑎 + 𝑇1 𝑎 + 1 +⋯+𝑇1 𝑏 time

• If 𝑇1 𝑘 is Θ 1 , then the loop takes

𝑂 𝑏 − 𝑎 + 1 ⋅ 𝑇1 time

Time Complexity

• Function Calls
– def f(params) // takes 𝑇𝑝 time to assign params

• 𝐵𝑙𝑜𝑐𝑘1; // takes 𝑇1 time

– To execute the function takes 𝑂 𝑇𝑝 + 𝑇1 time

Bubble Sort Revisited

procedure bubble_sort(𝑎1, … , 𝑎𝑛) // 𝑂 𝑇𝑝 = 𝑂 1

for i = 1 to n-1 // 𝐵𝑙𝑜𝑐𝑘1

 for j = 1 to n-i // 𝐵𝑙𝑜𝑐𝑘2

 if 𝑎𝑗 > 𝑎𝑗+1 // 𝐵𝑙𝑜𝑐𝑘3

 then, swap 𝑎𝑗 and 𝑎𝑗+1

𝐵𝑙𝑜𝑐𝑘3 is a control structure which takes 𝑂 3 + 3 = 𝑂 1 time

𝐵𝑙𝑜𝑐𝑘2 is a for loop, which takes 𝑂 𝑛 − 𝑖 − 1 + 1 ⋅ 𝑂 1 = 𝑂 𝑛 − 𝑖 time

𝐵𝑙𝑜𝑐𝑘1 is a for loop, which takes 𝑂 𝑂 𝑛 − 1 + 𝑂 𝑛 − 2 +⋯+ 𝑂 1 = 𝑂
𝑛 𝑛−1

2
= 𝑂 𝑛2 time

Therefore, the procedure takes 𝑂 𝑂 1 + 𝑂 𝑛2 = 𝑂 𝑛2 time

Tractability
• A problem which can be solved by an algorithm with worst-case

polynomial time complexity (Θ 𝑛𝑐) is called tractable.
– Does not guarantee that it can be solved in any reasonable amount of time.
– Reasonable input sizes can be solved in relatively short time.

• A problem which cannot be solved by any algorithm with worse-case
polynomial polynomial time complexity is called intractable.
– Average case complexity may be better.
– Many important problems are intractable, but still get solved everyday.

• Approximate solutions.

• A problem for which there does not exists any algorithm is called
unsolvable.
– The first unsolvable, proved by Turing: The halting problem.

P vs NP

• All the tractable problems belong to a set called P.
– Can be solved in worst-case polynomial time.

• All the problems whose solutions can be verified in
polynomial time belong to a set called NP.
– Example: Boolean Satisfiability (SAT) – find an assignment

of truth values that satisfies some Boolean expression.
• Solution can be verified very easily.

• Finding a solution for 𝑛 variables requires Ω 2𝑛 operations

NP-Complete

• It turns out that a bunch of problems in NP are actually the
same problem. These are called NP-complete problems.
– Every problem in NP can be reduced in polynomial time to an NP-

complete problem.
• SAT was the first to be proved to be NP-complete.

– If any NP-complete problem can be solved in polynomial time, then
every NP problem can, too.
• P = NP.

• $1,000,000 prize for proof of whether P = NP.
– General consensus is that P ≠ NP.

