CSCE 222 Discrete Structures for Computing

Algorithms

Dr. Philip C. Ritchey

Introduction

- An **algorithm** is a finite sequence of precise instructions for performing a computation or for solving a problem.
 - Searching
 - Sorting
 - Optimizing
 - Etc.

Example

 Describe an algorithm for finding the maximum value in a list (finite sequence) of integers.

Solution

- Set the temporary maximum to the first element of the list.
- For each remaining element in the list, compare it to the temporary maximum. If it is larger, set the temporary maximum to this integer.
- Return the temporary maximum as the answer.

Psuedocode

- **Psuedocode** is an intermediate between an English description and an implementation in a particular language of a an algorithm.
 - English is very high-level, not always well-suited to precise descriptions of algorithms
 - Programming languages are very precise, but can make algorithms hard to understand.

Psuedocode for Finding the Max

```
procedure max(a_1, a_2, ..., a_n)
temp max = a 1
for i=2 to n do
     if temp max < a i
     then temp max = a i
return temp max
```

Properties of Algorithms

• Input.

Input values from a specified set.

Output

Output values from a specified set. The solution to the problem.

Definiteness

Steps are defined precisely.

Correctness

Produces correct answer for every input.

Finiteness

Terminate after a finite number of steps.

Effectiveness

Each step performed in finite time.

Generality

Works for all problems of the desired form.

Does the max-finding algorithm have all of these properties?

• Input.

A list of integers

Output

The largest integer in the list.

Definiteness

Assignments, finite loops, and comparisons all have precise definitions.

Correctness

Yes. Informal proof: temp_max is updated every time a large value is seen; all values seen; therefore temp_max is the largest value in the list after the loop ends.

Finiteness

Stops after seeing all elements of the list.

Effectiveness

Assignments, finite loops, and comparisons all take finite time.

Generality

Finds the maximum of any list of integers.

Search

Search

 Find a given element in a list. Return the location of the element in the list (index), or -1 if not found.

Linear Search

 Compare key (element being searched for) with each element in the list until a match is found, or the end of the list is reached.

Binary Search

 Compare key only with elements in certain locations. Split list in half at each comparison. Requires list to be sorted.

Linear Search

```
procedure linear_search (key , {a_1,...,a_n})
for index = 1 to n
    if a_i equals key
        return index
return -1
```

Binary Search

```
procedure binary search (key, {a 1,...,a n})
left = 1
right = n
while left < right
        middle = |(left + right)/2|
        if key == a middle, then return middle
        elseif key > a middle, then left = middle + 1
        else right = middle
if key == a left, then return left
return -1
```

Linear Search Exercise

- Write the numbers 1 to 20 on post-it notes.
 - 1 number per note.
- Randomly order the notes on the table.
- How many comparisons to find:
 - **-** 7?
 - -13?
 - **-** 1?
 - -20?

Binary Search Exercise

- Sort the notes in ascending order
- How many comparisons to find:
 - -7?
 - -13?
 - -1?
 - -20?

Sort

- Sort: put the elements of a list in ascending order
 - Example:
 - List: 7,2,1,4,5,9
 - Sorted List: 1,2,4,5,7,9
- Bubble Sort
 - Compare every element to its neighbor and swap them if they are out of order. Repeat until list is sorted.
- Insertion Sort
 - For each element of the unsorted portion of the list, insert it in sorted order in the sorted portion of the list.

Bubble Sort

```
procedure bubble sort(\{a_1, ..., a_n\})
for i = 1 to n-1
      for j = 1 to n-i
             if a_i > a_{i+1}
             then, swap a_i and a_{i+1}
\{a_1, \dots, a_n\} is in sorted order.
```

Insertion Sort

```
procedure insertion_sort(\{a_1, ..., a_n\})
for j = 2 to n
         i = 1
         while a_i > a_i
                   i = i + 1
         m = a_i
         for k = 0 to j-i-1
                   a_{j-k} = a_{j-k-1}
         a_i=m
\{a_1, \dots, a_n\} is in sorted order.
```

Bubble Sort Exercise

- Order the notes on the table as follows:
 - -10, 2, 1, 5, 3, 9, 6, 4, 7, 8
- Sort them using Bubble Sort.
- How many comparisons and swaps did you use?
 - Don't count condition checks in for loops.

Insertion Sort Exercise

- Order the notes on the table as follows:
 - -10, 2, 1, 5, 3, 9, 6, 4, 7, 8
- Sort them using Insertion Sort.
- How many comparisons and swaps did you use?
 - Don't count condition checks in for loops.

Binary Insertion Sort Exercise

- Order the notes on the table as follows:
 - -10, 2, 1, 5, 3, 9, 6, 4, 7, 8
- Sort them using Binary Insertion Sort.
 - Use binary search, instead of linear search, when searching for the correct place to insert each number.
- How many comparisons and swaps did you use?
 - Don't count condition checks in for loops.

The Growth of Functions

- The time required to solve a problem using a procedure depends on:
 - Number of operations used
 - Depends on the size of the input
 - Speed of the hardware and software
 - Does not depend on the size of the input
 - Can be accounted for using a constant multiplier
- The growth of functions refers to the number of operations used by the function to solve the problem.

Big-O Notation

- Estimate the growth of a function without worrying about constant multipliers or smaller order terms.
 - Do not need to worry about hardware or software used
- Assume that different operations take the same time.
 - Addition is actually much faster than division, but for the purposes of analysis we assume they take the same time.

Big-O

- Let f and g be functions from \mathbb{Z} or \mathbb{R} , to \mathbb{R} .
- We say that f(x) is O(g(x)) if there are constants C and k such that $|f(x)| \le C|g(x)|$ whenever x > k.
 - "f(x) is bounded above by g(x)"
 - "f(x) grows slower than Cg(x), as x grows without bound"
 - Constants C and k are called witnesses.

Example: Max

• Let f(n) be the number of operations to find the maximum value in a list of n elements.

```
procedure max(a_1, a_2, ..., a_n)
                                      - assign = depending on implementation, 1 or n op.
temp_max = a_1
                                      - assign = 1 op.
for i=2 to n do
                                      - assign + compare = 1+1 = 2 ops.
                                      - access + comparison = 1+1=2 ops.
                                                                             (n-1) times
         if temp_max < a_i</pre>
         then temp_max = a_i
                                                                             (n-1) times
                                      - access + assign = 1+1 = 2 ops.
                                      - increment + compare = 1+1 = 2 ops.
                                                                             (n-1) times
                                      - return = 1 op.
return temp_max
              f(n) = 1 + 1 + 2 + (n - 1)(2 + 2 + 2) + 1
                                    f(n) = 6n - 1
```

Example: Max

• Let f(n) be the number of operations to find the maximum value in a list of n elements.

$$-f(n) = 6n - 1$$

$$-f(n) \le Cg(n), \ \forall n > k$$

$$-6n - 1 \le 6n, \ \forall n > 0$$

$$- \operatorname{Let} g(n) = n$$

$$-f(n)$$
 is $O(n)$. Witnesses: $C=6$, $k=0$

Example: Sort

• Let f(n) be the number of operations to sort a list of n elements.

```
procedure bubble_sort(\{a_1, ..., a_n\})
                                                          - 1: assign
for i = 1 to n-1
                                                          - 2: assign and compare in loop1
                                                          -2(n-1): assign and compare in loop2
           for j = 1 to n-i
                                                          -\sum_{i=1}^{n-1} 3(n-i): accesses and compare
                       if a_i > a_{i+1}
                                                        -\sum_{i=1}^{n-1} 3(n-i): assigns
                       then, swap a_i and a_{i+1}
                                                          -\sum_{i=1}^{n-1} 2(n-i): increment and compare in loop 2
                                                          -2(n-1): increment and compare in loop 1
          f(n) = 1 + 2 + 2(n-1) + \sum_{i=1}^{n-1} 3(n-i) + \sum_{i=1}^{n-1} 3(n-i) + \sum_{i=1}^{n-1} 2(n-i) + 2(n-1)
                                             f(n) = 4n^2 - 1
```

Example: Sort

• Let f(n) be the number of operations to sort a list of n elements.

$$-f(n) = 4n^2 - 1$$

$$-f(n) \le Cg(n), \ \forall n > k$$

$$-4n^2 - 1 \le 4n^2, \forall n > 0$$

$$- \operatorname{Let} g(n) = n^2$$

$$-f(n)$$
 is $O(n^2)$. Witnesses: $C=4$, $k=0$

Big-O for Polynomials

- Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$.
- Then, f(x) is $O(x^n)$.
- Example: $f(x) = 5x^2 18x + 20$
 - $-5x^2 18x + 20 \le 5x^2 + 20$ for x > 0
 - $-5x^2 + 20 \le 5x^2 + 20x^2$ for x > 1
 - $-5x^2 + 20x^2 = 25x^2 \le Cg(x)$ for x > 1
 - $\operatorname{Let} g(x) = x^2$
 - -f(x) is $O(x^2)$. Witnesses: C=25, k=1

Exercise

• Give a big-0 estimate for the sum of the first n positive integers.

Solution:

•
$$1 + 2 + \dots + n \le n + n + \dots + n = n^2$$

•
$$1 + 2 + \cdots + n$$
 is $O(n^2)$, $C = 1$, $k = 1$

Exercise

• Give a big-O estimate for the factorial function, f(n) = n!, and the logarithm of the factorial.

- Solution:
- $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n \le n \cdot n \cdot n \cdot \dots \cdot n = n^n$ - n! is $O(n^n)$
- $\log(n!) \le \log(n^n) = n \log n$ - $\log(n!)$ is $O(n \log n)$

Basic Growth Functions

Constant: O(1)

Logarithmic: $O(\log n)$

Linear: O(n)

Linearithmic: $O(n \log n)$

Polynomial: $O(n^c)$

Exponential: $O(2^n)$

Factorial: O(n!)

Useful Big-O Estimates

- n^c is $O(n^d)$, but n^d is **not** $O(n^c)$, d > c > 1
- $(\log_b n)^c$ is $O(n^d)$, but n^d is **not** $O((\log_b n)^c)$, b > 1, c, d > 0
- n^d is $O(b^n)$, but b^n is **not** $O(n^d)$, d > 0, b > 1
- b^n is $O(c^n)$, but c^n is **not** $O(b^n)$, c > b > 1

The Growth of Combinations of Functions

- Suppose $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$
 - $-(f_1+f_2)(n)$ is $O(\max(g_1(n),g_2(n)))$
 - If $g_1(n) = g_2(n) = g(n)$, then $(f_1 + f_2)(n)$ is O(g(n))

 $-(f_1f_2)(n)$ is $O(g_1(n)g_2(n))$

Exercise

- Which of these functions is O(x)?
 - f(x) = 10
 - C = 1, k = 10
 - f(x) = 3x + 7
 - C = 4, k = 7
 - $f(x) = x^2 + x + 1$
 - Not O(x)
 - $f(x) = 5 \log x$
 - C = 5, k = 2
 - $f(x) = \lfloor x \rfloor$
 - C = 1, k = 0
 - $f(x) = \left[\frac{x}{2}\right]$
 - C = 1, k = 0

Exercise

• Find the least integer c such that f(n) is $O(n^c)$:

$$-f(n) = 2n^3 + n^2 \log n$$

- c = 3
- C = 3, k = 1

$$-f(n) = \frac{n^4 + n^2 + 1}{n^3 + 1}$$

- c = 1
- C = 1.5, k = 1

$Big-\Omega$

- Big-*O*
 - $-\exists C, k \ \forall n > k \ f(n) \leq Cg(n)$
- Big- Ω (big omega)
 - $-\exists C, k \ \forall n > k \ f(n) \geq Cg(n)$
 - C must be positive.
 - -f(n) is $\Omega(g(n)) \leftrightarrow g(n)$ is O(f(n))
 - "f(x) is bounded below by g(x)"

Big-O

- Big- Θ (big theta)
 - -f(n) is O(g(n)) and $\Omega(g(n))$
 - -f(n) is O(g(n)) and g(n) is O(f(n))
 - -f(n) is $\Theta(g(n)) \leftrightarrow g(n)$ is $\Theta(f(n))$
 - $-\exists C_1, C_2, k \ \forall n > k \ C_1 g(n) \leq f(n) \leq C_2 g(n)$
 - -f(n) is of order g(n)
 - -f(n) and g(n) are of the same order

Big-O for Polynomials

- Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$.
- Then, f(x) is of order x^n .
 - "f(x) is bounded [above and below] by g(x)"
- Example:
 - $-3x^8 + 10x^7 + 221x^2 + 1444$ is of order x^8
 - Witnesses: C = 6, k = 10

Complexity of Algorithms

- Computational complexity is the amount of time and space an algorithm uses to solve a problem.
 - Space complexity
 - Depends on data structures used to implement the algorithm
 - Time complexity
 - Depends on the number of operations used by the algorithm.
 - Use big-O (or big- Θ , if possible) to specify

- Elementary operations have constant time ($\Theta(1)$) complexity:
 - Assignment
 - Arithmetic operations
 - Boolean operations
 - Comparisons
 - Array access

Blocks of statements

```
-Block_1; // takes T_1 time -Block_2; // takes T_2 time -\dots -Block_k; // takes T_k time
```

• To execute the sequence of Blocks 1 through k takes $O(T_1 + T_2 + \cdots + T_k)$ time.

Control Structures

```
-if(BoolExpr) // takes T_B time • Block_1; // takes T_1 time
```

- else
 - $Block_2$; // takes T_2 time
- To execute the control structures takes $O(T_B + \max(T_1, T_2))$ time.

- For Loops
 - for i=a to b
 - $Block_1$; // takes $T_1(k)$ time when i=k
- To execute the loop takes

$$T_1(a) + T_1(a + 1) + \dots + T_1(b)$$
 time

• If $T_1(k)$ is $\Theta(1)$, then the loop takes $O((b-a+1)\cdot T_1)$ time

Function Calls

- $-\det$ f(params) // takes T_p time to assign params
 - $Block_1$; // takes T_1 time
- To execute the function takes $O(T_p + T_1)$ time

Bubble Sort Revisited

 $Block_3$ is a control structure which takes O(3+3)=O(1) time $Block_2$ is a for loop, which takes $O\big((n-i-1+1)\cdot O(1)\big)=O(n-i)$ time $Block_1$ is a for loop, which takes $O\big(O(n-1)+O(n-2)+\cdots+O(1)\big)=O\left(\frac{n(n-1)}{2}\right)=O(n^2)$ time Therefore, the procedure takes $O\big(O(1)+O(n^2)\big)=O(n^2)$ time

Tractability

- A problem which can be solved by an algorithm with worst-case polynomial time complexity $(\Theta(n^c))$ is called **tractable.**
 - Does not guarantee that it can be solved in any reasonable amount of time.
 - Reasonable input sizes can be solved in relatively short time.
- A problem which cannot be solved by any algorithm with worse-case polynomial polynomial time complexity is called intractable.
 - Average case complexity may be better.
 - Many important problems are intractable, but still get solved everyday.
 - Approximate solutions.
- A problem for which there does not exists any algorithm is called unsolvable.
 - The first unsolvable, proved by Turing: The halting problem.

P vs NP

- All the tractable problems belong to a set called P.
 - Can be solved in worst-case polynomial time.
- All the problems whose solutions can be verified in polynomial time belong to a set called NP.
 - Example: Boolean Satisfiability (SAT) find an assignment of truth values that satisfies some Boolean expression.
 - Solution can be verified very easily.
 - Finding a solution for n variables requires $\Omega(2^n)$ operations

NP-Complete

- It turns out that a bunch of problems in **NP** are actually the same problem. These are called **NP-complete** problems.
 - Every problem in NP can be reduced in polynomial time to an NP-complete problem.
 - SAT was the first to be proved to be NP-complete.
 - If any NP-complete problem can be solved in polynomial time, then every NP problem can, too.
 - P = NP.
- \$1,000,000 prize for proof of whether P = NP.
 - General consensus is that $P \neq NP$.