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Introduction 

• An algorithm is a finite sequence of precise 
instructions for performing a computation or for 
solving a problem. 

– Searching 

– Sorting 

– Optimizing 

– Etc. 



Example 

• Describe an algorithm for finding the maximum value in 
a list (finite sequence) of integers. 
 

• Solution 
– Set the temporary maximum to the first element of the list. 
– For each remaining element in the list, compare it to the 

temporary maximum.  If it is larger, set the temporary 
maximum to this integer. 

– Return the temporary maximum as the answer. 



Psuedocode 

• Psuedocode is an intermediate between an English 
description and an implementation in a particular 
language of a an algorithm. 

– English is very high-level, not always well-suited to 
precise descriptions of algorithms 

– Programming languages are very precise, but can make 
algorithms hard to understand. 



Psuedocode for Finding the Max 

procedure max(a_1, a_2, …, a_n) 

temp_max = a_1 

for i=2 to n do 

 if temp_max < a_i 

 then temp_max = a_i 

return temp_max 



Properties of Algorithms 
• Input.  

– Input values from a specified set. 

• Output 
– Output values from a specified set. The solution to the problem. 

• Definiteness 
– Steps are defined precisely. 

• Correctness 
– Produces correct answer for every input. 

• Finiteness 
– Terminate after a finite number of steps. 

• Effectiveness 
– Each step performed in finite time. 

• Generality 
– Works for all problems of the desired form.  



Does the max-finding algorithm have all of 
these properties? 

• Input.  
– A list of integers 

• Output 
– The largest integer in the list. 

• Definiteness 
– Assignments, finite loops, and comparisons all have precise definitions. 

• Correctness 
– Yes. Informal proof: temp_max is updated every time a large value is seen; all values seen; therefore 

temp_max is the largest value in the list after the loop ends.  

• Finiteness 
– Stops after seeing all elements of the list. 

• Effectiveness 
– Assignments, finite loops, and comparisons all take finite time. 

• Generality 
– Finds the maximum of any list of integers. 

 



Search 

• Search 
– Find a given element in a list.  Return the location of the element in 

the list (index), or -1 if not found. 

• Linear Search 
– Compare key (element being searched for) with each element in 

the list until a match is found, or the end of the list is reached. 

• Binary Search 
– Compare key only with elements in certain locations.  Split list in 

half at each comparison.  Requires list to be sorted. 



Linear Search 

procedure linear_search (key , {a_1,…,a_n}) 

for index = 1 to n 

 if a_i equals key 

  return index 

return -1 



Binary Search 
procedure binary_search (key , {a_1,…,a_n}) 
left = 1 
right = n 
while left < right 
 middle = left + right /2  
 if key == a_middle, then return middle 
 elseif key > a_middle, then left = middle + 1 
 else right = middle 
if key == a_left, then return left 
return -1 



Linear Search Exercise 

• Write the numbers 1 to 20 on post-it notes. 
– 1 number per note. 

• Randomly order the notes on the table. 

• How many comparisons to find: 
– 7? 

– 13? 

– 1? 

– 20? 

 
 



Binary Search Exercise 

• Sort the notes in ascending order 

• How many comparisons to find: 

– 7? 

– 13? 

– 1? 

– 20? 

 

 



Sort 

• Sort: put the elements of a list in ascending order 
– Example:  

• List: 7,2,1,4,5,9 
• Sorted List: 1,2,4,5,7,9 

• Bubble Sort 
– Compare every element to its neighbor and swap them if they are 

out of order.  Repeat until list is sorted. 

• Insertion Sort  
– For each element of the unsorted portion of the list, insert it in 

sorted order in the sorted portion of the list.  



Bubble Sort 

procedure bubble_sort( 𝑎1, … , 𝑎𝑛 ) 

for i = 1 to n-1 

 for j = 1 to n-i 

  if 𝑎𝑗  > 𝑎𝑗+1 

  then, swap 𝑎𝑗 and 𝑎𝑗+1 

𝑎1, … , 𝑎𝑛  is in sorted order. 



Insertion Sort 
procedure insertion_sort( 𝑎1, … , 𝑎𝑛 ) 
for j = 2 to n 
 i = 1 

 while 𝑎𝑗 > 𝑎𝑖 
  i = i + 1 

 m = 𝑎𝑗  
 for k = 0 to j-i-1 

  𝑎𝑗−𝑘=𝑎𝑗−𝑘−1 
 𝑎𝑖=m 
𝑎1, … , 𝑎𝑛  is in sorted order. 



Bubble Sort Exercise 

• Order the notes on the table as follows: 
– 10, 2, 1, 5, 3, 9, 6, 4, 7, 8 

• Sort them using Bubble Sort. 

• How many comparisons and swaps did you use? 

– Don’t count condition checks in for loops. 



Insertion Sort Exercise 

• Order the notes on the table as follows: 
– 10, 2, 1, 5, 3, 9, 6, 4, 7, 8 

• Sort them using Insertion Sort. 

• How many comparisons and swaps did you use? 

– Don’t count condition checks in for loops. 

 



Binary Insertion Sort Exercise 

• Order the notes on the table as follows: 
– 10, 2, 1, 5, 3, 9, 6, 4, 7, 8 

• Sort them using Binary Insertion Sort. 

– Use binary search, instead of linear search, when 
searching for the correct place to insert each number. 

• How many comparisons and swaps did you use? 

– Don’t count condition checks in for loops. 

 



The Growth of Functions 

• The time required to solve a problem using a procedure 
depends on: 
– Number of operations used 

• Depends on the size of the input 

– Speed of the hardware and software 
• Does not depend on the size of the input 

• Can be accounted for using a constant multiplier 

• The growth of functions refers to the number of 
operations used by the function to solve the problem. 



Big-O Notation 

• Estimate the growth of a function without worrying 
about constant multipliers or smaller order terms. 

– Do not need to worry about hardware or software used 

• Assume that different operations take the same 
time. 

– Addition is actually much faster than division, but for the 
purposes of analysis we assume they take the same time. 



Big-O 

• Let 𝑓 and 𝑔 be functions from ℤ or ℝ, to ℝ.   

• We say that 𝑓 𝑥  is 𝑂 𝑔 𝑥  if there are constants C and 

k such that 𝑓 𝑥  ≤  𝐶 𝑔 𝑥   whenever 𝑥 > 𝑘. 

– “𝑓 𝑥  is bounded above by 𝑔 𝑥 ” 

– “𝑓 𝑥  grows slower than C𝑔 𝑥 , as 𝑥 grows without bound” 

– Constants 𝐶 and 𝑘 are called witnesses. 



Example: Max 

• Let 𝑓 𝑛  be the number of operations to find the maximum 
value in a list of 𝑛 elements. 

procedure max(a_1, a_2, …, a_n) - assign = depending on implementation, 1 or n op. 

temp_max = a_1   - assign = 1 op. 

for i=2 to n do   - assign + compare = 1+1 = 2 ops. 

 if temp_max < a_i  - access + comparison = 1+1 = 2 ops.   (n-1) times 

 then temp_max = a_i - access + assign = 1+1 = 2 ops.  (n-1) times 

    - increment + compare = 1+1 = 2 ops. (n-1) times 

return temp_max   - return = 1 op. 

𝑓 𝑛 = 1 + 1 + 2 + 𝑛 − 1 (2 + 2 + 2) + 1 
𝑓 𝑛 = 6𝑛 − 1 



Example: Max 

• Let 𝑓 𝑛  be the number of operations to find the 
maximum value in a list of 𝑛 elements. 

– 𝑓 𝑛 = 6𝑛 − 1 

– 𝑓 𝑛 ≤ 𝐶𝑔 𝑛 , ∀𝑛 > 𝑘 

– 6𝑛 − 1 ≤ 6𝑛, ∀𝑛 > 0 

– Let 𝑔 𝑛 = 𝑛 

– 𝒇 𝒏  is 𝑶 𝒏 .  Witnesses: 𝑪 = 𝟔, 𝒌 = 𝟎 



Example: Sort 

• Let 𝑓 𝑛  be the number of operations to sort a list 
of 𝑛 elements. 

procedure bubble_sort( 𝑎1, … , 𝑎𝑛 )  - 1: assign 

for i = 1 to n-1    - 2: assign and compare in loop1 

 for j = 1 to n-i   - 2(𝑛 − 1): assign and compare in loop2 

  if 𝑎𝑗  > 𝑎𝑗+1  -  3(𝑛 − 𝑖)𝑛−1
𝑖=1 : accesses and compare 

  then, swap 𝑎𝑗  and 𝑎𝑗+1 -  3(𝑛 − 𝑖)𝑛−1
𝑖=1 : assigns 

     -  2(𝑛 − 𝑖)𝑛−1
𝑖=1 : increment and compare in loop 2 

     - 2(𝑛 − 1): increment and compare in loop 1 

𝑓 𝑛 = 1 + 2 + 2 𝑛 − 1 + 3(𝑛 − 𝑖)

𝑛−1

𝑖=1

+ 3(𝑛 − 𝑖)

𝑛−1

𝑖=1

+ 2 𝑛 − 𝑖

𝑛−1

𝑖=1

+ 2 𝑛 − 1  

𝑓 𝑛 = 4𝑛2 − 1 
 

 

 



Example: Sort 

• Let 𝑓 𝑛  be the number of operations to sort a list 
of 𝑛 elements. 

– 𝑓 𝑛 = 4𝑛2 − 1 

– 𝑓 𝑛 ≤ 𝐶𝑔 𝑛 , ∀𝑛 > 𝑘 

– 4𝑛2 − 1 ≤ 4𝑛2, ∀𝑛 > 0 

– Let 𝑔 𝑛 = 𝑛2 

– 𝒇 𝒏  is 𝑶 𝒏𝟐 .  Witnesses: 𝑪 = 𝟒, 𝒌 = 𝟎 

 

 
 

 



Big-𝑂 for Polynomials 

• Let 𝑓 𝑥 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0. 

• Then, 𝑓 𝑥  is 𝑂 𝑥𝑛 . 

• Example: 𝑓 𝑥 = 5𝑥2 − 18𝑥 + 20 
– 5𝑥2 − 18𝑥 + 20 ≤ 5𝑥2 + 20 for 𝑥 > 0 

– 5𝑥2 + 20 ≤ 5𝑥2 + 20𝑥2 for 𝑥 > 1 

– 5𝑥2 + 20𝑥2 = 25𝑥2 ≤ 𝐶𝑔 𝑥  for 𝑥 > 1 

– Let 𝑔 𝑥 = 𝑥2 

– 𝒇 𝒙  is 𝑶 𝒙𝟐 .  Witnesses: 𝑪 = 𝟐𝟓, 𝒌 = 𝟏 



Exercise 

• Give a big-𝑂 estimate for the sum of the first 𝑛 
positive integers. 

 

• Solution: 

• 1 + 2 +⋯+ 𝑛 ≤ 𝑛 + 𝑛 +⋯+ 𝑛 = 𝑛2 

• 1 + 2 +⋯+ 𝑛 is 𝑂 𝑛2 , 𝐶 = 1, 𝑘 = 1 



Exercise 

• Give a big-𝑂 estimate for the factorial function, 
f 𝑛 = 𝑛!, and the logarithm of the factorial. 
 

• Solution: 

• 𝑛! = 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ 𝑛 ≤ 𝑛 ⋅ 𝑛 ⋅ 𝑛 ⋅ ⋯ ⋅ 𝑛 = 𝑛𝑛 
– 𝑛! is 𝑂 𝑛𝑛  

• log 𝑛! ≤ log 𝑛𝑛 = 𝑛 log 𝑛 
– log 𝑛!  is 𝑂 𝑛 log 𝑛  



Basic Growth Functions 

Constant:   𝑂 1  
Logarithmic:  𝑂 log 𝑛  
Linear:  𝑂 𝑛  
Linearithmic: 𝑂 𝑛 log 𝑛  
Polynomial:  𝑂 𝑛𝑐  
Exponential:  𝑂 2𝑛  
Factorial:  𝑂 𝑛!  



Useful Big-𝑂 Estimates 

• 𝑛𝑐 is 𝑂 𝑛𝑑 , but 𝑛𝑑 is not 𝑂 𝑛𝑐 , 𝑑 > 𝑐 > 1 

• log𝑏 𝑛
𝑐 is 𝑂 𝑛𝑑 , but 𝑛𝑑 is not 𝑂 log𝑏 𝑛

𝑐 , 

𝑏 > 1, 𝑐, 𝑑 > 0 

• 𝑛𝑑 is 𝑂 𝑏𝑛 , but 𝑏𝑛 is not 𝑂 𝑛𝑑 , 𝑑 > 0, 𝑏 > 1 

• 𝑏𝑛 is 𝑂 𝑐𝑛 , but 𝑐𝑛 is not 𝑂 𝑏𝑛 , 𝑐 > 𝑏 > 1 



The Growth of Combinations of Functions 

• Suppose 𝑓1 𝑛  is 𝑂 𝑔1 𝑛  and 𝑓2 𝑛  is 𝑂 𝑔2 𝑛  

– 𝑓1 + 𝑓2 𝑛  is 𝑂 max 𝑔1 𝑛 , 𝑔2 𝑛  

• If 𝑔1 𝑛 = 𝑔2 𝑛 = 𝑔 𝑛 , then 𝑓1 + 𝑓2 𝑛  is 𝑂 𝑔 𝑛  

 

– 𝑓1𝑓2 𝑛  is 𝑂 𝑔1 𝑛 𝑔2 𝑛  



Exercise 
• Which of these functions is 𝑂 𝑥 ? 

– 𝑓 𝑥  = 10 

• 𝐶 = 1, 𝑘 = 10 

– 𝑓 𝑥 = 3𝑥 + 7 

• 𝐶 = 4, 𝑘 = 7 

– 𝑓 𝑥 = 𝑥2 + 𝑥 + 1 
• Not 𝑂 𝑥  

– 𝑓 𝑥 = 5 log 𝑥 

• 𝐶 = 5, 𝑘 = 2 

– 𝑓 𝑥 = ⌊𝑥⌋ 

• 𝐶 = 1, 𝑘 = 0 

– 𝑓 𝑥 =
𝑥

2
 

• 𝐶 = 1, 𝑘 = 0 



Exercise 

• Find the least integer 𝑐 such that 𝑓 𝑛  is 𝑂 𝑛𝑐 : 

– 𝑓 𝑛 = 2𝑛3 + 𝑛2 log 𝑛 

• 𝑐 = 3 

• 𝐶 = 3, 𝑘 = 1 

– 𝑓 𝑛 =
𝑛4+𝑛2+1

𝑛3+1
 

• 𝑐 = 1 

• 𝐶 = 1.5, 𝑘 = 1 



Big-Ω 

• Big-𝑂  

– ∃𝐶, 𝑘  ∀𝑛 > 𝑘   𝑓 𝑛 ≤ 𝐶𝑔 𝑛  

• Big- Ω (big omega) 

– ∃𝐶, 𝑘  ∀𝑛 > 𝑘  𝑓 𝑛 ≥ 𝐶𝑔 𝑛  

– 𝐶 must be positive. 

– 𝑓 𝑛  is Ω 𝑔 𝑛 ↔ 𝑔 𝑛  is 𝑂 𝑓 𝑛  

– “𝑓 𝑥  is bounded below by 𝑔 𝑥 ” 

 

 

 



Big-Θ 

• Big- Θ (big theta) 

– 𝑓 𝑛  is 𝑂 𝑔 𝑛  and Ω 𝑔 𝑛  

– 𝑓 𝑛  is 𝑂 𝑔 𝑛  and 𝑔 𝑛  is 𝑂 𝑓 𝑛  

– 𝑓 𝑛  is Θ 𝑔 𝑛 ↔ g 𝑛  is Θ 𝑓 𝑛  

– ∃𝐶1, 𝐶2 , 𝑘  ∀𝑛 > 𝑘   𝐶1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝐶2𝑔 𝑛  

– 𝑓 𝑛  is of order 𝑔 𝑛  

– 𝑓 𝑛  and 𝑔 𝑛  are of the same order 



Big-Θ for Polynomials 

• Let 𝑓 𝑥 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0. 

• Then, 𝑓 𝑥  is of order 𝑥𝑛. 

– “𝑓 𝑥  is bounded [above and below] by 𝑔 𝑥 ” 

• Example: 

– 3𝑥8 + 10𝑥7 + 221𝑥2 + 1444 is of order 𝑥8 

• Witnesses: 𝐶 = 6, 𝑘 = 10 

 



Complexity of Algorithms 

• Computational complexity is the amount of time 
and space an algorithm uses to solve a problem. 

– Space complexity 

• Depends on data structures used to implement the algorithm 

– Time complexity 

• Depends on the number of operations used by the algorithm. 

• Use big-𝑂 (or big-Θ, if possible) to specify 



Time Complexity 

• Elementary operations have constant time (Θ 1 ) 
complexity: 

– Assignment 

– Arithmetic operations 

– Boolean operations 

– Comparisons 

– Array access 



Time Complexity 

• Blocks of statements 

– 𝐵𝑙𝑜𝑐𝑘1; // takes 𝑇1 time 

– 𝐵𝑙𝑜𝑐𝑘2; // takes 𝑇2 time 

– … 

– 𝐵𝑙𝑜𝑐𝑘𝑘; // takes 𝑇𝑘 time 

• To execute the sequence of Blocks 1 through 𝑘 takes 
𝑂 𝑇1 + 𝑇2 +⋯+ 𝑇𝑘  time. 



Time Complexity 

• Control Structures 

– if(BoolExpr) // takes 𝑇𝐵 time 

• 𝐵𝑙𝑜𝑐𝑘1; // takes 𝑇1 time 

– else 

• 𝐵𝑙𝑜𝑐𝑘2; // takes 𝑇2 time 

• To execute the control structures takes 
𝑂 TB +max 𝑇1, 𝑇2  time. 

 



Time Complexity 

• For Loops 
– for i=a to b 

• 𝐵𝑙𝑜𝑐𝑘1; // takes 𝑇1 𝑘  time when i=k  

• To execute the loop takes  
𝑇1 𝑎 + 𝑇1 𝑎 + 1 +⋯+𝑇1 𝑏  time 

• If 𝑇1 𝑘  is Θ 1 , then the loop takes 

𝑂 𝑏 − 𝑎 + 1 ⋅ 𝑇1  time 



Time Complexity 

• Function Calls 
– def f(params) // takes 𝑇𝑝 time to assign params 

• 𝐵𝑙𝑜𝑐𝑘1; // takes 𝑇1 time 

– To execute the function takes 𝑂 𝑇𝑝 + 𝑇1  time 



Bubble Sort Revisited 

procedure bubble_sort( 𝑎1, … , 𝑎𝑛 )  // 𝑂 𝑇𝑝 = 𝑂 1  

for i = 1 to n-1    // 𝐵𝑙𝑜𝑐𝑘1 

 for j = 1 to n-i   //  𝐵𝑙𝑜𝑐𝑘2 

  if 𝑎𝑗  > 𝑎𝑗+1   //   𝐵𝑙𝑜𝑐𝑘3 

  then, swap 𝑎𝑗 and 𝑎𝑗+1  

 

𝐵𝑙𝑜𝑐𝑘3 is a control structure which takes 𝑂 3 + 3 = 𝑂 1  time 

𝐵𝑙𝑜𝑐𝑘2 is a for loop, which takes 𝑂 𝑛 − 𝑖 − 1 + 1 ⋅ 𝑂 1 = 𝑂 𝑛 − 𝑖  time 

𝐵𝑙𝑜𝑐𝑘1 is a for loop, which takes 𝑂 𝑂 𝑛 − 1 + 𝑂 𝑛 − 2 +⋯+ 𝑂 1 = 𝑂
𝑛 𝑛−1

2
= 𝑂 𝑛2  time 

Therefore, the procedure takes 𝑂 𝑂 1 + 𝑂 𝑛2 = 𝑂 𝑛2  time 



Tractability 
• A problem which can be solved by an algorithm with worst-case 

polynomial time complexity (Θ 𝑛𝑐 ) is called tractable. 
– Does not guarantee that it can be solved in any reasonable amount of time. 
– Reasonable input sizes can be solved in relatively short time. 

• A problem which cannot be solved by any algorithm with worse-case 
polynomial polynomial time complexity is called intractable. 
– Average case complexity may be better. 
– Many important problems are intractable, but still get solved everyday. 

• Approximate solutions. 

• A problem for which there does not exists any algorithm is called 
unsolvable. 
– The first unsolvable, proved by Turing: The halting problem. 

 



P vs NP 

• All the tractable problems belong to a set called P. 
– Can be solved in worst-case polynomial time.  

• All the problems whose solutions can be verified in 
polynomial time belong to a set called NP. 
– Example: Boolean Satisfiability (SAT) – find an assignment 

of truth values that satisfies some Boolean expression. 
• Solution can be verified very easily. 

• Finding a solution for 𝑛 variables requires Ω 2𝑛  operations 



NP-Complete 

• It turns out that a bunch of problems in NP are actually the 
same problem.  These are called NP-complete problems.   
– Every problem in NP can be reduced in polynomial time to an NP-

complete problem.  
• SAT was the first to be proved to be NP-complete. 

– If any NP-complete problem can be solved in polynomial time, then 
every NP problem can, too.   
• P = NP. 

• $1,000,000 prize for proof of whether P = NP. 
– General consensus is that P ≠ NP. 

 


