Introduction

• An **algorithm** is a finite sequence of precise instructions for performing a computation or for solving a problem.
 – Searching
 – Sorting
 – Optimizing
 – Etc.
Example

• Describe an algorithm for finding the maximum value in a list (finite sequence) of integers.

• Solution
 – Set the temporary maximum to the first element of the list.
 – For each remaining element in the list, compare it to the temporary maximum. If it is larger, set the temporary maximum to this integer.
 – Return the temporary maximum as the answer.
Psuedocode

• **Psuedocode** is an intermediate between an English description and an implementation in a particular language of an algorithm.
 – English is very high-level, not always well-suited to precise descriptions of algorithms
 – Programming languages are very precise, but can make algorithms hard to understand.
Psuedocode for Finding the Max

procedure max(a_1, a_2, ..., a_n)
 temp_max = a_1
 for i=2 to n do
 if temp_max < a_i
 then temp_max = a_i
 return temp_max
Properties of Algorithms

- **Input.**
 - Input values from a specified set.

- **Output**
 - Output values from a specified set. The solution to the problem.

- **Definiteness**
 - Steps are defined precisely.

- **Correctness**
 - Produces correct answer for every input.

- **Finiteness**
 - Terminate after a finite number of steps.

- **Effectiveness**
 - Each step performed in finite time.

- **Generality**
 - Works for all problems of the desired form.
Does the max-finding algorithm have all of these properties?

• **Input.**
 – A list of integers

• **Output**
 – The largest integer in the list.

• **Definiteness**
 – Assignments, finite loops, and comparisons all have precise definitions.

• **Correctness**
 – Yes. Informal proof: `temp_max` is updated every time a large value is seen; all values seen; therefore `temp_max` is the largest value in the list after the loop ends.

• **Finiteness**
 – Stops after seeing all elements of the list.

• **Effectiveness**
 – Assignments, finite loops, and comparisons all take finite time.

• **Generality**
 – Finds the maximum of any list of integers.
Search

• **Search**
 – Find a given element in a list. Return the location of the element in the list (index), or -1 if not found.

• **Linear Search**
 – Compare key (element being searched for) with each element in the list until a match is found, or the end of the list is reached.

• **Binary Search**
 – Compare key only with elements in certain locations. Split list in half at each comparison. *Requires list to be sorted.*
Linear Search

procedure linear_search (key , {a_1,...,a_n})
for index = 1 to n
 if a_i equals key
 return index
return -1
Binary Search

```plaintext
procedure binary_search (key , {a_1,...,a_n})
left = 1
right = n
while left < right
    middle = [(left + right)/2]
    if key == a_middle, then return middle
    elseif key > a_middle, then left = middle + 1
    else right = middle
if key == a_left, then return left
return -1
```
Linear Search Exercise

• Write the numbers 1 to 20 on post-it notes.
 – 1 number per note.
• Randomly order the notes on the table.
• How many comparisons to find:
 – 7?
 – 13?
 – 1?
 – 20?
Binary Search Exercise

• Sort the notes in ascending order
• How many comparisons to find:
 – 7?
 – 13?
 – 1?
 – 20?
Sort

- **Sort**: put the elements of a list in ascending order
 - Example:
 - List: 7,2,1,4,5,9
 - Sorted List: 1,2,4,5,7,9

- **Bubble Sort**
 - Compare every element to its neighbor and swap them if they are out of order. Repeat until list is sorted.

- **Insertion Sort**
 - For each element of the unsorted portion of the list, insert it in sorted order in the sorted portion of the list.
Bubble Sort

procedure bubble_sort({a_1, ..., a_n})
for i = 1 to n-1
 for j = 1 to n-i
 if a_j > a_{j+1}
 then, swap a_j and a_{j+1}
\{a_1, ..., a_n\} is in sorted order.
Insertion Sort

procedure insertion_sort(\{a_1, \ldots, a_n\})
for j = 2 to n
 i = 1
 while a_j > a_i
 i = i + 1
 m = a_j
 for k = 0 to j-i-1
 a_{j-k} = a_{j-k-1}
 a_i = m
\{a_1, \ldots, a_n\} is in sorted order.
Bubble Sort Exercise

• Order the notes on the table as follows:
 – 10, 2, 1, 5, 3, 9, 6, 4, 7, 8

• Sort them using Bubble Sort.

• How many comparisons and swaps did you use?
 – Don’t count condition checks in for loops.
Insertion Sort Exercise

• Order the notes on the table as follows:
 – 10, 2, 1, 5, 3, 9, 6, 4, 7, 8

• Sort them using Insertion Sort.

• How many comparisons and swaps did you use?
 – Don’t count condition checks in for loops.
Binary Insertion Sort Exercise

• Order the notes on the table as follows:
 – 10, 2, 1, 5, 3, 9, 6, 4, 7, 8

• Sort them using Binary Insertion Sort.
 – Use binary search, instead of linear search, when searching for the correct place to insert each number.

• How many comparisons and swaps did you use?
 – Don’t count condition checks in for loops.
The Growth of Functions

• The time required to solve a problem using a procedure depends on:
 – Number of operations used
 • Depends on the size of the input
 – Speed of the hardware and software
 • Does not depend on the size of the input
 • Can be accounted for using a constant multiplier

• The growth of functions refers to the number of operations used by the function to solve the problem.
Big-O Notation

• Estimate the growth of a function without worrying about constant multipliers or smaller order terms.
 – Do not need to worry about hardware or software used

• Assume that different operations take the same time.
 – Addition is actually much faster than division, but for the purposes of analysis we assume they take the same time.
Big-O

• Let f and g be functions from \mathbb{Z} or \mathbb{R}, to \mathbb{R}.

• We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that $|f(x)| \leq C|g(x)|$ whenever $x > k$.
 – “$f(x)$ is bounded above by $g(x)$”
 – “$f(x)$ grows slower than $Cg(x)$, as x grows without bound”
 – Constants C and k are called witnesses.
Example: Max

- Let $f(n)$ be the number of operations to find the maximum value in a list of n elements.

\[
\text{procedure } \text{max}(a_1, a_2, \ldots, a_n) \\
\text{temp} _\text{max} = a_1 \\
\text{for } i=2 \text{ to } n \text{ do} \\
\quad \text{if } \text{temp} _\text{max} < a_i \\
\quad \quad \text{then } \text{temp} _\text{max} = a_i \\
\text{return } \text{temp} _\text{max}
\]

- assign = depending on implementation, 1 or n op.
- assign = 1 op.
- assign + compare = 1+1 = 2 ops.
- access + comparison = 1+1 = 2 ops. \hspace{1cm} (n-1) \text{ times}
- access + assign = 1+1 = 2 ops. \hspace{1cm} (n-1) \text{ times}
- increment + compare = 1+1 = 2 ops. \hspace{1cm} (n-1) \text{ times}
- return = 1 op.

\[
f(n) = 1 + 1 + 2 + (n - 1)(2 + 2 + 2) + 1 \\
f(n) = 6n - 1
\]
Example: Max

• Let $f(n)$ be the number of operations to find the maximum value in a list of n elements.

 – $f(n) = 6n - 1$

 – $f(n) \leq Cg(n), \ \forall n > k$

 – $6n - 1 \leq 6n, \ \forall n > 0$

 – Let $g(n) = n$

 – $f(n)$ is $O(n)$. Witnesses: $C = 6, \ k = 0$
Example: Sort

• Let $f(n)$ be the number of operations to sort a list of n elements.

\[
\text{procedure} \ \text{bubble_sort}\{\{a_1, \ldots, a_n\}\} \\
\text{for } i = 1 \text{ to } n-1 \\
\quad \text{for } j = 1 \text{ to } n-i \\
\quad \quad \text{if } a_j > a_{j+1} \\
\quad \quad \quad \text{then, swap } a_j \text{ and } a_{j+1}
\]

\[
f(n) = 1 + 2 + 2(n-1) + \sum_{i=1}^{n-1} 3(n-i) + \sum_{i=1}^{n-1} 3(n-i) + \sum_{i=1}^{n-1} 2(n-i) + 2(n-1)
\]

\[
f(n) = 4n^2 - 1
\]
Example: Sort

- Let $f(n)$ be the number of operations to sort a list of n elements.
 - $f(n) = 4n^2 - 1$
 - $f(n) \leq Cg(n)$, $\forall n > k$
 - $4n^2 - 1 \leq 4n^2$, $\forall n > 0$
 - Let $g(n) = n^2$
 - $f(n)$ is $O(n^2)$. Witnesses: $C = 4$, $k = 0$
Big-O for Polynomials

• Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$.
• Then, $f(x)$ is $O(x^n)$.
• Example: $f(x) = 5x^2 - 18x + 20$
 - $5x^2 - 18x + 20 \leq 5x^2 + 20$ for $x > 0$
 - $5x^2 + 20 \leq 5x^2 + 20x^2$ for $x > 1$
 - $5x^2 + 20x^2 = 25x^2 \leq Cg(x)$ for $x > 1$
 - Let $g(x) = x^2$
 - $f(x)$ is $O(x^2)$. Witnesses: $C = 25, \ k = 1$
Exercise

• Give a big-O estimate for the sum of the first n positive integers.

• Solution:
 • $1 + 2 + \cdots + n \leq n + n + \cdots + n = n^2$
 • $1 + 2 + \cdots + n$ is $O(n^2)$, $C = 1, k = 1$
Exercise

• Give a big-O estimate for the factorial function, $f(n) = n!$, and the logarithm of the factorial.

• Solution:

• $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \leq n \cdot n \cdot n \cdot \ldots \cdot n = n^n$

 $- n!$ is $O(n^n)$

• $\log(n!) \leq \log(n^n) = n \log n$

 $- \log(n!)$ is $O(n \log n)$
Basic Growth Functions

- **Constant:** $O(1)$
- **Logarithmic:** $O(\log n)$
- **Linear:** $O(n)$
- **Linearithmic:** $O(n \log n)$
- **Polynomial:** $O(n^c)$
- **Exponential:** $O(2^n)$
- **Factorial:** $O(n!)$
Useful Big-O Estimates

• n^c is $O(n^d)$, but n^d is not $O(n^c)$, $d > c > 1$

• $(\log_b n)^c$ is $O(n^d)$, but n^d is not $O((\log_b n)^c)$, $b > 1, c, d > 0$

• n^d is $O(b^n)$, but b^n is not $O(n^d)$, $d > 0, b > 1$

• b^n is $O(c^n)$, but c^n is not $O(b^n)$, $c > b > 1$
The Growth of Combinations of Functions

• Suppose \(f_1(n) \) is \(O(g_1(n)) \) and \(f_2(n) \) is \(O(g_2(n)) \)

 - \((f_1 + f_2)(n)\) is \(O(\max(g_1(n), g_2(n)))\)

 • If \(g_1(n) = g_2(n) = g(n) \), then \((f_1 + f_2)(n)\) is \(O(g(n))\)

 - \((f_1f_2)(n)\) is \(O(g_1(n)g_2(n))\)
Exercise

• Which of these functions is $O(x)$?
 – $f(x) = 10$
 • $C = 1, k = 10$
 – $f(x) = 3x + 7$
 • $C = 4, k = 7$
 – $f(x) = x^2 + x + 1$
 • Not $O(x)$
 – $f(x) = 5 \log x$
 • $C = 5, k = 2$
 – $f(x) = \lfloor x \rfloor$
 • $C = 1, k = 0$
 – $f(x) = \left\lfloor \frac{x}{2} \right\rfloor$
 • $C = 1, k = 0$
Exercise

• Find the least integer c such that $f(n)$ is $O(n^c)$:

 $f(n) = 2n^3 + n^2 \log n$

 - $c = 3$
 - $C = 3, k = 1$

 $f(n) = \frac{n^4 + n^2 + 1}{n^3 + 1}$

 - $c = 1$
 - $C = 1.5, k = 1$
Big-Ω

- **Big-O**
 - $\exists C, k \; \forall n > k \; f(n) \leq C g(n)$

- **Big- Ω (big omega)**
 - $\exists C, k \; \forall n > k \; f(n) \geq C g(n)$
 - C must be **positive**.
 - $f(n)$ is $\Omega(g(n)) \leftrightarrow g(n)$ is $O(f(n))$
 - “$f(x)$ is bounded below by $g(x)$”
Big-Θ

• Big-Θ (big theta)
 – $f(n)$ is $O(g(n))$ and $Ω(g(n))$
 – $f(n)$ is $O(g(n))$ and $g(n)$ is $O(f(n))$
 – $f(n)$ is $Θ(g(n))$ $↔$ $g(n)$ is $Θ(f(n))$
 – $∃C_1, C_2, k \ ∀n > k \ C_1 g(n) ≤ f(n) ≤ C_2 g(n)$
 – $f(n)$ is of order $g(n)$
 – $f(n)$ and $g(n)$ are of the same order
Big-Θ for Polynomials

• Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$.
• Then, $f(x)$ is of order x^n.

 \quad “$f(x)$ is bounded [above and below] by $g(x)$”

• Example:

 \quad $3x^8 + 10x^7 + 221x^2 + 1444$ is of order x^8

 • Witnesses: $C = 6, \ k = 10$
Complexity of Algorithms

• **Computational complexity** is the amount of time and space an algorithm uses to solve a problem.
 – **Space complexity**
 • Depends on data structures used to implement the algorithm
 – **Time complexity**
 • Depends on the number of operations used by the algorithm.
 • Use big-\mathcal{O} (or big-Θ, if possible) to specify
Time Complexity

• Elementary operations have constant time ($\Theta(1)$) complexity:
 – Assignment
 – Arithmetic operations
 – Boolean operations
 – Comparisons
 – Array access
Time Complexity

• Blocks of statements
 – $Block_1; // \text{ takes } T_1 \text{ time}$
 – $Block_2; // \text{ takes } T_2 \text{ time}$
 – ...
 – $Block_k; // \text{ takes } T_k \text{ time}$

• To execute the sequence of Blocks 1 through k takes $O(T_1 + T_2 + \cdots + T_k)$ time.
Time Complexity

• Control Structures
 – if (BoolExpr) // takes T_B time
 • $Block_1$; // takes T_1 time
 – else
 • $Block_2$; // takes T_2 time

• To execute the control structures takes $O(T_B + \max(T_1, T_2))$ time.
Time Complexity

• For Loops
 - for i=a to b
 • Block1; // takes $T_1(k)$ time when i=k

• To execute the loop takes
 $T_1(a) + T_1(a + 1) + \cdots + T_1(b)$ time

• If $T_1(k)$ is $\Theta(1)$, then the loop takes
 $O((b - a + 1) \cdot T_1)$ time
Time Complexity

• Function Calls
 – `def f(params) // takes T_p time to assign params`
 • `Block_1; // takes T_1 time`
 – To execute the function takes $O(T_p + T_1)$ time
procedure bubble_sort({a_1, ..., a_n}) // \(O(T_p) = O(1)\)
for i = 1 to n-1 // Block_1
 for j = 1 to n-i // Block_2
 if \(a_j > a_{j+1}\) // Block_3
 then, swap \(a_j\) and \(a_{j+1}\)

Block_3 is a control structure which takes \(O(3 + 3) = O(1)\) time
Block_2 is a for loop, which takes \(O((n - i - 1 + 1) \cdot O(1)) = O(n - i)\) time
Block_1 is a for loop, which takes \(O(O(n - 1) + O(n - 2) + \cdots + O(1)) = O\left(\frac{n(n-1)}{2}\right) = O(n^2)\) time
Therefore, the procedure takes \(O(O(1) + O(n^2)) = O(n^2)\) time
Tractability

• A problem which can be solved by an algorithm with worst-case polynomial time complexity ($\Theta(n^c)$) is called tractable.
 – Does not guarantee that it can be solved in any reasonable amount of time.
 – Reasonable input sizes can be solved in relatively short time.

• A problem which cannot be solved by any algorithm with worse-case polynomial polynomial time complexity is called intractable.
 – Average case complexity may be better.
 – Many important problems are intractable, but still get solved everyday.
 • Approximate solutions.

• A problem for which there does not exists any algorithm is called unsolvable.
 – The first unsolvable, proved by Turing: The halting problem.
P vs NP

• All the **tractable** problems belong to a set called **P**.
 – **Can be solved** in worst-case polynomial time.

• All the problems whose **solutions can be verified** in polynomial time belong to a set called **NP**.
 – Example: Boolean Satisfiability (SAT) – find an assignment of truth values that satisfies some Boolean expression.
 • Solution can be verified very easily.
 • Finding a solution for n variables requires $\Omega(2^n)$ operations
NP-Complete

• It turns out that a bunch of problems in NP are actually the same problem. These are called NP-complete problems.
 – Every problem in NP can be reduced in polynomial time to an NP-complete problem.
 • SAT was the first to be proved to be NP-complete.
 – If any NP-complete problem can be solved in polynomial time, then every NP problem can, too.
 • P = NP.

• $1,000,000 prize for proof of whether P = NP.
 – General consensus is that P ≠ NP.