CSCE 222
Discrete Structures for Computing

Algorithms



Introduction

* An algorithm is a finite sequence of precise
instructions for performing a computation or for
solving a problem.

— Searching
— Sorting

— Optimizing
— Etc.



Example

* Describe an algorithm for finding the maximum value in
a list (finite sequence) of integers.

* Solution
— Set the temporary maximum to the first element of the list.

— For each remaining element in the list, compare it to the
temporary maximum. If it is larger, set the temporary
maximum to this integer.

— Return the temporary maximum as the answer.



Psuedocode

* Psuedocode is an intermediate between an English
description and an implementation in a particular
language of a an algorithm.

— English is very high-level, not always well-suited to
precise descriptions of algorithms

— Programming languages are very precise, but can make
algorithms hard to understand.



Psuedocode for Finding the Max

procedure max(a 1,a 2,..,a n)
temp max=a 1
fori=2ton do

if temp max<a i

then temp max =a_ |

return temp_max



Properties of Algorithms

Input.
— Input values from a specified set.

Output
— Output values from a specified set. The solution to the problem.
Definiteness
— Steps are defined precisely.
Correctness
— Produces correct answer for every input.
Finiteness
— Terminate after a finite number of steps.
Effectiveness
— Each step performed in finite time.

Generality
— Works for all problems of the desired form.



Does the max-finding algorithm have all of
these properties?

Input.
— Alist of integers
Output
— The largest integer in the list.
Definiteness
— Assignments, finite loops, and comparisons all have precise definitions.

Correctness

— Yes. Informal proof: temp_max is updated every time a large value is seen; all values seen; therefore
temp_max is the largest value in the list after the loop ends.

Finiteness
— Stops after seeing all elements of the list.
Effectiveness
— Assignments, finite loops, and comparisons all take finite time.

Generality
— Finds the maximum of any list of integers.



Search

e Search

— Find a given element in a list. Return the location of the element in
the list (index), or -1 if not found.

 Linear Search

— Compare key (element being searched for) with each element in
the list until a match is found, or the end of the list is reached.

* Binary Search

— Compare key only with elements in certain locations. Split list in
half at each comparison. Requires list to be sorted.



Linear Search

procedure linear _search (key, {a_1,...,a_n})
forindex=1ton
if a_i equals key
return index
return -1



Binary Search

procedure binary search (key, {a 1,...,.a n})

left =1

right =n

while left < right
middle = |(left + right) /2]
if key == a_middle, then return middle
elseif key > a_middle, then left = middle + 1
else right = middle

if key == a_left, then return left

return -1



Linear Search Exercise

* Write the numbers 1 to 20 on post-it notes.
— 1 number per note.

« Randomly order the notes on the table.

* How many comparisons to find:
— 77
— 137
- 17
— 207



Binary Search Exercise

* Sort the notes in ascending order

* How many comparisons to find:
—77?
—13?
— 1
— 207



Sort

* Sort: put the elements of a list in ascending order

— Example:
e List:7,2,1,4,5,9
 Sorted List: 1,2,4,5,7,9

e Bubble Sort

— Compare every element to its neighbor and swap them if they are
out of order. Repeat until list is sorted.

* |nsertion Sort

— For each element of the unsorted portion of the list, insert it in
sorted order in the sorted portion of the list.



Bubble Sort

procedure bubble_sort({a4, ..., a,})
fori=1ton-1
for j =1 to n-i
ifa, > a;jq
then, swap a; and a; ;4

{a4,...,a,}isin sorted order.



Insertion Sort

procedure insertion_sort({a4, ..., a,})
forj=2ton
1=1
while a; > a;
i=i+1
m = Clj
for k =0to j-i-1
Aj—k=Aj—k—1
a;=m
{a4, ..., a,}isin sorted order.



Bubble Sort Exercise

e Order the notes on the table as follows:
~10,2,1,5,3,9,6,4,7, 8

e Sort them using Bubble Sort.
* How many comparisons and swaps did you use?

— Don’t count condition checks in for loops.



Insertion Sort Exercise

e Order the notes on the table as follows:
~10,2,1,5,3,9,6,4,7, 8

* Sort them using Insertion Sort.
* How many comparisons and swaps did you use?

— Don’t count condition checks in for loops.



Binary Insertion Sort Exercise

e Order the notes on the table as follows:
~10,2,1,5,3,9,6,4,7, 8

* Sort them using Binary Insertion Sort.

— Use binary search, instead of linear search, when
searching for the correct place to insert each number.

* How many comparisons and swaps did you use?

— Don’t count condition checks in for loops.



The Growth of Functions

* The time required to solve a problem using a procedure
depends on:

— Number of operations used
* Depends on the size of the input

— Speed of the hardware and software
* Does not depend on the size of the input
* Can be accounted for using a constant multiplier

 The growth of functions refers to the number of
operations used by the function to solve the problem.



Big-O Notation

* Estimate the growth of a function without worrying
about constant multipliers or smaller order terms.

— Do not need to worry about hardware or software used

* Assume that different operations take the same

time.

— Addition is actually much faster than division, but for the
purposes of analysis we assume they take the same time.



Big-O

* Let f and g be functions from Z or R, to R.

* We say that f(x) is 0(g(x)) if there are constants C and
k such that |f (x)| < Clg(x)| whenever x > k.
— “f(x) is bounded above by g(x)”
— “f(x) grows slower than Cg(x), as x grows without bound”
— Constants C and k are called witnesses.



Example: Max

* Let f(n) be the number of operations to find the maximum
value in a list of n elements.

procedure max(a_1,a 2,...,a_n) - assign = depending on implementation, 1 or n op.
temp _max=a 1 - assign =1 op.
fori=2tondo - assign + compare = 1+1 = 2 ops.
if temp_max<a_ i - access + comparison = 1+1 = 2 ops. (n-1) times
then temp max=a i - access + assign = 1+1 = 2 ops. (n-1) times
- increment + compare = 1+1 = 2 ops. (n-1) times
return temp_max - return =1 op.

fM=1+1+2+Mm-1DQ2+2+2)+1
f(n)=6n-1



Example: Max

* Let f(n) be the number of operations to find the
maximum value in a list of n elements.
—f(n)=6n-1
—f(n) <Cgn), vn>k
—6n—1<6n, vn >0
—Letg(n) =n
— f(n) is O(n). Witnesses:C =6, k=0



Example: Sort

* Let f(n) be the number of operations to sort a list
of n elements.

procedure bubble_sort({a, ..., a,}) - 1: assign
fori=1ton-1 - 2: assign and compare in loop1l
forj=1ton-i - 2(n — 1): assign and compare in loop2
ifa; > a4 - Y1 3(n — i): accesses and compare
then, swap a; and a4 - Y1 3(n — i): assigns

- Y1 2(n — i): increment and compare in loop 2
- Z(n —1): mcrement and compare in loop 1

f(n)—1+2+2(n—1)+z3(n—l)+23(n—1)+22(n—1)+2(n—1)
f(n) = 4n -1



Example: Sort

* Let f(n) be the number of operations to sort a list
of n elements.
—f(n) =4n* -1
- f(n) < Cg(n), vn >k
—4n* — 1 < 4n?,vn > 0
— Let g(n) = n?
—f(n)is O(nz). Witnesses: C = 4, k=0



Big-O for Polynomials

e letf(x) =a,x"+a,_x™ 1+ -+ ax+ a,.
* Then, f(x)is O(x™).
* Example: f(x) = 5x% — 18x + 20

— 5x% —18x + 20 < 5x% + 20 forx > 0

— 5x% + 20 < 5x°% + 20x% forx > 1

— 5x% 4+ 20x% = 25x% < Cg(x) forx > 1

— Let g(x) = x?

— f(x) is O(x?). Witnesses: C = 25, k=1




Exercise

* Give a big-0 estimate for the sum of the first n
positive integers.

* Solution:
*1+24+-+n<n+n+--+n=n’
e 1+2+--+nis0(n®),C=1k=1



Exercise

Give a big-0O estimate for the factorial function,
f(n) = n!, and the logarithm of the factorial.

Solution:

—nlis 0(n")

log(n!) < log(n™) =nlogn
— log(n!) is O(nlogn)

n



Constant:
Logarithmic:
Linear:

Linearithmic:

Polynomial:
Exponential:
Factorial:

Basic Growth Functions

0(1)
O(logn)
0(n)
O(nlogn)
O(n°)
0(2™)
O(n')



Useful Big-O Estimates

n¢is 0(n?), butnisnot 0(n¢), d >c > 1

(log, n)€ is 0(n?), but n% is not O((log, n)°),
b>1,c,d>0

n%is 0(b™), but b™ isnot 0(n%),d > 0,b > 1
b™is O(c™), butc™isnotO(b™),c>b > 1



The Growth of Combinations of Functions

* Suppose f;(n) is 0(g,(n)) and f,(n) is 0(g,(n))
— (f1 + f2)(n) is O(max(g,(n), g»(n)))

+ If g1(n) = go(n) = g(n), then (f; + f,)(n) is 0(g(n))

- (f1f2)(n) is 0(g1(n) g, (n))



*  Which of these functions is O(x)?

f(x)=10

e C=1,k=10
f(x)=3x+7
e C=4k=7
fx)=x*+x+1
« Not 0(x)
f(x) =5logx
e C=5k=2
f(x) = |x|

e C=1k=0
fe =[5

c C=1k=0

Exercise



Exercise

Find the least integer ¢ such that f(n) is 0(n°):
— f(n) = 2n3 + n?logn

ec=3
e C=3k=1
n*4+n+1
- F) =

n3+1

e C=15k=1



Big-()

* Big-0
—3C,kVvn>k f(n) <Cg(n)
* Big- () (big omega)
—3C,k vn>k f(n) = Cg(n)
— C must be positive.

- f(m)is Q(g(n)) < gn)is 0(f(n))
— “f(x) is bounded below by g(x)”



Big-©

* Big- ® (big theta)
— f(n)is O(g(n)) and Q(g(n))
—f(n)is 0(g(n)) and g(n) is 0(f (n))
- f()isO(g(n)) < gn) is O(f(n))
—-3C,C, ,k Vvn>k C;gn) < f(n) < C,g(n)
— f(n) is of order g(n)
— f(n) and g(n) are of the same order



Big-® for Polynomials

* Let f(x) = anx™ + @y X" + -+ a1x + ao.
* Then, f(x) is of order x™.
— “f(x) is bounded [above and below] by g(x)”

 Example:

—3x8 4+ 10x7 + 221x% + 1444 is of order x°
e Withesses: C =6, k = 10



Complexity of Algorithms

 Computational complexity is the amount of time
and space an algorithm uses to solve a problem.
— Space complexity
* Depends on data structures used to implement the algorithm
— Time complexity

* Depends on the number of operations used by the algorithm.
* Use big-0 (or big-0, if possible) to specify



Time Complexity

* Elementary operations have constant time (©(1))
complexity:
— Assignment
— Arithmetic operations
— Boolean operations
— Comparisons

— Array access



Time Complexity

 Blocks of statements
— Blocky; // takes T; time
— Block,; // takes T, time

— Blocky; // takes T, time

* To execute the sequence of Blocks 1 through k takes
O(Tl + TZ + et Tk) time.



Time Complexity

e Control Structures

— 1f (BoolExpr) // takes Tp time
* Block,; // takes T; time

—else
* Block,; // takes T, time

e To execute the control structures takes
O(Tg + max(Ty,T,)) time.



Time Complexity

* For Loops
— for 1=a to Db

* Block,; // takes T;(k) time when i=k
* To execute the loop takes
Ti(a) + Ty(a+ 1)+ ---+T; (b) time
* IfT;(k)is ©(1), then the loop takes
0((b —a+1)- T1) time



Time Complexity

* Function Calls

—def f (params) // takes T, time to assign params
* Blocky; // takes T; time

— To execute the function takes O(Tp + T1) time



Bubble Sort Revisited

procedure bubble sort ({aj,..,a,}) // 0(T,) = 0(1)
for i = 1 to n-1 // Block,
for j = 1 to n-1i // Block,
if a; > a4 // Block,

then, swap a; and aj4q

Block, is a control structure which takes 0(3 + 3) = 0(1) time
Block, is a for loop, which takes 0((n —i—141)- 0(1)) =0(n—1i)time

n(n—-1)

Block, is a for loop, which takes O(O(n - 1D+0n—-2)+--+ 0(1)) =0 (
Therefore, the procedure takes 0(0(1) + 0(n?)) = 0(n?) time

) = 0(n?) time



Tractability

A problem which can be solved by an algorithm with worst-case
polynomial time complexity (0(n°)) is called tractable.

— Does not guarantee that it can be solved in any reasonable amount of time.
— Reasonable input sizes can be solved in relatively short time.
A problem which cannot be solved by any algorithm with worse-case
polynomial polynomial time complexity is called intractable.
— Average case complexity may be better.

— Many important problems are intractable, but still get solved everyday.
* Approximate solutions.

A problem for which there does not exists any algorithm is called
unsolvable.

— The first unsolvable, proved by Turing: The halting problem.



P vs NP

* All the tractable problems belong to a set called P.
— Can be solved in worst-case polynomial time.

* All the problems whose solutions can be verified in
polynomial time belong to a set called NP.

— Example: Boolean Satisfiability (SAT) — find an assignment
of truth values that satisfies some Boolean expression.

* Solution can be verified very easily.
* Finding a solution for n variables requires (2™) operations



NP-Complete

* |t turns out that a bunch of problems in NP are actually the
same problem. These are called NP-complete problems.

— Every problem in NP can be reduced in polynomial time to an NP-
complete problem.

e SAT was the first to be proved to be NP-complete.

— If any NP-complete problem can be solved in polynomial time, then
every NP problem can, too.

- P=NP.
e 51,000,000 prize for proof of whether P = NP.

— General consensus is that P = NP.



