CSCE 222 Discrete Structures for Computing

Algorithms

Dr. Philip C. Ritchey

Introduction

- An **algorithm** is a finite sequence of precise instructions for performing a computation or for solving a problem.
	- Searching
	- Sorting
	- Optimizing
	- Etc.

Example

- Describe an algorithm for finding the maximum value in a list (finite sequence) of integers.
- Solution
	- Set the temporary maximum to the first element of the list.
	- For each remaining element in the list, compare it to the temporary maximum. If it is larger, set the temporary maximum to this integer.
	- Return the temporary maximum as the answer.

Psuedocode

- **Psuedocode** is an intermediate between an English description and an implementation in a particular language of a an algorithm.
	- English is very high-level, not always well-suited to precise descriptions of algorithms
	- Programming languages are very precise, but can make algorithms hard to understand.

Psuedocode for Finding the Max

- **procedure** max(a_1, a_2, …, a_n)
- temp max = $a₁$
- **for** i=2 **to** n **do**
	- **if** temp max < a i
	- **then** $temp$ max = a i
- return temp max

Properties of Algorithms

- **Input.**
	- Input values from a specified set.
- **Output**
	- Output values from a specified set. The solution to the problem.
- **Definiteness**
	- Steps are defined precisely.
- **Correctness**
	- Produces correct answer for every input.
- **Finiteness**
	- Terminate after a finite number of steps.
- **Effectiveness**
	- Each step performed in finite time.
- **Generality**
	- Works for all problems of the desired form.

Does the max-finding algorithm have all of these properties?

• **Input.**

– A list of integers

• **Output**

– Yes. Informal proof: temp_max is updated every time a large value is seen; all values seen; therefore temp max is the largest value in the list after the loop ends.

- The largest integer in the list.
- **Definiteness**
	- Assignments, finite loops, and comparisons all have precise definitions.

• **Correctness**

• **Finiteness**

- Stops after seeing all elements of the list.
- **Effectiveness**
	- Assignments, finite loops, and comparisons all take finite time.
- **Generality**
	- Finds the maximum of any list of integers.

Search

- **Search**
	- Find a given element in a list. Return the location of the element in the list (index), or -1 if not found.
- **Linear Search**
	- Compare key (element being searched for) with each element in the list until a match is found, or the end of the list is reached.
- **Binary Search**
	- Compare key only with elements in certain locations. Split list in half at each comparison. *Requires list to be sorted.*

Linear Search

procedure linear_search (key , {a_1,…,a_n}) **for** $index = 1$ **to** n **if** a_i **equals** key **return** index

return -1

Binary Search

```
procedure binary search (key, {a_1,…,a_n})
left = 1right = nwhile left < right
        middle = |(left + right)/2|if key == a_middle, then return middle
        elseif key > a middle, then left = middle + 1
        else right = middle
if key == a_left, then return left
return -1
```
Linear Search Exercise

- Write the numbers 1 to 20 on post-it notes. – 1 number per note.
- Randomly order the notes on the table.
- How many comparisons to find:
	- 7?
	- 13?
	- 1?
	- $-20?$

Binary Search Exercise

- Sort the notes in ascending order
- How many comparisons to find:
	- 7?
	- $-13?$
	- 1?
	- $-20?$

Sort

- **Sort:** put the elements of a list in ascending order
	- Example:
		- List: $7,2,1,4,5,9$
		- Sorted List: 1,2,4,5,7,9
- Bubble Sort
	- Compare every element to its neighbor and swap them if they are out of order. Repeat until list is sorted.
- Insertion Sort
	- For each element of the unsorted portion of the list, insert it in sorted order in the sorted portion of the list.

Bubble Sort

procedure bubble $sort({a_1, ..., a_n})$ $for i = 1 to n-1$ **for** $j = 1$ **to** $n-i$ **if** $a_j > a_{j+1}$ **then**, swap a_i and a_{i+1} $\{a_1, ..., a_n\}$ is in sorted order.

Insertion Sort

```
procedure insertion_sort(\{a_1, ..., a_n\})
for j = 2 to n
         i = 1while a_i > a_ii = i + 1m = a_jfor k = 0 to j-i-1
                  a_{j-k}=a_{j-k-1}a_i=m
\{a_1, ..., a_n\} is in sorted order.
```
Bubble Sort Exercise

- Order the notes on the table as follows: – 10, 2, 1, 5, 3, 9, 6, 4, 7, 8
- Sort them using Bubble Sort.
- How many comparisons and swaps did you use?
	- Don't count condition checks in **for** loops.

Insertion Sort Exercise

- Order the notes on the table as follows: – 10, 2, 1, 5, 3, 9, 6, 4, 7, 8
- Sort them using Insertion Sort.
- How many comparisons and swaps did you use?
	- Don't count condition checks in **for** loops.

Binary Insertion Sort Exercise

- Order the notes on the table as follows:
	- 10, 2, 1, 5, 3, 9, 6, 4, 7, 8
- Sort them using Binary Insertion Sort.
	- Use binary search, instead of linear search, when searching for the correct place to insert each number.
- How many comparisons and swaps did you use?
	- Don't count condition checks in **for** loops.

The Growth of Functions

- The time required to solve a problem using a procedure depends on:
	- Number of operations used
		- Depends on the size of the input
	- Speed of the hardware and software
		- Does not depend on the size of the input
		- Can be accounted for using a constant multiplier
- The growth of functions refers to the number of operations used by the function to solve the problem.

Big-*O* Notation

• Estimate the growth of a function without worrying about constant multipliers or smaller order terms.

– Do not need to worry about hardware or software used

- Assume that different operations take the same time.
	- Addition is actually much faster than division, but for the purposes of analysis we assume they take the same time.

Big-*O*

- Let f and g be functions from $\mathbb Z$ or $\mathbb R$, to $\mathbb R$.
- We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that $|f(x)| \leq C|g(x)|$ whenever $x > k$.
	- $-$ " $f(x)$ is bounded above by $g(x)$ "
	- $-$ " $f(x)$ grows slower than $Cg(x)$, as x grows without bound"
	- $-$ Constants C and k are called *witnesses*.

Example: Max

• Let $f(n)$ be the number of operations to find the maximum value in a list of n elements.

procedure max(a_1, a_2, ..., a_n) - assign = depending on implementation, 1 or n op.

 $temp_max = a_1$ - assign = 1 op.

- **for** $i=2$ **to** n **do** $\qquad \qquad$ assign + compare = $1+1 = 2$ ops.
	- **if** $temp_max < a_i$ access + comparison = $1+1 = 2$ ops. (n-1) times
	- **then** $temp_max = a_i$ access + assign = $1+1 = 2$ ops. $(n-1)$ times
		- $-$ increment $+$ compare $= 1+1 = 2$ ops. (n-1) times

return temp_max - return = 1 op.

 $f(n) = 1 + 1 + 2 + (n - 1)(2 + 2 + 2) + 1$ $f(n) = 6n - 1$

Example: Max

• Let $f(n)$ be the number of operations to find the maximum value in a list of n elements.

$$
-f(n) = 6n - 1
$$

\n
$$
-f(n) \le Cg(n), \forall n > k
$$

\n
$$
-6n - 1 \le 6n, \forall n > 0
$$

\n
$$
-\text{Let } g(n) = n
$$

\n
$$
-f(n) \text{ is } O(n). \text{ Witnesses: } C = 6, k = 0
$$

Example: Sort

• Let $f(n)$ be the number of operations to sort a list of n elements.

procedure bubble_sort($\{a_1, ..., a_n\}$) - 1: assign **for** $i = 1$ **to** $n-1$ - 2: assign and compare in loop1 **for** $j = 1$ **to** n-i $2(n - 1)$: assign and compare in loop2 **if** $a_j > a_{j+1}$ - $\sum_{i=1}^{n-1} 3(n-i)$ $_{i=1}^{n-1}$ 3 $(n-i)$: accesses and compare **then**, swap a_j and a_{j+1} $n-1$ $_{i=1}^{n-1}$ 3 $(n-i)$: assigns $-\sum_{i=1}^{n-1} 2(n-i)$ $_{i=1}^{n-1}$ 2 $(n-i)$: increment and compare in loop 2 $-2(n-1)$: increment and compare in loop 1 $f(n) = 1 + 2 + 2(n - 1) + \sum 3(n - i)$ $n-1$ $i=1$ $+$ > 3(n – i) $n-1$ $i=1$ $+$ > 2(n – i $n-1$ $i=1$ $f(n) = 4n^2 - 1$

 $+ 2(n - 1)$

Example: Sort

• Let $f(n)$ be the number of operations to sort a list of n elements.

$$
-f(n) = 4n^2 - 1
$$

\n
$$
-f(n) \le Cg(n), \forall n > k
$$

\n
$$
-4n^2 - 1 \le 4n^2, \forall n > 0
$$

\n
$$
-\text{Let } g(n) = n^2
$$

\n
$$
-f(n) \text{ is } O(n^2). \text{ Witnesses: } C = 4, k = 0
$$

Big-O for Polynomials

- Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$.
- Then, $f(x)$ is $O(x^n)$.
- Example: $f(x) = 5x^2 18x + 20$
	- $-5x^2 18x + 20 \le 5x^2 + 20$ for $x > 0$
	- $-5x^2 + 20 \le 5x^2 + 20x^2$ for $x > 1$
	- $-5x^2 + 20x^2 = 25x^2 \le Cg(x)$ for $x > 1$

$$
-\text{ Let } g(x) = x^2
$$

 $f(x)$ is $O(x^2)$. Witnesses: $C = 25, \; k = 1$

Exercise

• Give a big-O estimate for the sum of the first n positive integers.

- Solution:
- $1 + 2 + \cdots + n \le n + n + \cdots + n = n^2$
- 1 + 2 + \cdots + n is $O(n^2)$, $C = 1$, $k = 1$

Exercise

- Give a big- O estimate for the factorial function, $f(n) = n!$, and the logarithm of the factorial.
- Solution:
- $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n \leq n \cdot n \cdot n \cdot \dots \cdot n = n^n$ $\displaystyle{n!}$ is $\displaystyle{O(n^n)}$
- $\log(n!) \leq \log(n^n) = n \log n$ $-\log(n!)$ is $O(n \log n)$

Basic Growth Functions

 $Constant: 0(1)$ Logarithmic: $O(log n)$ Linear: $O(n)$ Linearithmic: $O(n \log n)$ Polynomial: Exponential: Factorial: $O(n!)$

 $O(n^c)$ $O(2^n)$

Useful Big-O Estimates

- n^c is $O(n^d)$, but n^d is **not** $O(n^c)$, $d > c > 1$
- $(\log_b n)^c$ is $O\bigl(n^d\bigr)$, but n^d is **not** $O\bigl((\log_b n)^c\bigr)$ $b > 1, c, d > 0$
- n^d is $O(b^n)$, but b^n is **not** $O(n^d)$, $d > 0$, $b > 1$
- b^n is $O(c^n)$, but c^n is **not** $O(b^n)$, $c > b > 1$

The Growth of Combinations of Functions

- Suppose $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$
	- $-(f_1 + f_2)(n)$ is $O(\max(g_1(n), g_2(n)))$
		- If $g_1(n) = g_2(n) = g(n)$, then $(f_1 + f_2)(n)$ is $O(g(n))$
	- $-(f_1 f_2)(n)$ is $O(g_1(n)g_2(n))$

Exercise

• Which of these functions is $O(x)$?

-
$$
f(x) = 10
$$

\n- $C = 1, k = 10$
\n- $f(x) = 3x + 7$
\n- $C = 4, k = 7$
\n- $f(x) = x^2 + x + 1$
\n- $f(x) = 5 \log x$
\n- $C = 5, k = 2$
\n- $f(x) = [x]$
\n- $C = 1, k = 0$
\n- $f(x) = \left[\frac{x}{2}\right]$
\n- $C = 1, k = 0$

Exercise

• Find the least integer c such that $f(n)$ is $O(n^c)$

$$
-f(n) = 2n^3 + n^2 \log n
$$

• $c = 3$

$$
\bullet \, C=3, k=1
$$

$$
-f(n) = \frac{n^4 + n^2 + 1}{n^3 + 1}
$$

$$
\bullet\ c=1
$$

$$
\bullet \, C=1.5, k=1
$$

Big-Ω

- Big- O
	- $\exists C, k \; \forall n > k \; f(n) \leq C g(n)$
- Big- Ω (big omega)
	- $\exists C, k \; \forall n > k \; f(n) \geq C g(n)$
	- C must be **positive.**
	- $-f(n)$ is $\Omega(g(n)) \leftrightarrow g(n)$ is $O(f(n))$
	- $-$ " $f(x)$ is bounded below by $g(x)$ "

Big-Θ

• Big- Θ (big theta) $-f(n)$ is $O(g(n))$ and $\Omega(g(n))$ $- f(n)$ is $O(g(n))$ and $g(n)$ is $O(f(n))$ $-f(n)$ is $\Theta(g(n)) \leftrightarrow g(n)$ is $\Theta(f(n))$ $- \exists C_1, C_2, k \ \forall n > k \ C_1 g(n) \le f(n) \le C_2 g(n)$ $- f(n)$ is of *order* $g(n)$ $- f(n)$ and $g(n)$ are of the *same order*

Big-Θ for Polynomials

- Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$.
- Then, $f(x)$ is of order x^n . $-$ " $f(x)$ is bounded [above and below] by $g(x)$ "
- Example:

 $-3x^8 + 10x^7 + 221x^2 + 1444$ is of order x^8

• Witnesses: $C = 6$, $k = 10$

Complexity of Algorithms

• **Computational complexity** is the amount of time and space an algorithm uses to solve a problem.

- Depends on the number of operations used by the algorithm.
- Use big- O (or big- Θ , if possible) to specify

– **Space complexity**

• Depends on data structures used to implement the algorithm

– **Time complexity**

- Elementary operations have constant time $(\Theta(1))$ complexity:
	- Assignment
	- Arithmetic operations
	- Boolean operations
	- Comparisons
	- Array access

• Blocks of statements

 $-$ …

- $Block_1$; // takes T_1 time
- $-Block_2$; // takes T_2 time

- \textit{Block}_k ; // takes T_k time
- To execute the sequence of Blocks 1 through k takes $O(T_1 + T_2 + \cdots + T_k)$ time.

- Control Structures
	- $-$ if(BoolExpr) // takes T_R time
		- $Block_1$; // takes T_1 time
	- else
		- $Block_2$; // takes T_2 time
- To execute the control structures takes $O(T_{\rm B} + \max(T_1, T_2))$ time.

• For Loops

– for i=a to b

- $Block_1$; // takes $T_1(k)$ time when i=k
- To execute the loop takes $T_1(a) + T_1(a + 1) + \cdots + T_1(b)$ time
- If $T_1(k)$ is $\Theta(1)$, then the loop takes $O((b - a + 1) \cdot T_1)$ time

• Function Calls

- def f(params) // takes T_p time to assign params

- $Block_1$; // takes T_1 time
- To execute the function takes $O(T_p + T_1)$ time

Bubble Sort Revisited

procedure bubble sort $(\{a_1, ..., a_n\})$ // $O(T_p) = O(1)$ **for** $i = 1$ **to** $n-1$ // $Block_1$ **for** $j = 1$ **to** $n-i$ // $Block₂$ **if** $a_i > a_{i+1}$ // $Block_3$ **then,** swap a_i and a_{i+1}

 $Block₃$ is a control structure which takes $O(3 + 3) = O(1)$ time $Block_2$ is a for loop, which takes $O((n-i-1+1)\cdot O(1)) = O(n-i)$ time $Block_1$ is a for loop, which takes $O\big(\mathit{O}(n-1) + \mathit{O}(n-2) + \cdots + \mathit{O}(1)\big) = O$ $n(n-1)$ 2 Therefore, the procedure takes $O\big(O(1)+O(n^2)\big)=O(n^2)$ time

$= O(n^2)$ time

Tractability

- A problem which can be solved by an algorithm with worst-case polynomial time complexity ($\Theta(n^c)$) is called **tractable.**
	- Does not guarantee that it can be solved in any reasonable amount of time.
	- Reasonable input sizes can be solved in relatively short time.
- A problem which cannot be solved by any algorithm with worse-case polynomial polynomial time complexity is called **intractable**.
	- Average case complexity may be better.
	- Many important problems are intractable, but still get solved everyday.
		- Approximate solutions.
- A problem for which there does not exists any algorithm is called **unsolvable.**
	- The first unsolvable, proved by Turing: The halting problem.

P vs NP

- All the **tractable** problems belong to a set called **P**.
	- **Can be solved** in worst-case polynomial time.
- All the problems whose **solutions can be verified** in polynomial time belong to a set called **NP**.
	- Example: Boolean Satisfiability (SAT) find an assignment of truth values that satisfies some Boolean expression.
		- Solution can be verified very easily.
		- Finding a solution for n variables requires $\Omega(2^n)$ operations

NP-Complete

- It turns out that a bunch of problems in **NP** are actually the same problem. These are called **NP-complete** problems.
	- Every problem in **NP** can be reduced in polynomial time to an **NPcomplete** problem.
		- SAT was the first to be proved to be NP-complete.
	- If **any** NP-complete problem can be solved in polynomial time, then **every** NP problem can, too.
		- \cdot **P** = **NP**.
- $$1,000,000$ prize for proof of whether $P = NP$.
	- $-$ General consensus is that $P \neq NP$.