CSCE 222 Discrete Structures for Computing

Sequences, Sums, and Products

Dr. Philip C. Ritchey

Sequences

- A sequence is a function from a subset of the integers to a set S.
 - A discrete structure used to represent an ordered list
 - $\{a_n\}$ denotes the sequence $a_0, a_1, a_2, ...$
 - Sometimes the sequence will start at a_1
 - a_n is a **term** of the sequence
- Example
 - 1, 2, 3, 5, 8 is a sequence with five terms
 - 1, 3, 9, 27, ..., 3^n , ... is an infinite sequence
 - What is the function which generates the terms of the sequence 5, 7, 9, 11, ... ?

• If
$$a_0 = 5$$

•
$$a_n = 5 + 2n$$

• If if $a_1 = 5$

•
$$a_n = 3 + 2n$$

Geometric Progression

• A geometric progression is a sequence of the form

 $a, ar, ar^2, ar^3, ...$

where the **initial term** *a* and the **common ratio** *r* are real numbers.

- Example
 - $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$
 - What is the initial term a and common ratio r?

•
$$a = 1$$

• $r = \frac{1}{2}$
• $a_n = ar^n$
• $a_n = \left(\frac{1}{2}\right)^n$

Arithmetic Progression

• An arithmetic progression is a sequence of the form

 $a, a + d, a + 2d, \dots$

where the **initial term** *a* and the **common difference** *d* are real numbers.

- Example
 - -1, 3, 7, 11, ...
 - What is the initial term *a* and common difference *d*?
 - *a* = -1
 - d = 4
 - $a_n = a + dn$
 - $a_n = -1 + 4n$

Exercises

List the first several terms of these sequences:

- the sequence $\{a_n\}$, where $a_n = (n+1)^{n+1}$.
 - 1, 4, 27, 256, 3125,...
- the sequence that begins with 2 and in which each successive term is 3 more than the preceding term.
 - 2, 5, 8, 11, 14, ...
 - $a_n = 2 + 3n$
- the sequence that begins with 3, where each succeeding term is twice the preceding term.
 - 3, 6, 12, 24, 48, ...
 - $a_n = 3 \cdot 2^n$
- the sequence where the *n*th term is the number of letters in the English word for the index n.
 - 4, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, ...

Recurrence Relations

- A **recurrence relation** for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence.
 - Geometric progression: $a_n = ar^n$
 - Recurrence relation: $a_n = ra_{n-1}$, $a_0 = a$ (a_0 is the **initial condition**)
 - Arthmetic progression: $a_n = a + dn$
 - Recurrence relation: $a_n = a_{n-1} + d$, $a_0 = a$
 - Fibonacci Sequence: $\{f_n\} = 0, 1, 1, 2, 3, 5, 8, 13, ...$
 - $f_n = f_{n-1} + f_{n-2}$, $f_0 = 0$, $f_1 = 1$
 - Factorials: 1, 1, 2, 6, 24, 120, 720, 5040, ...
 - $n! = n(n-1)(n-2) \cdots 2 \cdot 1$
 - $a_n = na_{n-1}$, $a_0 = 1$

Solving Recurrence Relations

- A sequence is called a **solution** of a recurrence relation if its terms satisfy the recurrence relation.
- To *solve* a recurrence relation, find a **closed formula** (explicit formula) for the terms of the sequence.
 - Closed formulae do not involve previous terms of the sequence.
- Example
 - Relations of the form $a_n = ra_{n-1}$
 - Geometric progression
 - Closed form: $a_n = ar^n$
 - Relations of the form $a_n = a_{n-1} + d$
 - Arithmetic progression
 - Closed form: $a_n = a + dn$

Technique for Solving Recurrence Relations

Iteration

- Forward: work forward from the initial term until a pattern emerges. Then guess the form of the solution.
- Backward: work backward from a_n toward a_0 until a pattern emerges. The guess the form of the solution.
- Example: $a_n = a_{n-1} + 3$, $a_0 = 2$
 - Forward
 - a₁ = 2 + 3
 a₂ = (2 + 3) + 3 = 2 + 2 · 3
 a₃ = (2 + 2 · 3) + 3 = 2 + 3 · 3
 ...
 - $a_n = 2 + 3n$

- Backward
 - $a_n = (a_{n-2} + 3) + 3 = a_{n-2} + 2 \cdot 3$ • $a_n = (a_{n-3} + 3) + 2 \cdot 3 = a_{n-3} + 3 \cdot 3$
 - $a_n = (a_{n-4} + 3) + 3 \cdot 3 = a_{n-4} + 4 \cdot 3$

• $a_n = a_{n-n} + n \cdot 3 = a_0 + 3n = 2 + 3n$

Exercises

• Find the first few terms of a solution to the recurrence relation

$$a_n = a_{n-1} + 2n + 3, \qquad a_0 = 4$$

•
$$a_1 = 4 + 2(1) + 3 = 9$$

•
$$a_2 = 9 + 2(2) + 3 = 16$$

•
$$a_3 = 16 + 2(3) + 3 = 25$$

- ...
- Solve the recurrence relation above.
 - From the first few terms, the pattern seems to be $a_n = (n+2)^2$
 - This can be proved, but we need techniques we haven't learned yet.

Exercises Continued

- Find and solve a recurrence relation for the sequence 0, 1, 3, 6, 10, 15,...
 - Take differences: 1 0 = 1, 3 1 = 2, 6 3 = 3, 10 6 = 4, 15 10 = 5, ...
 - Write down the relation: $a_n = a_{n-1} + n$, $a_0 = 0$
 - Use backwards iteration
 - $a_n = a_{n-1} + n$ • $= a_{n-2} + (n-1) + n$ • $= a_{n-3} + (n-2) + (n-1) + n$
 - ...
 - $= a_0 + (1 + 2 + \dots + n)$
 - = $0 + 1 + 2 + \dots + n$
 - The sum of the integers from 1 to n is $\frac{n(n+1)}{2}$

•
$$a_n = \frac{n(n+1)}{2}$$

Summations

• The sum of the *m* through *n*-th terms of sequence $\{a_k\}$ $a_m + a_{m+1} + \dots + a_n$

is denoted as

where *i* is the **index of summation**, *m* is the **lower limit**, and *n* is the **upper limit**.

Examples

- Use summation notation to express the sum from 1 to 100 of $\frac{1}{x}$: $\sum_{i=1}^{100} \frac{1}{i}$
- Evaluate $\sum_{i=0}^{3} (2i + 1)$

$$\sum_{i=0}^{3} (2i+1) = (2 \cdot 0 + 1) + (2 \cdot 1 + 1) + (2 \cdot 2 + 1) + (2 \cdot 3 + 1)$$
$$= 1 + 3 + 5 + 7 = 16$$

Manipulations of Summation Notation

$$\sum_{i} ca_{i} = c \sum_{i} a_{i}$$

$$\sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i = \sum_{i=m}^{n} (a_i + b_i)$$

$$\sum_{i=m}^{n} a_i + c = \sum_{i=m}^{n} a_i + c(n - m + 1)$$

Exercises

• Evaluate

 $\sum_{i=1}^{10} 3$

- 3+3+3+3+3+3+3+3+3=30
- Let $S = \{1,3,5,7\}$. Evaluate

- 1+9+25+49 = 84
- Evaluate

$$\sum_{i=0}^{8} 3 \cdot 2^{i}$$

• $3\sum_{i=0}^{8} 2^{i} = 3(1+2+4+8+16+32+64+128+256) = 1533$

Summation Identities

- There are **MANY**, but here are two you should know:
 - Geometric Series

$$\sum_{i=0}^{n-1} r^{i} = \begin{cases} n & r = 1\\ \frac{r^{n} - 1}{r - 1} & r \neq 1 \end{cases}$$

• Arithmetic Series

$$\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}$$

Geometric Series Identity Proof $(r \neq 1)$

Let $S = \sum_{i=0}^{n-1} r^i$ $rS = r \sum_{i=0}^{n-1} r^i$ $=\sum_{i=0}^{n-1}r^{i+1}$ $=\sum_{j=1}r^{j}$

$$= \left(\sum_{j=0}^{n-1} r^j\right) + r^n - r^0$$

 $rS = S + r^n - 1$

 $S(r-1) = r^n - 1$

$$S = \frac{r^n - 1}{r - 1}$$

Products

• The product of the m through n-th terms of sequence $\{a_k\}$ $a_m \cdot a_{m+1} \cdot \cdots \cdot a_n$ is denoted as

Example:

A Product Identity

$$\prod_{i=m}^{n} ca_i = (ca_m)(ca_{m+1})\cdots(ca_n)$$

$$= (c)(c)\cdots(c)\cdot(a_m)(a_{m+1})\cdots(a_n)$$

$$= \left(c^{\sum_{i=m}^{n} 1}\right) \left(\prod_{i=m}^{n} a_i\right)$$

$$= c^{n-m+1} \left(\prod_{i=m}^{n} a_i \right)$$