CSCE 222 Discrete Structures for Computing

Functions

Dr. Philip C. Ritchey

Functions

- Let A and B be non-empty sets.
- A **function** from *A* to *B* is an assignment of exactly one element of *B* to each element of *A*.
 - -f(a)=b
 - $-f:A\to B$
- Ex:
 - -A =students at TAMU, B $= \mathbb{N}$
 - -f(a) = the number of credit hours for student a

Terminology

- $f: A \rightarrow B$
 - -A is the **domain** of f
 - -B is to **codomain** of f
 - -f(a) = b is the **image** of a
 - -a is the **preimage** of f(a) = b
 - $-\{x\mid x=f(a)\ for\ a\in A\}$ is the **range** of f

Examples of Functions

- $floor: \mathbb{R} \to \mathbb{Z}$ "greatest integer" - floor(4.2) = |4.2| = 4
- $ceil: \mathbb{R} \to \mathbb{Z}$ "least integer"
 - ceil(4.2) = [4.2] = 5.2
- $pow: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
 - $pow(x, y) = x^y$
 - $pow(3,5) = 3^5 = 243$
- $max: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
 - max(3,5) = 5

Properties of Functions

• One-to-one (injective)

$$- \forall a \forall b \left(\left(f(a) = f(b) \right) \to a = b \right)$$

- Onto (surjective)
 - $\forall y \exists x f(x) = y$
- Bijective
 - One-to-one and Onto
 - If $f: A \to B$ is bijective, then there exists f^{-1} : $B \to A$, the inverse function.

Caesar's Cipher

- Let *A* be the Roman alphabet
- Let $C: A \rightarrow A$
 - C(a) = d
 - C(b) = e
 - C(c) = f
 - ...
 - C(w) = z
 - C(x) = a
 - -C(y)=b
 - C(z) = c
- Is Caesar's Cipher a bijection?
 - Yes.
 - VFLHQFH!

One Way Functions

- Let S be the set of strings of alphabetic characters.
- Let $J = \mathbb{N}_{< d}$ be the non-negative integers less than d.
- Let $h: S \to J$.
 - -h takes the ASCII code for each character in a string, adds them together, divides by d, and returns the remainder.
 - $-h(s) = (\sum_{c \in S} c) \mod d$
- Is *h* one-to-one?
 - No. $\therefore h$ is not invertible.

Exercise

- $f: \mathbb{R} \to \mathbb{R}$
- $f(x) = 2x^2 5$
- Is *f*
 - One-to-one?
 - No. f(x) = f(-x)
 - Onto?
 - No. $\neg \exists x \ f(x) < -5$

Compositions of Functions

- Let $g: A \to B$ and $f: B \to C$
- $f \circ g: A \to C$
 - $-(f\circ g)(x)=f\big(g(x)\big)$
- Ex: $s: \mathbb{R}^+ \to \mathbb{R}^+$ and $f: \mathbb{R}^+ \to \mathbb{Z}$
 - $-s(x) = \sqrt{x}$
 - $-f(x) = \lfloor x \rfloor$
 - $-(f\circ s)(x)=\left|\sqrt{x}\right|$

Exercise

- Let $f: \mathbb{N} \to \mathbb{N}$ and $l: \mathbb{R}^+ \to \mathbb{R}$
 - $-f(n) = n! = n \cdot (n-1) \cdot \cdots \cdot 1$
 - $-l(x) = \log_2 x$
 - $\log_2 x = y \leftrightarrow 2^y = x$
- How to write $\log_2(n!)$?
 - $-(l \circ f)(n)$
 - $-\mathbb{N}\subset\mathbb{R}^+$

Partial Functions

- A partial function $f: A \to B$ is an assignment to each element in a subset of A (domain of definition of f) to a unique element in B.
- f is **undefined** for A D.
 - D is the domain of definition of f.
- If D = A, then f is a **total function**.
- Ex: Let $f: \mathbb{R} \to \mathbb{R}$
 - $f(x) = \frac{1}{x}$
 - undefined at x = 0
 - $f(x) = \sqrt{x}$
 - undefined at x < 0
 - $f(x) = \pm \sqrt{x^2 + 1}$
 - not a function from \mathbb{R} to \mathbb{R} because of \pm

• Function maps elements of A to elements of B.

• $undefined \Rightarrow partial function$

• One-to-one: every element in A maps to a unique element in B.

 Onto: every element in B is ampped to by some element in A.

• Bijection: one-to-one and onto.

• Composition: $(f \circ g)(x) = f(g(x))$

