CSCE 222 Discrete Structures for Computing

Proofs Methods and Strategies

Dr. Philip C. Ritchey

Exhaustive Proofs

- Prove for every element in the domain
- Ex: $(n+1)^3 \ge 3^n$ for $n \in \{0,1,2,3,4\}$
 - Exhaustive Proof:
 - $(0+1)^3 \ge 3^0$
 - 1 ≥ 1
 - $(1+1)^3 \ge 3^1$
 - 8 ≥ 3
 - $(2+1)^3 \ge 3^2$
 - 27 ≥ 9
 - $(3+1)^3 \ge 3^3$
 - 64 ≥ 27
 - $(4+1)^3 \ge 3^4$
 - $125 \ge 81$

- 0

Proof by Cases

- Prove for every case in the theorem
- Ex: if n is an integer, then $n^2 \ge n$
 - Proof by cases:
 - Case $n \ge 1$:
 - $n \cdot n \ge 1 \cdot n$
 - $n^2 \ge n$
 - Case $n \leq 1$:
 - $n^2 \ge n$, since n^2 is positive and n is negative
 - Case n = 0:
 - $0^2 \ge 0$
 - The claim holds in all cases □

Leveraging Proof by Cases

- When you can't consider every case all at once
- When there's no obvious way to start, but extra information in each case helps
- Ex: Formulate and prove a conjecture about the final digit of perfect squares
 - List some perfect squares
 - Look at the final digit $(13^2 = 169)$
 - See a pattern?

Leveraging Proof by Cases

- Theorem: The final digit of a perfect square is 0,1,4,5,6, or 9.
- Proof:
 - $n = 10a + b, b \in \{0, 1, 2, \dots, 9\}$
 - $n^2 = (10a + b)^2 = 10(10a^2 + 2ab) + b^2$
 - n^2 and b^2 have the same final digit
 - Case b = 0:
 - $0^2 = 0$, n^2 ends in 0
 - Case $b \in \{1,9\}$:
 - $1^2 = 1, 9^2 = 81, n^2$ ends in 1
 - Case $b \in \{2,8\}$:
 - $2^2 = 4, 8^2 = 64, n^2$ ends in 4
 - Case $b \in \{3,7\}$:
 - $3^2 = 9, 7^2 = 49, n^2$ ends in 9
 - Case $b \in \{4,6\}$:
 - $4^2 = 16, 6^2 = 36, n^2$ ends in 6
 - Case b = 5:
 - $5^2 = 25$, n^2 ends in 5
 - 0

Leveraging Proof by Cases

- Theorem: $x^2 + 3y^2 = 8$ has no integer solutions
- Proof by Cases:
 - $x^2 \le 8 |x| < 3$
 - $3y^2 \le 8 |y| < 2$
 - 15 cases
 - $x \in \{-2, -1, 0, 1, 2\}$
 - $y \in \{-1,0,1\}$
 - 6 cases
 - $x^2 \in \{0,1,4\}$
 - $y^2 \in \{0,1\}$
 - ≤ 6 cases
 - $x^2 \in \{0, 1, 4\}$
 - $3y^2 \in \{0, 3\}$
 - $4 + 3 = 7 \neq 8$
 - ∴ no integer solutions \square

Without Loss of Generality (wlog)

- Assert that the proof for one case can be reapplied with only straightforward changes to prove other specified cases.
- Ex: Let x, y be integers. If xy and x + y are both even, then x and y are both even.
 - Proof
 - Use contraposition
 - $((x \text{ is odd}) \lor (y \text{ is odd})) \rightarrow ((xy \text{ is odd}) \lor (x + y \text{ is odd}))$
 - Assume $(x \text{ is odd}) \lor (y \text{ is odd})$
 - Wlog, assume *x* is odd.
 - Case *y* even:

•
$$x + y = (odd) + (even) = odd \checkmark$$

- Case y odd:
 - $xy = (odd)(odd) = odd \checkmark$
- $\therefore ((x \text{ is odd}) \lor (y \text{ is odd})) \rightarrow ((xy \text{ is odd}) \lor (x + y \text{ is odd}))$
- It follows that $((xy \text{ is even}) \land (x + y \text{ is even})) \rightarrow ((x \text{ is even}) \land (y \text{ is even}))$

- Exhaustive proof and proof by cases are only valid when you prove every case
- Ex: every positive integer is the sum of 18 fourth powers of integers.
 - 79 is the counterexample
- Ex: if x is a real number, then x^2 is positive
 - Case x is positive:
 - $(positive)(positive) = (positive) \checkmark$
 - Case x is negative:
 - (negative)(negative) = (positive) ✓
 - Case x is zero:
 - (zero)(zero) = zero X

Existence Proofs

• To prove $\exists x P(x)$

Constructive: find a witness

- Nonconstructive: shown without witness
- Ex: Show that there exists some integer that is expressible as the sum of 2 cubes in 2 different ways

- Constructive proof: $1729 = 10^3 + 9^3 = 12^3 + 1^3$

Existence Proofs

- Ex: Show that there exists 2 irrational numbers x, y such that x^{y} is rational
 - Nonconstructive proof:
 - Known: $\sqrt{2}$ is irrational
 - Consider $x = y = \sqrt{2}$, so $x^y = \sqrt{2}^{\sqrt{2}}$
 - If $\sqrt{2}^{\sqrt{2}}$ is rational, then $x = y = \sqrt{2}$ are the witnesses
 - If $\sqrt{2}^{\sqrt{2}}$ is irrational, then let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$

$$-x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{2} = 2$$
$$-x = \sqrt{2}^{\sqrt{2}} \text{ and } y = \sqrt{2} \text{ are the witnesses}$$

- Either way, we found irrational x, y such that x^{y} is rational
 - We just don't know which value to use for x

Uniqueness Proofs

- "exactly one element satisfies P(x)"
 - **Existence:** $\exists x P(x)$
 - Uniqueness: $\forall y P(y) \rightarrow (y = x)$
 - $-\exists x \forall y P(x) \land (P(y) \rightarrow (y = x))$
 - $\exists x \forall y P(y) \leftrightarrow (y = x)$

Uniqueness Proofs

0

- ar + b = 0 has a unique solution when a, b are real and $a \neq 0$
 - Proof:
 - Existence
 - ar + b = 0
 - ar = -b

•
$$r = -\frac{b}{a}$$

- Uniqueness
 - Assume $\exists s \ as + b = 0$
 - Then, ar + b = as + b
 - ar+b-b=as+b-b

•
$$\frac{ar}{a} = \frac{as}{a}$$

• $r = s$
- $\therefore r = -\frac{b}{a}$ is **the** solution to $ar + b =$

Proof Strategies

- Forward
 - Start with premises, plug and chug to the conclusion.
 - Direct proof
 - Start with negation of conclusion, plug and chug to negation of premises
 - Indirect proof
- Backward
 - Work backwards from the conclusion to find the correct steps for a direct proof

Backward Reasoning

• Prove that $\frac{(x+y)}{2} \ge \sqrt{xy}$ for positive reals x, y $-\frac{(x+y)}{2} \ge \sqrt{xy}$ $\sqrt{}$ both sides $-\frac{(x+y)^2}{4} \ge xy$ divide by 4 $-(x+y)^2 \ge 4xy$ factor LHS $-x^2 + 2xy + y^2 \ge 4xy$ add 4xy $-x^2 - 2xy + y^2 \ge 0$ expand LHS $-(x-y)^2 \ge 0$ Tautology $\therefore \frac{(x+y)}{2} \ge \sqrt{xy}$

Adapting Existing Proofs

• Theorem: $\sqrt{3}$ is irrational

– Proof: $\sqrt{2}$ is irrational, use that proof

√n is irrational when n is not a perfect square.
 – Same kind of proof: contradiction

Tilings

- Can a standard checkerboard (8 × 8) be tiled by dominoes?
 Yes.
- Can a standard checkerboard with one corner missing be tiled by dominoes?
 - No.
 - 63 squares is not an even number of squares
- Can a standard checkerboard with two opposite corners missing be tiled by dominoes?
 - No.
 - Opposite corners have the same color.
 - 32 black + 30 white cannot be tiled because each domino covers 1 white and 1 black square