CSCE 222 Discrete Structures for Computing

Introduction to Proofs

Dr. Philip C. Ritchey

Some Definitions

• **Theorem**

– A statement that can be shown to be true

- **Proof**
	- A valid argument that establishes the truth of a theorem

• **Direct Proof**

– Prove $p \to q$, $\forall x P(x) \to Q(x)$ by assuming that p is true and using the rules of inference to show that q must also be true.

Example

• **Theorem**

– If x, y are odd integers, then $x \cdot y$ is odd

• **Proof**

– Let x , y be odd integers. Then,

$$
-\exists a\ x = 2a + 1
$$

$$
-\exists b\ y = 2b + 1
$$

$$
-x \cdot y = (2a+1)(2b+1)
$$

$$
-x \cdot y = 4ab + 2a + 2b + 1
$$

$$
-x \cdot y = 2(2ab + a + b) + 1
$$

$$
- \therefore x \cdot y \text{ is odd } \Box
$$

Indirect Proofs (not direct)

• **Proof by Contraposition**

- Want $p \to q$
- Show $\neg q \rightarrow \neg p$
- Theorem: Let n be an integer. If $n^3 + 13$ is odd, then n is even.
	- $-$ Proof: Show that n odd $\rightarrow n^3 + 13$ even.
	- $-$ **Assume** n is odd
	- $n = 2a + 1$
	- $n^3 + 13 = (2a + 1)^3$
	- $n^3 + 13 = 8a^3 + 12a^2 + 6a + 14$
	- $n^3 + 13 = 2(4a^3 + 6a^2 + 3a + 7)$
	- \therefore $n^3 + 13$ is even
	- $-$ It follows that **if** n^3+13 **is odd, then** n **is even** \Box

Indirect Proofs (not direct)

- Proof by Contradiction
	- $-$ Trying to prove p
	- Prove by showing $\neg p \rightarrow (r \land \neg r)$
		- Thus, $\neg p \equiv F \Rightarrow p \equiv T$
- Theorem: If $x + y \ge 2$, then $x \ge 1$ or $y \ge 1$
	- Proof: Assume $\neg ((x + y \ge 2) \rightarrow ((x \ge 1) \vee (y \ge 1)))$
	- $(x + y \ge 2)$ ∧ ¬ $((x \ge 1) \vee (y \ge 1))$
	- $(x + y \ge 2)$ ∧ $((x < 1)$ ∧ $(y < 1))$
	- $x + y < 1 + 1$
	- $x + y < 2$ contradicts $x + y \ge 2$
	- $\therefore \neg \neg ((x + y \geq 2) \rightarrow ((x \geq 1) \vee (y \geq 1))) \square$

Proof that $\sqrt{2}$ is irrational

• Prove that $\sqrt{2}$ is irrational.

$$
-\left(\exists p, q \left((q \neq 0) \land \left(r = \frac{p}{q}\right)\right)\right) \rightarrow r \text{ is rational}
$$

$$
-Ex: 1.5 = 3/2 = 6/4
$$

– A real number which is not rational is **irrational.**

Proof that $\sqrt{2}$ is irrational

- Proof by contradiction
	- Suppose $\sqrt{2}$ is rational
	- $-$ Then, there exist integers a, b such that $b \neq 0$ and $\sqrt{2} = \frac{a}{b}$ $\frac{a}{b}$, where a, b have no common factors

$$
- \left(\sqrt{2}\right)^2 = \left(\frac{a}{b}\right)^2
$$

$$
-2=\frac{a^2}{b^2}
$$

$$
- 2b^2 = a^2
$$
, thus *a* is even

- $-2b^2 = (2k)^2$
- $b² = 2k²$, thus *b* is even
- If both are even, then they share a common factor. This contradicts the assumption that $\sqrt{2}$ is rational.
- $-$ Therefore $\sqrt{2}$ is **NOT** rational

Proofs of Equivalence

- To prove $p \leftrightarrow q$
	- $-$ Show $p \rightarrow q$ and $q \rightarrow p$
- Prove that p and q are equivalent
	- $p: n$ is even
	- q : n^2 is even
- $p \rightarrow q$
	- $-$ Assume *n* is even.
	- $n = 2k$
	- $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$
- $q \rightarrow p$
	- Use contrapositive: $\neg p \rightarrow \neg q$
	- $-$ Assume *n* is odd
	- $n = 2k + 1$
	- $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
- $\therefore p \leftrightarrow q \Box$

Counterexamples

- To prove $\neg \forall x P(x)$
	- $-$ Find **counterexample** x that satisfies $\neg P(x)$
	- Show $\exists x \neg P(x)$
- Show that not every positive integer is the sum of the squares of 2 integers.
	- Proof: the counterexample is 3