CSCE 222 Discrete Structures for Computing

Introduction to Proofs

Dr. Philip C. Ritchey

Some Definitions

Theorem

A statement that can be shown to be true

Proof

A valid argument that establishes the truth of a theorem

Direct Proof

– Prove $p \to q$, $\forall x P(x) \to Q(x)$ by assuming that p is true and using the rules of inference to show that q must also be true.

Example

Theorem

– If x, y are odd integers, then $x \cdot y$ is odd

Proof

- Let x, y be odd integers. Then,
- $-\exists a \ x = 2a + 1$
- $-\exists b \ y = 2b + 1$
- $-x \cdot y = (2a+1)(2b+1)$
- $-x \cdot y = 4ab + 2a + 2b + 1$
- $-x \cdot y = 2(2ab + a + b) + 1$
- $: x \cdot y \text{ is odd } \square$

Indirect Proofs (not direct)

Proof by Contraposition

- Want $p \rightarrow q$
- Show $\neg q \rightarrow \neg p$
- Theorem: Let n be an integer. If $n^3 + 13$ is odd, then n is even.
 - Proof: Show that n odd $\rightarrow n^3 + 13$ even.
 - Assume n is odd
 - n = 2a + 1
 - $-n^3+13=(2a+1)^3$
 - $-n^3 + 13 = 8a^3 + 12a^2 + 6a + 14$
 - $-n^3 + 13 = 2(4a^3 + 6a^2 + 3a + 7)$
 - $: n^3 + 13$ is even
 - It follows that if n^3+13 is odd, then n is even \square

Indirect Proofs (not direct)

- Proof by Contradiction
 - Trying to prove p
 - Prove by showing $\neg p \rightarrow (r \land \neg r)$
 - Thus, $\neg p \equiv F \Rightarrow p \equiv T$
- Theorem: If $x + y \ge 2$, then $x \ge 1$ or $y \ge 1$
 - Proof: Assume $\neg ((x + y \ge 2) \rightarrow ((x \ge 1) \lor (y \ge 1)))$
 - $(x + y \ge 2) \land \neg ((x \ge 1) \lor (y \ge 1))$
 - $(x + y \ge 2) \wedge ((x < 1) \wedge (y < 1))$
 - x + y < 1 + 1
 - -x+y < 2 contradicts $x+y \ge 2$
 - $: \neg \neg \left((x + y \ge 2) \to \left((x \ge 1) \lor (y \ge 1) \right) \right) \Box$

Proof that $\sqrt{2}$ is irrational

• Prove that $\sqrt{2}$ is irrational.

$$-\left(\exists p, q \left(\left(q \neq 0\right) \land \left(r = \frac{p}{q}\right)\right)\right) \rightarrow r \text{ is rational}$$

- -Ex: 1.5 = 3/2 = 6/4
- A real number which is not rational is irrational.

Proof that $\sqrt{2}$ is irrational

- Proof by contradiction
 - Suppose $\sqrt{2}$ is rational
 - Then, there exist integers a, b such that $b \neq 0$ and $\sqrt{2} = \frac{a}{b}$, where a, b have no common factors

$$- \left(\sqrt{2}\right)^2 = \left(\frac{a}{b}\right)^2$$

$$-2 = \frac{a^2}{b^2}$$

$$-2b^2 = a^2$$
, thus a is even

$$-2b^2=(2k)^2$$

$$-b^2=2k^2$$
, thus b is even

- If both are even, then they share a common factor. This contradicts the assumption that $\sqrt{2}$ is rational.
- Therefore $\sqrt{2}$ is **NOT** rational

Proofs of Equivalence

- To prove $p \leftrightarrow q$
 - Show $p \rightarrow q$ and $q \rightarrow p$
- Prove that p and q are equivalent
 - p:n is even
 - $-q:n^2$ is even
- $p \rightarrow q$
 - Assume *n* is even.
 - -n=2k
 - $-n^2 = (2k)^2 = 4k^2 = 2(2k^2) \square$
- $q \rightarrow p$
 - Use contrapositive: $\neg p \rightarrow \neg q$
 - Assume *n* is odd
 - n = 2k + 1
 - $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
- $\therefore p \leftrightarrow q \square$

Counterexamples

- To prove $\neg \forall x P(x)$
 - Find **counterexample** x that satisfies $\neg P(x)$
 - Show $\exists x \neg P(x)$
- Show that not every positive integer is the sum of the squares of 2 integers.
 - Proof: the counterexample is 3