
Supplementary Materials for TileGen: Tileable, Controllable

Material Generation and Capture

Xilong Zhou
Texas A&M University
College Station, USA

Miloš Hašan
Adobe Research
San Jose, USA

Valentin Deschaintre
Adobe Research
London, UK

Paul Guerrero
Adobe Research
London, UK

Kalyan Sunkavalli
Adobe Research
San Jose, USA

Nima Khademi Kalantari
Texas A&M University
College Station, USA

ACM Reference Format:
Xilong Zhou, Miloš Hašan, Valentin Deschaintre, Paul Guerrero, Kalyan
Sunkavalli, and Nima Khademi Kalantari. 2022. Supplementary Materials
for TileGen: Tileable, Controllable Material Generation and Capture. In
SIGGRAPH Asia 2022 Conference Papers (SA ’22 Conference Papers), December
6–9, 2022, Daegu, Republic of Korea. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3550469.3555403

Additional implementation details. In this section, we discuss
network architecture and dataset generation details.

As discussed in Section 3.2 and Fig. 2 of the main paper, Tile-
Gen follows a CollageGAN-based encoder and StyleGAN2-based
decoder architecture, with the difference that we use wrap-around
versions of all convolution and upsampling operations. Please refer
to CollageGAN and StyleGAN2 about architecture details; here we
only discuss how we realize the wrap-around operation. There are
two operations that need to be replaced: regular convolution and
upsampling (achieved by transposed convolution). For convolu-
tion, we apply the “circular” padding mode in the regular Pytorch
2D convolution operation. The upsampling operation in original
StyleGAN2 is achieved by transposed convolutions; instead, we use
wrap-around upsampling followed by wrap-around convolution.
More specifically, to achieve wrap-around upsampling for input
of size ℎ × ℎ, we manually add circular padding to the input, to
get a padded input of size (ℎ + 1) × (ℎ + 1), followed by bilinear
interpolation to resample the padded input from (ℎ + 1) × (ℎ + 1)
to (2ℎ + 1) × (2ℎ + 1). Then we crop the middle 2ℎ × 2ℎ. The bi-
linear interpolation ensures the corners of the original tile map to
the new tile corners. Next, we apply a standard learnable circular
convolution to generate a tileable output of size 2ℎ × 2ℎ. A correct
implementation ensures that the generator always produces tileable
results, including even before training.

Next, we illustrate how the dataset is generated. As is discussed
in Section 3.3, Substance Source and the default class tags are used to
generate a class-specific dataset. For example, to prepare a tile/brick
dataset, we collect a large number of Substance graphs tagged with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9470-3/22/12. . . $15.00
https://doi.org/10.1145/3550469.3555403

Figure S1: This figure illustrates how we pair conditional pat-
terns and material maps using a simplified tile graph exam-
ple. The pattern generator node (marked as red) is processed
by several nodes to generate a reasonable pattern, where we
insert a export node (marked as green) to export conditional
maps. In this example, when the parameters of the graph
are augmented to produce varying material maps (marked
as yellow), the condition map will also vary and the map will
always be consistent with the generated material maps. Note
that even though graphs can vary substantially, we are able
to follow the same logic to produce condition maps.

SVBRDF Pattern Render Pattern RenderSVBRDF

Le
at

he
r

Br
ic

k/
Ti

le

Figure S2: Examples of tile and leather dataset. We show
height, diffuse, roughness, and condition maps, as well as
the rendering of each material.

https://doi.org/10.1145/3550469.3555403
https://doi.org/10.1145/3550469.3555403

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Zhou et al.

keywords “tile” or “brick”. Note that Substance Source website
categorizes and searches many materials into groups and subgroups
based on the artistic provided tags However, the accuracy of this
artistic-provided material definition has not been fully studied and
the sensitivity of material categorization on the results of TileGen
is not covered in this paper. In the future, it would be interesting
to explore the effect of material categorization on the material
generative model.

Then we discussed how the condition patterns are generated. As
shown in Figure S1, we determine the nodes related to the pattern
generator (or the nodes that produce plausible patterns) in each
graph and pipe it into a new export node. Since these pattern gen-
erators are part of the graph, the final generated materials maps are
always consistent with the patterns. Next, the exposed parameters
of the graphs can be augmented automatically to produce diverse
results from each graph. In tiles and bricks, we reduce the range of
parameters controlling diffuse color to avoid unrealistic colors. For
each graph, we generate about 200 material maps; in total we have
around 20k material maps for each class.

In the Figure S2, we demonstrate several examples of dataset of
tile and leather. More specifically, we show the maps for height,
diffuse, roughness, condition and the rendered image for each mate-
rial. For tile/brick dataset, the conditions are binary images defining
the pattern of material and for the leather dataset, the conditions
are gray-scale images defining the wrinkles of the materials. All
conditions are perfectly paired with the resulting maps. Note that
the three top-right tile examples and three bottom-right leather
examples are sampled from the same tile and leather graph respec-
tively, demonstrating the variety achievable within a single graph.
Note that our tile dataset does not contain rotated tile patterns or
irregular patterns, though these could be added.

Additional results for generation and inverse rendering. In Fig-
ure S3 we show individual SVBRDF maps for the conditionally
generated results shown in Figure 3 of the main paper. More con-
ditionally generated results are shown in Figure S4. The SVBRDF
maps for the unconditional results in Figure 4 of the main paper are
shown in S5, and more unconditional results in Figure S6. Figure S7
shows additional inverse rendering results.

Nearest neighbours. In Figure S8, we show randomly sampled
stone materials and top three nearest-neighbour materials from
the stone dataset, as measured by the distance of Gram matrices of
VGG features. This shows that our model is not simply overfitting
to the dataset.

Interpolation results. In Figure S9, we show latent-space interpo-
lation results between two randomly sampled materials for leather,
metal, stone and tile.

More comparisons. In Figure S10, we show a comparison of ma-
terial acquisition with MaterialGAN [Guo et al. 2020b] and real
images. As shown, our approach is able to reproduce re-renderings
closer to the ground truth images. The material maps generated
by our method are more consistent and lack artifacts compared to
MaterialGAN.

Effect of input patterns on inverse rendering. We demonstrate
the effect of conditional input patterns on the results of inverse
rendering. In Figure S11, the top three rows are leather examples
and bottom three rows are tile examples. For each example, we
match the same target image with three different input patterns.

We can see that in the leather examples, all input patterns pro-
duce plausible reconstructions that both capture the style of target
image, and also preserving the "wrinkles" specified in the input
patterns. In the right-most leather example, the provided wrinkle
patterns are significantly different from the wrinkles in the target
image, but our result still capture the style of the target while using
the wrinkles provided by the input patterns.

The bottom three rows show that for tile examples, the input
patterns do not need to be exactly aligned with the target images
(Different examples of Figure 5 also demonstrate this property).
And between input patterns and target images there exists some
"tolerance", including tile number, tile size, the thickness of grout
and the offset of tiles. However, if the feature sizes of the input pat-
terns are significantly different from the target images, our model
will try to mix style and patterns and generate unrealistic bricks
(see the 3rd patterns for each tile example). This is because the
Gram matrix loss is shift-invariant but not scale-invariant, and
significantly mismatched patterns will force a change in the style
computed by the Gram matrix.

Results larger than inputs. Furthermore, we demonstrate that
our generated materials can have higher resolution than the target
image. In Figure S12, we use a 256 × 256 target photograph and
provide a pattern for a 512 × 512 output domain, with a feature
size matching the target image in pixel units. Our method results
in tileable materials of extended size, which is not possible with
previous pixel-based capture methods.

Translated condition with fixed style. In Figure S13, we translate
the input pattern, while holding the latent code fixed. The resulting
materials follow the shifted pattern but do not change their style,
which further demonstrates that the style of the result is mainly
derived from the latent vector rather than the pattern encoding. This
property is desirable for inverse optimization, where the pattern is
fixed and we would like to optimize for the material style.

Conditioning on colored patterns. In addition to conditioning on
binary patterns, we can also train our generator to allow condi-
tioning on colored patterns to control the diffuse albedo in the
generated materials —other properties of other materials classes
could be conditioned this way. In Figure S14, we provide a pattern
with colors roughly matching the target photograph, but at differ-
ent image locations. The generator produces a random style that
matches the given colors. Optimization to match the target image
further reproduces the detailed style of the target photograph, even
though the colors in the pattern already provide significant prior
information.

Supplementary Materials for TileGen: Tileable, Controllable Material Generation and Capture SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Figure S3: Randomly sampled conditional results with the generated texture maps of tile and leather examples in the Figure 3
of the paper.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Zhou et al.

Figure S4: Additional randomly sampled conditional results with the generated texture maps of tile and leather material class.

Supplementary Materials for TileGen: Tileable, Controllable Material Generation and Capture SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Figure S5: Randomly sampled unconditional results with the generated texture maps of stone and metal examples in the Figure
4 of the paper.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Zhou et al.

Figure S6: Additional randomly sampled unconditional results with the generated texture maps of stone and metal material
class.

Supplementary Materials for TileGen: Tileable, Controllable Material Generation and Capture SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Target Output SVBRDF Target Output SVBRDF Target Output SVBRDF

Figure S7: Additional inverse rendering results with the generated texture maps.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Zhou et al.

Output 1st nn 2nd nn 3rd nn

Figure S8: Nearest neighbours of sampled stone examples, measured by Grammatrix distance.We show sampled stone examples
followed by top three nearest neighbour materials from dataset. The difference shows that our model is not simply overfitting
to the dataset.

Supplementary Materials for TileGen: Tileable, Controllable Material Generation and Capture SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Figure S9: The results of style interpolation between two random sampled latent space for leather, metal, stone and tile.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Zhou et al.

Input Renderings SVBRDF

G
T

O
ur

s
G

uo
 e

t a
l.

20
20

G
T

O
ur

s
G

uo
 e

t a
l.

20
20

G
T

O
ur

s
G

uo
 e

t a
l.

20
20

Figure S10: ComparisonwithMaterialGAN and real images.We show three reconstructedmaterialsmaps aswell as re-renderings
using our method and MaterialGAN. As is shown here, compared with real images, our method produces much plausible maps
and renderings without overfitting artifacts.

Supplementary Materials for TileGen: Tileable, Controllable Material Generation and Capture SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Target Pattern Output SVBRDF Target Pattern Output SVBRDF Target Pattern Output SVBRDF

Figure S11: This figure shows the effect of conditional input patterns on the generated feature maps given a certain target image.
For leather examples, our results can capture the style of target images and maintain “wrinkles” introduced from various input
patterns; for tile examples, given input patterns that are not significantly misaligned with target images, our model can still
generate realistic results.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Zhou et al.

Input Pattern Output SVBRDF

Figure S12: The textures resulting from our optimization can be larger than the target image. Here we start from 256 × 256
target images, and define a pattern with a feature size matching the target in pixels, but covering a 512 × 512 output domain.
Our method is able to produce tileable materials of extended size, which is not possible with previous pixel-based methods.

Supplementary Materials for TileGen: Tileable, Controllable Material Generation and Capture SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Figure S13: A fixed input pattern (shown on the top) is translated by a number of pixels, while keeping a fixed latent code. The
resulting material follows the shifted pattern and keeps a similar style, showing that much of the style of the result is derived
from the latent vector, not the pattern encoding. This shows that our model provides a certain amount of disentanglement
between condition and style, which is sufficient for our forward and inverse tasks.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Zhou et al.

Target Pattern OptimizedForward

Figure S14: Here we demonstrate the color version of our conditional generator. We provide a pattern with roughly matching
colors to the generator (forward) and optimizer (Optimized). Even though the colors provide significant information which
doesn’t align well with the input picture, the optimization is able to further match the style of the target photograph.

