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Fig. 1. We propose a novel optimization-based method for estimating the reflectance parameters given a single image. Test-time optimization for single image
reflectance estimation is susceptible to overfitting as this is a highly ill-posed problem. To combat this issue, we introduce a novel approach that incorporates
the test-time optimization into the training process. Specifically, we train our network by minimizing the error between the ground truth and network’s output
after the test-time optimization. Through this strategy, we ensures that our network learns a prior that is suitable for test-time optimization. Here, we show
the results of our network before (initial) and after (optimized) a few iterations of test-time optimization, as well as the rerendered images using the optimized
reflectance parameters. We provide comparisons against several state-of-the-art methods on a large number of scenes in the supplementary materials.

In this paper, we propose a novel optimization-based method to estimate
the reflectance properties of a near planar surface from a single input image.
Specifically, we perform test-time optimization by directly updating the
parameters of a neural network to minimize the test error. Since single image
SVBRDF estimation is a highly ill-posed problem, such an optimization is
prone to overfitting. Our main contribution is to address this problem by
introducing a training mechanism that takes the test-time optimization into
account. Specifically, we train our network by minimizing the training loss
after one or more gradient updates with the test loss. By training the network
in this manner, we ensure that the network does not overfit to the input
image during the test-time optimization process. Additionally, we propose
a learned reflectance loss to augment the typically used rendering loss
during the test-time optimization. We do so by using an auxiliary network
that estimates pseudo ground truth reflectance parameters and train it in
combination with the main network. Our approach is able to converge with
a small number of iterations of the test-time optimization and produces
better results compared to the state-of-the-art methods.
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1 INTRODUCTION
Capturing the spatially-varying bidirectional reflectance distribu-
tion function (SVBRDF) of materials is an important problem in
computer graphics and vision. While the materials can be accu-
rately captured using specialized hardware [Dong et al. 2010; Ghosh
et al. 2007, 2010; Kang et al. 2018], the acquisition process is time-
consuming and the setups are often bulky and expensive. In recent
years, there has been a significant interest in casual acquisition of
the reflectance parameters using standard hardware (e.g., cellphone
cameras). To this end, a large number of approaches estimate the
material properties given one or a small number of images. While
with multiple images, the problem becomes more constrained, this
comes at the cost of requiring careful calibration of the input images,
which is cumbersome for an average user.

To make the system more practical, we focus on estimating the
reflectance parameters from a single image. The existing methods
can generally be categorized into two classes of direct-estimation
and optimization-based approaches. The approaches in the direct-
estimation category [Deschaintre et al. 2018, 2019; Guo et al. 2021;
Zhou and Kalantari 2021] train a neural network to directly estimate
the SVBRDF maps from the input image. Through the training
process, these networks are able to learn powerful priors and handle
this highly ill-posed problem. However, these approaches may not
properly reproduce the appearance of the material.
Optimization-based methods avoid this problem by performing

a test-time optimization where the objective is to find reflectance
parameters that minimize the error between the rerendered and
the input image(s), known as the rendering loss. This problem, how-
ever, is highly ill-posed as there are many invalid SVBRDF maps
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that can reproduce the appearance of the input image(s). Existing
methods [Gao et al. 2019; Guo et al. 2020] propose various ways
to constrain the optimization. These approaches are able to pro-
duce plausible results with multiple images, but with a single image,
which is the focus of this paper, the optimization is extremely ill-
posed, and thus their constraints become less effective.

Our goal is to design a system that enjoys the benefits of the two
categories of methods, namely the learned powerful priors of the
direct-estimationmethods and the ability to reproduce the measured
appearance through test-time optimization. At the first glance, it
seems that our goal can be achieved in a straightforward manner
by first training a network on a large dataset and then optimizing
its parameters on the test image at hand. Unfortunately, this simple
approach is not effective as the network overfits to the input image
during the test-time optimization. We make two key observations to
address the challenges with such a system: 1) while by pre-training
the network powerful priors can be learned, these priors are not able
to avoid overfitting during the test-time optimization process, as the
training and testing processes are disjoint, and 2) the ill-posedness
of the optimization comes from the mismatch between the test-time
objective (typically the rendering loss), and the desired objective
which is the error between the network’s output and ground truth
reflectance maps.

Inspired by the optimization-basedmeta-learning approaches [Finn
et al. 2017], we propose to systematically address the first issue by
incorporating the test-time optimization in the training process.
Specifically, we train the network by minimizing the error between
the estimated reflectance parameters, after the test-time optimization,
and ground truth. At every iteration of training, we first perform the
test-time optimization to obtain the updated network. This updated
network is then used to generate the reflectance parameters. We
then compute the loss between the estimated and ground truth re-
flectance parameters and use it to update the original network at this
iteration. Essentially, we train the network by minimizing the train-
ing loss after “looking ahead” according to the test loss. Through
this training, we basically learn a prior that is suitable for the test-
time optimization process and ensures that the network produces
optimal reflectance parameters after the test-time optimization.

To combat the second problem, we propose to minimize a learned
reflectance loss in addition to the rendering loss, during the test-time
optimization. To do so, we use an auxiliary network to estimate
the reflectance parameters from a single image and compute the
error between these pseudo ground truth SVBRDF parameters and
the estimated parameters by the main network. In our system, this
auxiliary network in combination with the main network is trained
using our proposed training strategy. Through this process, the aux-
iliary network learns to estimate reflectance maps that are effective
for optimizing the network during test-time optimization.
Once trained, our system is able to produce high-quality results

(see Fig. 1) through only a small number of iterations (seven in our
case) of the test-time optimization (as opposed to thousands in pre-
vious approaches [Gao et al. 2019; Guo et al. 2020]). We demonstrate
that our system generates better results than the existing direct-
estimation and optimization-based approaches, while being two
orders of magnitude faster than the optimization-based methods.
In summary, our paper makes the following contributions:

• Wepropose a novel training strategy for single image SVBRDF
estimation to achieve robustness to overfitting during the test-
time optimization.

• We present a learned reflectance loss to compliment the ren-
dering loss during the test-time optimization.

• We extensively compare our approach against several state-
of-the-art methods on various datasets, including our new
dataset of real images with ground truth.

2 RELATED WORK
Reflectance capture has been the subject of extensive research in the
past decades and many powerful approaches have been developed.
For brevity, here we only focus on approaches that estimate the
material parameters using one or a small number of images, captured
with standard cameras. We discuss these methods by classifying
them into two categories of direct-estimation and optimization-
based techniques. Since our method is inspired by model agnostic
meta-learning [Finn et al. 2017], we also provide a brief overview
of relevant approaches.

2.1 Direct-Estimation Methods
The approaches in this category train a machine learning model (e.g.,
neural network) on a large material dataset in an offline manner.
During testing, the model is used to directly estimate the reflectance
parameters from the input image(s). Several approaches [Deschain-
tre et al. 2018; Li et al. 2017, 2018; Ye et al. 2018] propose to train deep
neural networks to estimate reflectance parameters from a single
image. Deschaintre et al. [2019] propose a network architecture to
handle an arbitrary number of images. A couple of methods [Vec-
chio et al. 2021; Zhou and Kalantari 2021] pose the problem as image
to image translation and tackle it with a generative adversarial net-
work. To properly handle the saturated highlights, Guo et al. [2021]
propose a highlight-aware convolution operator. Since these ap-
proaches generate the reflectance maps by a forward pass through
the network, their estimated SVBRDF may not accurately reproduce
the appearance of the input image(s). We also train our network on
large dataset, but we do so by taking the test-time optimization into
account to be able to adapt our system to each example.

2.2 Optimization-Based Methods
These methods estimate the material parameters by performing
optimization on the test example at hand. Since the problem is highly
ill-posed, various strategies have been proposed to constrain the
optimization. For example, Hui et al. [2017] propose an optimization
strategy with strong material prior by representing the materials as
a linear combination of a set of material bases. Unfortunately, the
hand-crafted prior is not universal and this method is restricted to
materials that can be explained by the bases.

Aittala et al. [2016; 2015] propose an approach to estimate SVBRDF
parameters from two- and one-shot photographs. Specifically, they
perform the optimization on several tiles extracted from the input
image. Zhao et al. [2020] optimize a network on patches of a sin-
gle example and constrain the problem by ensuring the generated
diffuse map is close to an initial rough diffuse estimate. Henzler et
al. [2021a] propose to optimize a generator with image conditioned
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latent space. These approaches considerably constrain and simplify
the optimization by restricting the problem to stationary materials.
To handle general materials, Deschaintre et al. [2020] propose

a fine-tuning approach to improve the results of a pre-trained net-
work on a test example, but require multiple carefully captured
examples of the same scene. Shi et al. [2020] propose to optimize the
parameters of a procedural node graph with differentiable building
blocks. The main limitation of this approach is that a node graph,
corresponding to the input image, is required to achieve reasonable
results. However, designing such a graph is not an easy task for a
novice user.
A couple of methods [Gao et al. 2019; Guo et al. 2020] propose

to perform the optimization in the latent space of a material gener-
ator. Specifically, Gao et al. [2019] first train an autoencoder on a
large training dataset. They then optimize the latent space of this
network to minimize the error between the rerendered and input
images. Guo et al. [2020] use a similar strategy, but instead train
the StyleGAN2 network [Karras et al. 2020] to act as the material
generator. Unfortunately, since their trained material generator is
not highly expressive, optimizing the latent space is not sufficient
for producing high-quality results. Therefore, they often rely on
post-refinement [Gao et al. 2019] or noise vector optimization [Guo
et al. 2020] to be able to match the appearance of the input. However,
such strategies reduce the effectiveness of the constraints, and thus
the performance of these approaches significantly reduces when
fewer images are used as the input. Moreover, these techniques
require a large number of iterations at the test-time, making them
computationally expensive. In contrast to these methods, we do not
constrain the problem, but avoid overfitting by incorporating the
test-time optimization into the training process.

2.3 Meta-Learning
Meta-learning or learning to learn refers to a group of methods that
aim to train a machine learning model that is able to quickly learn
new unseen tasks from a few labeled examples. Our work is most
related to model agnostic meta-learning (MAML) [Finn et al. 2017]
that formulates the meta-learning problem as two (inner and outer)
nested optimizations. Specifically, the inner optimization “trains”
the network using a small number of gradient updates, while the
outer optimization ensures that the updated network performs well.
This training obtains network parameters that are highly sensitive
to the loss, i.e., a small change in the parameters using a few gradient
updates leads to large improvements in the loss.
While our approach is inspired by MAML and its various exten-

sions [Antoniou et al. 2019; Nichol et al. 2018; Rajeswaran et al.
2019], our goal and assumptions are fundamentally different from
theirs. The goal of MAML is quick adaptation of the network to
the target domain and its main assumption is that a few labeled
datapoints in the target domain are available. Most of the current
use cases of MAML are few-shot learning where the goal is to learn
a new task (e.g., classifying unseen categories) with a few labeled
data. On the other hand, our goal is to adapt the network to a single
test example, where ground truth data is not available.

A fewmethods [Bergman et al. 2021; Sitzmann et al. 2020a; Tancik
et al. 2021] adapt MAML with almost no modification for test-time

optimization of the coordinate-based networks. These methods fo-
cus on applications where the objective is to overfit a coordinate-
based network to a single example, e.g., an image. The main purpose
of using MAML in these approaches is speeding up the optimization
as they have access to the ground truth during the testing phase.
In contrast, in our system, ground truth data for the test example
is not available and our goal is to become less prone to overfitting
during testing. Unlike these methods, faster convergence is merely
a byproduct of our system and not our main objective.

3 ALGORITHM
Our goal is to estimate the reflectance parameters F from a sin-
gle flash image I of a near-planar surface, captured using a colo-
cated camera and flash. To represent reflectance, we use the Cook-
Torrance model [Cook and Torrance 1982] with GGX [Walter et al.
2007] that describes the SVBRDF in terms of four feature maps:
diffuse, normal, roughness and specular. To ease the need for cali-
bration, we follow the existing techniques [Aittala et al. 2016, 2015;
Henzler et al. 2021b] and assume that the input image is captured
in a fronto-parallel setting. This way the direction from every point
on the surface to the light is known. Similar to Henzler et al. cite-
henzler2021neuralmaterial, we assume a FOV of 45◦ to approximate
smartphone cameras.
As mentioned, we would like to enjoy the benefits of the direct-

estimation and optimization-based approaches, while avoiding their
shortfalls. Specifically, direct-estimation methods learn powerful
priors, but since their output is generated with a feedforward pass
through the network, they may not be able to reproduce the appear-
ance of the input. The optimization-based methods, on the other
hand, are able to reproduce the measured appearance, but are sus-
ceptible to overfitting as the optimization using a single image is
highly ill-posed.

A straightforward way to combine the two approaches is to first
train a neural network 𝑓𝜃 on a large material dataset of 𝑁 input
images, I1, . . . , I𝑁 , and corresponding ground truth reflectance pa-
rameters F1, . . . , F𝑁 . The training can be done by performing the
following optimization:

𝜃opt = argmin
𝜃

𝑁∑
𝑛=1

𝐸train (𝑓𝜃 (I𝑛), F𝑛), (1)

where 𝐸train is the training loss and can be, for example, the 𝐿2 dis-
tance between the estimated and ground truth SVBRDF parameters
(reflectance loss).

This pre-trained network can then be adapted to the test example
at hand by forcing the network to reproduce the appearance of the
test image. Specifically, this can be done by performing the following
test-time optimization:

𝜃∗ = argmin
𝜃

𝐸test (𝑓𝜃 (I), I), (2)

where 𝐸test is the test loss. For example, it can be the 𝐿2 distance
between the input and rerendered 𝑅(𝑓𝜃 (I)) images, where 𝑓𝜃 (I) is
the estimated reflectance parameters and𝑅 denotes the differentiable
Cook-Torrance rendering model. Note that the initial 𝜃 is set to 𝜃opt,
obtained from Eq. 1, as the goal of this process is to fine-tune the
pre-trained network.
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Fig. 2. We plot the reflectance loss (Eq. 11) during test-time optimization
for the networks trained in a standard manner and using our look-ahead
training strategy. All the values are obtained by averaging the results on a
synthetic validation dataset containing 80 examples. Test-time optimization
of the network, trained in a standard manner, increases the reflectance error
as the network overfits to the input image. While the loss for our initial
network is higher, our results after test-time optimization are significantly
better than the alternative.

Unfortunately, minimizing the test loss does not necessarily im-
prove the quality of the estimated reflectance maps with respect to
the ground truth. As shown in Fig. 2 (standard training), the quality
of the reflectance maps degrades with the test-time optimization.

In the next sections, we discuss our proposed look-ahead training
and learned reflectance loss to address this issue. The overview of
our method is provided in Fig. 3.

3.1 Look-Ahead Training
As discussed, by training the network using Eq. 1, we ensure that the
network with parameters 𝜃opt produces optimal results compared
to the ground truth training examples in terms of the 𝐸train loss.
However, with such a training, we will not be able to control the
behavior of the network during the test-time optimization.
Our key observation is that this issue arises because of the dis-

connect between the expected outcome during training and testing;
during training we focus on the direct output of the network, while
during the test, we are interested in the output of the network after
optimization. Inspired by the model-agnostic meta learning (MAML)
approach [Finn et al. 2017], we propose to incorporate the test-time
optimization into the training process. In our system, the training
is done by minimizing the training loss generated by the network
after optimization using the test loss. In an essence, we “look ahead”
to observe the network in the future based on the test loss and
maximize its performance according to the training loss.
We discuss our look-ahead training objective with one test loss

gradient update, since we use this setting in our implementation and
it simplifies the notation. However, extension to multiple gradient
updates is straightforward. Our objective is defined as follows:

𝜃∗init = argmin
𝜃

𝑁∑
𝑛=1

𝐸train
(
𝑓
𝜃
′
𝑛
(I𝑛), F𝑛

)
. (3)

The key difference between this objective and the one in Eq. 1 is
in the network weights. Instead of using the initial network weights
𝜃 , we first apply one gradient update based on the test loss on the
𝑛th training example to obtain the updated network weights 𝜃 ′𝑛 .
These weights are in turn used in Eq. 3 to evaluate the training loss.
The updated network weights 𝜃 ′𝑛 are obtained as follows:

𝜃
′
𝑛 = 𝜃 − 𝛼∇𝜃𝐸test (𝑓𝜃 (I𝑛), I𝑛) . (4)

where 𝛼 is the learning rate which controls the magnitude of the
gradient step. Note that the computed training loss in Eq. 3 is back-
propagated to update the network weights before taking the gradient
updates using the test loss (𝜃 ), as shown in Fig. 3 (left).
Our training is in contrast to standard training, used in direct-

estimation methods, that learns a prior that is suitable for directly
estimating the output. Such a prior has no impact on the test-time
optimization. However, by minimizing the training loss of the op-
timized network, we essentially learn a prior that controls the be-
havior of the network during the test-time optimization and avoids
overfitting to the input. An additional benefit of our training is
that our system quickly converges to a high-quality solution as the
training is performed with a single gradient update of the test loss.
We show the advantage of our training strategy compared to

the standard training in Fig. 2. As seen, while our initial network
(0 iteration) produces worse results than standard training, after
one iteration of test-time optimization, we are able to produce sig-
nificantly better results than the alternative. In contrast, test-time
optimization of a network trained with standard training degrades
the quality of the results.

Discussion. We note that our training can be thought of as a
generalization of the standard training, which is used in the direct-
estimationmethods. This is because𝛼 , which controls themagnitude
of the gradient step in Eq. 4, can be adjusted to increase or decrease
the impact of the test-time optimization. In the limit, when 𝛼 is
equal to zero, our test-time optimization becomes ineffective and
our training boils down to standard training.

3.2 Learned Pseudo Reflectance Loss
As discussed, since the ground truth reflectance parameters are not
available during testing, our training and testing losses are different.
We use a combination of rendering and reflectance errors as our
training loss (see Eq. 9), but can only use the rendering loss for our
testing objective. This mismatch between the training and testing
losses could potentially create difficulty for our look-ahead training.

We illustrate this problem in Fig. 4. Ideally, our testing loss would
be the same as our training loss. As shown, taking gradient step
using the ideal testing loss (red arrows) moves us closer to the
optimal parameters for each test example (𝜃∗1 and 𝜃∗2 ). However,
with the rendering error as the test loss, our optimization moves
in a direction (green arrows) that could potentially be drastically
different from the direction towards the optimal parameters.

To address the mismatch between the training and testing losses,
we need to augment the rendering loss with the reflectance loss.
Unfortunately, ground truth reflectance parameters are not available
during testing. Therefore, we propose to estimate pseudo ground
truth reflectance parameters using a separate auxiliary network.
This network 𝑓𝜓 takes the image as the input and estimates the
pseudo ground truth reflectance parameters 𝐹 . In our test loss (see
Eq. 7), we minimize the distance between the estimated and pseudo
ground truth parameters (pseudo reflectance loss) in addition to the
rendering loss. The gradient of the pseudo reflectance loss (blue
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Fig. 3. On the left, we show an overview of our training strategy. Given the current weights for the main and auxiliary networks (𝜃 and 𝜓 ), we take one
gradient step using the test loss to obtain the updated main network parameters. This process is done for every example in the training data (or mini-batch)
and results in a set of updated weights 𝜃 ′1 . . . , 𝜃

′
𝑁
. These weights are then used to evaluate the training loss on the corresponding training examples. The

training losses are then averaged and backpropagated to update both 𝜃 and𝜓 (shown with the blue arrow). Note that, we only update the main network
using the test loss, but update both main and auxiliary network using the training loss. Moreover, the illustration is done for batch training (all 𝑁 training
examples), however, in practice we use mini-batches. On the right, we show an overview of the testing phase. We pass the the input image to both the main
and auxiliary networks and evaluate the test loss. This loss is then backpropagated to update the parameters of the main network. Once converged, we use
the optimized network to evaluate the final results (bottom-right).

Ideal

Rendering

Pseudo Re�ectance

Fig. 4. Ideally, the training and testing losses are the same. In this case,
the gradient update of the test loss for each example (red arrows), moves
us from the initial network (𝜃∗init) closer to the optimal network for that
example (𝜃∗1 or 𝜃

∗
2 ). However, since in practice ground truth reflectance maps

are not available during testing, our training and testing losses are different.
Unfortunately, the gradient update of the typically used rendering loss
(green arrows) moves us in the direction of the optimal parameters based
on this loss (𝜃𝑜1 and 𝜃𝑜2 ). To address this mismatch, we propose a learned
reflectance loss which approximates the difference in gradient between the
rendering and ideal test loss (blue arrows).

arrows in Fig. 4) compensates the difference in gradients of the
rendering and the ideal test losses.
We optimize the weights of the auxiliary network𝜓 along with

the weights of the main network 𝜃 during the look-ahead training
process. Specifically, our final training objective is as follows:

𝜃∗init = argmin
𝜃,𝜓

𝑁∑
𝑛=1

𝐸train
(
𝑓
𝜃
′
𝑛
(I𝑛), F𝑛

)
, (5)

where 𝜃
′
𝑛 is calculated as follows:

𝜃
′
𝑛 = 𝜃 − 𝛼∇𝜃𝐸test

(
𝑓𝜃 (I𝑛), 𝑓𝜓 (I𝑛), I𝑛

)
. (6)
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Fig. 5. On the top two rows, we show the output of the auxiliary network
(”Pseudo GT”) as well as the result of our initial network (𝑓 ∗

𝜃 init). Note that
while the pseudo ground truth maps are substantially different from the
ground truth, they properly approximate the required gradients for pushing
the optimization towards the ground truth.

The main difference between these equations and the ones in
Eqs. 3 and 4 are two-folds: 1) the minimization in Eq. 5 is done over
the weights of both the main and auxiliary networks, and 2) the
test loss in Eq. 6 incorporates the pseudo ground truth reflectance
parameters 𝑓𝜓 (𝐼𝑛). Note that only the main network parameters are
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Table 1. Numerical comparison on a set of 52 synthetic test images. We
evaluate the quality of renderings both in terms of RMSE and LPIPS [Zhang
et al. 2018], a perceptual metric, but the four reflectance parameters (normal
“N”, diffuse “D’, roughness “R”, and specular “S”) are evaluated using RMSE.
“Ren” refers to renderings for which the numerical values are obtained on a
set of 20 images of each scene under different lights.

RMSE LPIPS
N D R S Ren Ren

Des18 0.060 0.0963 0.262 0.134 0.108 0.262
Des19 0.070 0.134 0.172 0.076 0.130 0.226
Zhou21 0.065 0.108 0.153 0.079 0.080 0.179
Guo21 0.073 0.105 0.144 0.092 0.100 0.240
Gao19 0.068 0.101 0.137 0.092 0.074 0.142
Guo20 0.070 0.095 0.159 0.094 0.081 0.165
Ours 0.058 0.078 0.124 0.089 0.061 0.139

updated in Eq. 6, as the auxiliary network is only used to calculate
a better loss and does not need to be optimized during the testing.

Discussion. One might think that to truly resolve the mismatch
between the training and testing losses, the pseudo ground truth
parameters (auxiliary network’s output) should match the ground
truth reflectance maps. This conclusion can also be drawn based
on our pseudo reflectance loss in Eq. 8; since we minimize the 𝐿2
distance between the output of the main and auxiliary networks, it
seems like the optimal results can only be achieved if the auxiliary
network produces reflectance maps that are similar to the ground
truth. Although this would be the case if we optimize our test loss
(see Eqs. 7 and 8) until convergence, in our formulation the test
loss is only optimized with a single gradient update (see Eq. 6). This
update moves the main network towards a solution that is optimal
in terms of the training objective, but not the test loss. Therefore,
while the output of the main network after one gradient update is
similar to the ground truth reflectance maps, it could be substantially
different from the auxiliary network output, as shown in Fig. 5. Note
that because we do not explicitly enforce the auxiliary network
to produce reflectance maps that resemble the ground truth, this
network learns to approximate the difference in gradient between
the rendering and the ideal losses. The approximated gradients,
which lie in a high dimensional space, do not necessarily map to
interpretable reflectance maps.

We note that our learned reflectance loss cannot be directly used
to improve the test-time optimization of the existing optimization-
based methods. This is because this loss provides gradients that are
suitable for one step optimization with our main network (𝜃∗init). If
the auxiliary network, trained within our system, is directly used
with other systems, the gradients produced by the such a reflectance
loss could potentially even hurt their optimization.

4 IMPLEMENTATION
In this section, we discuss the necessary details to implement our ap-
proach, including the network architecture, loss functions, and the
training process. The source code, trained networks, and dataset can
be found at: https://people.engr.tamu.edu/nimak/Papers/SIGAsia2022_
MatCap/.

Table 2. Numerical comparison on a set of 33 real test scenes from Guo et
al. [Guo et al. 2020] and 76 scenes from our dataset. In both datasets, each
scene contains 9 images. For each scene, we use one image as the input and
the remaining 8 images are used as ground truth.

MaterialGAN Ours
LPIPS RMSE LPIPS RMSE

Des18 0.391 0.140 0.316 0.102
Des19 0.383 0.188 0.310 0.129
Zhou21 0.314 0.154 0.266 0.132
Guo21 0.391 0.161 0.303 0.103
Gao19 0.361 0.158 0.290 0.110
Guo20 0.316 0.153 0.256 0.113
Ours 0.286 0.133 0.216 0.093

4.1 Network architecture
Our system includes an auxiliary and main network. For the auxil-
iary network, we directly use the architecture proposed by Deschain-
tre et al. [2019]. For our main network, we use a small conditional
coordinate-based neural network. This is because our training is
memory intensive as it requires backpropagating the training loss
through all the test gradient updates. This means that we need to
compute the second order gradients through multiple networks
which in turn requires saving all the updated main networks (for
each gradient update and each training example in the mini-batch)
during training.
Our main network has two primary components. The first com-

ponent extracts a set of features from the input image. The second
component takes the extracted features along with the coordinates
(in 𝑥 and 𝑦) at each pixel and generates the reflectance parameters
at that pixel. For the first component, we use a simple UNet [Ron-
neberger et al. 2015] with two downsampling and upsampling layers.
This network takes a 3 channel RGB image as the input and outputs
a 128 channel feature map (3 -> 32 -> 64 -> 128 -> 128). All the
layers are convolutional with a kernel size of 4. As for the second
component, we use the SIREN network [Sitzmann et al. 2020b], but
modify the number of output channels to 8. Specifically, we use 1
channel for height map, 3 channels for diffuse, 1 channel for rough-
ness, and 3 channels for the specular maps. Note that our network
estimates a single channel height map, but we convert it to a 3
channel normal for renderings using central finite differences with
circular boundaries. We also experimented with directly outputting
the 3 channel normal map, but since the results were similar we
estimate the height map for memory efficiency.

4.2 Loss function
Test loss. As discussed, we use a combination of the rendering

and pseudo reflectance losses for the test. Specifically, our test loss
is defined as:

𝐸test
(
𝑓𝜃 (I), 𝑓𝜓 (I), I

)
= Lren + 𝜆Lpseudo, (7)

where 𝜆 defines the weight of the pseudo reflectance loss and is
equal to 1 in our implementation. Moreover, the rendering and
pseudo reflectance losses are defined as follows:

Lren = ∥𝑅(𝑓𝜃 (I)) − I∥2, Lpseudo = ∥ 𝑓𝜃 (I) − 𝑓𝜓 (I)∥2, (8)
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Fig. 6. We show comparison of our approach against two optimization-based approaches by Gao et al. [2019] and Guo et al. [2020] on two synthetic scenes.
For each scene, we compare the reflectance maps along with three rerendered images under novel lightings.

Training loss. As is common in existing techniques [Deschaintre
et al. 2019; Guo et al. 2021], we use a combination of the rendering
and reflectance losses for training. Our loss is defined as follows:

𝐸train (𝑓𝜃 (I), I, F) = 𝛽Lp-ren + 𝛾Lref, (9)

where 𝛽 and 𝛾 define the weights of the rendering and reflectance
losses and are set to 10 and 0.25, respectively. Moreover, Lp-ren is a
perceptual rendering loss which is defined as:

Lp-ren = ∥𝑅(𝑓𝜃 (I)) − I∥2 + 𝜂Lstyle (𝑅(𝑓𝜃 (I)), I), (10)

where Lstyle is the style loss based on the Gram matrix [Gatys et al.
2015] of the VGG features [2015]. Furthermore, 𝜂 defines the weight
of the style loss and is set to 1. Note that we compute the 𝐿2 loss
between downsampled (to 16 × 16) rerendered and ground truth
images. Finally, the reflectance loss Lref is defined as:

Lref =𝜆𝑛 ∥n̂ − n∥2 + 𝜆𝑑 ∥d̂ − d∥2 + 𝜆𝑟 ∥r̂ − r∥2
+𝜆𝑠 ∥ŝ − s∥2 + 𝜆𝑑𝑣Lvgg (d̂, d) + 𝜆𝑠𝑣Lvgg (ŝ, s), (11)

where n̂, d̂, r̂, and ŝ are the estimated normal, diffuse, roughness,
and specular, while n, d, r, and s are their ground truth counterpart.
Furthermore, Lvgg is the VGG-based perceptual loss, proposed by
Chen et al. [Chen and Koltun 2017]. Finally, 𝜆𝑛 , 𝜆𝑑 , 𝜆𝑟 , 𝜆𝑠 , 𝜆𝑑𝑣 , and
𝜆𝑠𝑣 define the weight of each term and we set them to 80, 1, 1, 5,
2.5 × 10−2, and 2.5 × 10−2, respectively.

4.3 Training
We use the synthetic SVBRDFs dataset provided by Deschaintre et
al. [2018] to train our system. We use the Xavier approach [Glorot
and Bengio 2010] to initialize the feature extractor in our main
network, but use the proposed strategy by Sitzmann et al. [Sitzmann
et al. 2020b] to initialize SIREN. For the auxiliary network, we start

by the pre-trained network provided by Deschaintre et al. [2019]. We
set the learning rate for our test-time optimization (𝛼) to 1×10−3. For
training, we use the Adam optimizer [Kingma and Ba 2014] with the
internal parameters 𝛽1 and 𝛽2 set to 0.5 and a batch size of 2. For the
main network, we use an initial learning rate of 1×10−6 and reduce it
by a factor of 2 after every 500,000 iterations. On the other hand, we
use a fixed learning rate of 1 × 10−5 for the auxiliary network. Note
that the test-time gradient update is performed using stochastic
gradient descent (SGD) following Eq. 6, as calculating the gradients
through an Adam optimizer is significantly more challenging. We
train our system, implemented in PyTorch, for 1.3M iterations which
takes roughly 5 days on a GeForce 2080 Ti GPU.

4.4 Testing
Our network is trained to produce optimal results after one iteration
of test-time optimization using SGD with a learning rate of 1× 10−3.
However, by evaluating the results on a validation dataset contain-
ing 80 examples, we observed that the training loss (reflectance +
rendering) still decreases for 6 more iterations beyond the initial up-
date . Therefore, we generate all the results with 7 (1 + 6) iterations
of test-time optimization. Note that, since our pseudo reflectance
loss is trained with one gradient update, using it after the first itera-
tion would hurt the system. Therefore, we perform the remaining
iterations using the rendering loss in Eq. 10. We perform the first
update using SGD with a learning rate of 1×10−3, but the remaining
6 iterations are done using Adam with a learning rate of 2 × 10−7.

5 RESULTS
Throughout this section, we compare our approach against several
direct-estimation and optimization-based approaches. Specifically,
we compare against the direct-estimation approaches by Deschain-
tre et al. [2018; 2019], Zhou et al. [2021], and Guo et al. [2021], as
well as the optimization-based methods of Gao et al. [2019] and
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Fig. 7. We compare our approach against the other methods on four real scenes with ground truth renderings. Note that the ground truth reflectance
parameters are not available in this case.

Guo et al. [2020]. Since the source code of the approach by Guo
et al. [2021] is not publicly available, we asked the authors to run
their code on our images. For all the other methods, we use the
source code provided by the authors. Moreover, we use a single
image as the input to all the approaches, even the ones with the
ability to handle multiple images [Deschaintre et al. 2019; Gao et al.
2019; Guo et al. 2020], to have a fair comparison. We include the
numerical comparisons against all the approaches, but only provide
visual comparisons against the optimization-based methods of Gao
et al. [2019] and Guo et al. [2020]. The complete visual comparisons
against all the approaches on a large set of scenes are provided in the
supplementary materials.

Synthetic Images. We begin by numerically comparing our ap-
proach against the other methods on a set of 52 synthetic scenes,
gathered from Deschaintre et al. [2019] and Guo et al. [Guo et al.
2020], in Table 1. We evaluate the quality of the reflectance pa-
rameters in terms of root mean squared error (RMSE), while the
rerendered images are evaluated using both RMSE and learned per-
ceptual image patch similarity (LPIPS) [Zhang et al. 2018]. Overall,
our method produces better results than the other approaches, ex-
cept for the specularmapswhich are slightlyworse thanDeschaintre
et al.[2019] and Zhou et al. [2021].
Next, we compare our approach against the other optimization-

based methods [Gao et al. 2019; Guo et al. 2020] on two synthetic

scenes in Fig. 6. The other techniques overfit to the input image
through the test-time optimization as their system is not sufficiently
constrained. Therefore, they bake in the input highlight in their
estimated parameters (particularly diffuse and roughness), which
severely degrades the quality of their rerendered images under novel
lighting. With our proposed look-ahead training, the overfitting is
significantly mitigated and we are able to produce results that better
match the ground truth. Note that while other approaches produce
sharp normal maps, their normals contain unnecessary details that
do not exist in the ground truth.

Real Images with Ground Truth Renderings. To numerically com-
pare our approach against the other methods on real images, we
capture 76 scenes, each with 9 images with calibrated lightings.
Similar to the previous methods [Deschaintre et al. 2019; Guo et al.
2020; Hui et al. 2017], we capture colocated camera and flash images
using a cellphone and use a checkerboard frame to calibrate the
images. For each scene, we capture 9 images where one is captured
in a fronto-parallel manner and is used as the input, while the rest
are used as ground truth. In addition to our dataset, we also com-
pare our method against the other approaches on MaterialGAN
dataset [Guo et al. 2020] with 33 scenes. For approaches by Gao et
al. [2019] and Guo et al. [2020], we use the exact calibrated light
position. However, we use a fixed lighting by assuming an FOV of
45◦ for our optimization. Note that, for some scenes, there are no
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Fig. 8. We show comparison of our approach agains the other methods on
four casually captured scenes. Note that ground truth renderings for these
images are not available.

images that are completely fronto-parallel. In these cases, we use the
simple approach proposed by Aittala et al. [2016] to transform the
image. We adjust the calibrated light position for the approaches by
Gao et al. and Guo et al. by taking into account this transformation.
In Table 2, we show the results of this comparison in terms of RMSE
and LPIPS. As seen, our method significantly outperforms other
approaches both in terms of RMSE and LPIPS.

We further show visual comparison against themethods by Gao et
al. [2019] and Guo et al. [2020] on four scenes from the two datasets
in Fig. 7. The two scenes on the left are from the MaterialGAN
dataset [Guo et al. 2020], while the ones on the right are from
our dataset. Overall, our approach produces cleaner reflectance
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Fig. 9. We evaluate the effect of the test-time optimization learning rate
(𝛼 ) quantitatively. The initial results with larger 𝛼 are worse, but the results
after one step for all the learning rates are similar.
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Fig. 10. We show the results of our network before (left) and after (right)
test-time optimization for different test-time learning rates (𝛼 ). With larger
learning rates, the initial results become worse, but the improvement after
the first step becomes larger. All the experiments converge to similar results
after one iteration, demonstrating the robustness of our approach to the
choice of learning rate.

maps and rerendered images and is more robust to overfitting. For
example, only our approach does not bake in the highlights on the
golden patterns of the top right scene in the diffuse map. Similarly,
in the bottom right example, the other approaches either produce
results with sever artifacts [Gao et al. 2019] or incorrectly bake in
the highlights in the diffuse map.

Images Captured In the Wild. To further show the robustness of
our approach, we provide comparisons against other approaches
on casually captured images in Fig. 8. The top two scenes are from
Guo et al. [2021], while we captured the rest. Note that for these
scenes ground truth images under novel lightings are not available.
Moreover, since the images are casually captured and not calibrated,
we apply the same light settings as ours for the approaches by Gao et
al. [2019] and Guo et al. [Guo et al. 2020]. Other algorithms produce
results with visible artifacts, while our method generates cleaner
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Fig. 11. We evaluate the training loss (Eq. 9) for different number of ad-
ditional iterations after the first gradient update. We show the results for
different learning rates. Note that we have excluded the error of the ini-
tial network (1.23 at iteration 0), as it would make it difficult to see the
differences between the three plots. The error at the first iteration for all
the cases is the same, since we use a learning rate of 1 × 10−3 for the first
update (configuration used for training).
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Fig. 12. We show the results after different number of gradient updates
during testing. The majority of the improvement comes from the initial
gradient update. While the additional gradient updates further improve the
quality, their impact is relatively small.

reflectance maps and consequently rerendered images. For example,
the rough stone in the top example is flat, but other approaches
produce unnecessary details in the normal map which negatively
affects the quality of their renderings. Moreover, note that only our
approach is able to properly estimate the difference between the
stone and metal’s roughness.

5.1 Ablation Studies
Effect of 𝛼 . We evaluate the effect of test-time optimization learn-

ing rate in Figs. 9 and 10. For each learning rate, we show the error
plots (Fig. 9) and visual results (Fig. 10) of before and after 1 iteration

Table 3. Numerical evaluation of the effect of the different loss terms in our
testing objective.

Synthetic MaterialGAN Ours
LPIPS RMSE LPIPS RMSE LPIPS RMSE

Only Rendering 0.150 0.064 0.296 0.137 0.223 0.096
Only Pseudo Reflectance 0.136 0.063 0.290 0.133 0.218 0.095
Fixed Pseudo Reflectance 0.146 0.064 0.304 0.130 0.229 0.094
Add Lstyle 0.139 0.062 0.296 0.135 0.22 0.095
Standard Training 0.184 0.081 0.358 0.159 0.278 0.113
Ours 0.139 0.061 0.286 0.133 0.216 0.093
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Fig. 13. We show the visual results for the experiments corresponding to
Table. 3 on one example.

of the test-time optimization. Note that we train the network using
our strategy for each test-time learning rates. With larger learning
rates, the network produces worse initial results, but the improve-
ment after one iteration of test-time optimization becomes larger.
This is expected as with a larger learning rate, the test-time gradient
update becomes bigger, and thus the initial results should be further
away from the optimal ones. The three scenarios converge to sim-
ilar results after optimization, although with 1 × 10−3 we achieve
slightly better results numerically. Note that, as discussed, with an
extremely small test-time learning rate, our look-ahead training
becomes similar to standard training.
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Table 4. Numerical evaluation of the effect of the different loss terms in our
training objective.

Synthetic MaterialGAN Ours
LPIPS RMSE LPIPS RMSE LPIPS RMSE

no Lvgg 0.137 0.062 0.289 0.136 0.217 0.096
no Lstyle 0.216 0.061 0.329 0.131 0.258 0.093
256x256 0.134 0.060 0.294 0.136 0.217 0.094
64x64 0.139 0.062 0.288 0.133 0.22 0.096
Ours 0.139 0.061 0.286 0.133 0.216 0.093

Additional Gradient Updates. As is discussed in Sec. 4.4, after the
first update with a learning rate of 1 × 10−3 (the configuration used
during training), we further optimize our network for 6 additional
iterations with a learning rate of 2 × 10−7. To justify our choice
for number of additional iterations, we evaluate the training loss
(reflectance + rendering) after additional iterations on a validation
dataset containing 80 examples in Fig. 11 (blue dots). As seen, the
loss still decreases for 6 more iteration beyond the first update. Note
that, as shown in Fig. 12, the majority of the improvement comes
from the first update and the remaining iterations have a small
impact on the quality of the results. We further justify our choice of
learning rate for the additional iterations by showing the training
error for additional iterations with different learning rates in Fig. 11.
We achieve the minimum error of 0.3202, 0.3188, and 0.3185 with
the learning rates of 5 × 10−7, 2 × 10−7, and 1 × 10−7, respectively.
While the learning rate of 1 × 10−7 produces results with a slightly
lower error, this is obtained with 11 additional iterations (compared
to 6 in our case). Therefore, we choose 2 × 10−7 as the learning rate
for the additional gradient updates.

Effect of Testing Loss Terms. We evaluate the effect of various
losses in our testing objective in Table 3 (numerically) and Fig. 13
(visually). Our system using only the rendering loss, produces re-
sults that are worse than our method with the full loss. As shown
in Fig. 13, our results with only the rendering loss, have weaker
normals and slightly bake the highlights into the diffuse map. As
discussed in Sec. 3.2 this is because the gradient mismatch between
the rendering and ideal test losses (see Fig. 4). Interestingly, our
system using only the learned pseudo reflectance loss produces
comparable results to our method using the full loss (both rendering
and pseudo reflectance losses). This is because in this case, auxiliary
network learns to estimate pseudo ground truth reflectance maps
that directly approximate the gradients of the ideal test loss (red
arrows in Fig. 4).

We also evaluate the importance of learning our pseudo reflectance
loss, by examining a variation of our approach where the pseudo
reflectance loss is fixed. To this end, we use the pre-trained network
by Deschaintre et al. [2019] as our auxiliary network and keep its
weights fixed throughout our training. Compared to only the render-
ing loss, we observe that there is not a significant benefit in adding
the pseudo reflectance loss, if it is not learned. This is expected as
gradients provided by the fixed pseudo reflectance loss may not
properly approximate the difference in gradients between the ren-
dering and ideal losses. Finally, we experiment with adding the style
loss between the rerendered and input images to our testing loss
similar to the one in the training loss (see Lstyle in Eq. 10). As seen

Novel lightings

[G
ao

19
]

G
T

O
ur

s
[G

uo
20

]

Input

Fig. 14. We compare ourmethod against the other techniques on an example
with a strong highlight. Our method is not able to properly hallucinate the
missing details, producing results with a slight burn-in effects. However,
our results are still better than the ones produced by the other methods.

in Table 3 and Fig. 13, adding the style loss to the testing objective
does not significantly impact the quality of the results. Since adding
this loss substantially increases the computational complexity of
the training, we do not include it in our final testing objective.

Effect of Training Loss Terms. In Table 4, we show the effect of
different terms in our training objective (Eq. 9). Specifically, we
experiment with removing the VGG losses from Eq. 11, and style
loss between the rerendered and ground truth images from Eq. 10.
We also varied the resolution of the images, used to compute the 𝐿2
loss in Eq. 10. Overall, the style loss has the biggest impact on the
quality of the results, especially perceptually as measured by LPIPS.
While the other losses do not substantially affect the quality of the
results, our combination of losses produces slightly better results.

Effect of Look-Ahead Training. To demonstrate the importance of
our look-ahead training strategy, we compare our results against
the result of our network trained in a standard manner. As seen in
Table 3 and Fig. 13, the network trained in a standard way produces
significantly worse result than ours both numerically and visually.

6 LIMITATIONS AND FUTURE WORK
Single image SVBRDF estimation is a notoriously challenging prob-
lem. Although our approach is able to produce high-quality results,
it has some limitations. For example, in cases with extremely strong
highlights in textured regions, our method may not be able to prop-
erly hallucinate the missing information in the input image. Fig. 14
shows an example of such a case where the estimated reflectance
maps exhibit slight burn-in effect. Nevertheless, our results are
significantly better than the other approaches.

While we demonstrated high-quality results by training our sys-
tem with just one gradient update of the test loss, we could po-
tentially benefit from multiple gradient updates during training.
However, as discussed in Sec. 4.1, our training is memory intensive.
With more gradient updates, the training becomes even more mem-
ory intensive and additionally unstable. In the future, we plan to
investigate ways to improve the stability of the training and explore
the possibility of increasing the number of test-time iterations.
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Look-ahead training strategy is general and can have applications
beyond reflectance estimation. In general, our system can be used in
any application with differentiable test-time optimization to adapt
the network to the individual test examples. In the future, we plan to
investigate the possibility of using our training for such applications.

7 CONCLUSION
We have presented a novel optimization-based approach for estimat-
ing the SVBRDF parameters from a single image. To avoid overfitting
to the input image during optimization, we incorporate the test-time
optimization into the training process. Through the training process,
we minimize the training loss of the network after the test-time
optimization. To further improve the robustness to overfitting, we
augment the typically used rendering loss with a pseudo ground
truth reflectance loss. We do this by using an auxiliary network
to estimate pseudo ground truth reflectance parameters from the
input image. We train both the main and auxiliary networks using
our proposed training strategy. We demonstrate that our approach
produces better results than the state-of-the-art while being signifi-
cantly faster than the optimization based methods.
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