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Figure 1: We propose a novel adversarial framework to estimate SVBRDF parameters from a single image. We also introduce a simple
strategy to train our network on real image pairs in addition to synthetically generated data. From the input images, shown on the left, our
approach estimates a set of four parameters (middle). From top left to bottom right, the parameters are normal, diffiuse albedo, roughness,
and specular albedo. For the synthetic example (top row), our method produces a rendered image that closely matches the appearance of the
ground truth. At the bottom, we show the results of our network trained only on synthetic and hybrid images. Compared to our synthetically
trained network, our network trained on hybrid data is able to better capture the roughness of the scratches on the stone, producing a
scratched appearance in the highlights.

Abstract
In this paper, we propose a deep learning approach for estimating the spatially-varying BRDFs (SVBRDF) from a single image.
Most existing deep learning techniques use pixel-wise loss functions which limits the flexibility of the networks in handling
this highly unconstrained problem. Moreover, since obtaining ground truth SVBRDF parameters is difficult, most methods
typically train their networks on synthetic images and, therefore, do not effectively generalize to real examples. To avoid these
limitations, we propose an adversarial framework to handle this application. Specifically, we estimate the material properties
using an encoder-decoder convolutional neural network (CNN) and train it through a series of discriminators that distinguish
the output of the network from ground truth. To address the gap in data distribution of synthetic and real images, we train our
network on both synthetic and real examples. Specifically, we propose a strategy to train our network on pairs of real images
of the same object with different lighting. We demonstrate that our approach is able to handle a variety of cases better than the
state-of-the-art methods.

CCS Concepts
• Computing methodologies → Reflectance modeling; Image processing;

1. Introduction

The appearance of real-world objects is the result of interactions
between the light, geometries, and materials. Estimating the re-

flectance properties of a material from a single photograph, requires
unraveling these complex interactions and, thus, is challenging. In
recent years, several approaches have proposed to tackle this prob-
lem through deep learning [LDPT17; DAD*18; LSC18; YLD*18].
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Specifically, these approaches train a convolutional neural network
(CNN) to estimate the spatially-varying bidirectional reflectance
distribution function (SVBRDF) from a single flash image of a pla-
nar surface.

However, these methods have two major problems. The first is-
sue stems from the fact that all these techniques train their network
by minimizing a pixel-wise loss (e.g., L1) between the estimated
and ground truth SVBRDF parameters (and/or rendered images).
However, since the problem of single-image SVBRDF estimation is
ill-posed, there exist a large number of acceptable solutions. There-
fore, forcing the network to adhere to the ground truth reduces its
flexibility and negatively impacts the results. Second, since col-
lecting a set of real images and their corresponding ground truth
SVBRDF parameters is difficult, most of these methods [DAD*18;
DAD*19; LSC18; LXR*18] train their system on synthetic images.
Unfortunately, unlike real images, synthetic images are generated
under perfect conditions. Therefore, the distribution of synthetic
and real images are different, which limits the ability of these ap-
proaches to effectively generalize to real examples.

To address these issues, we propose an adversarial frame-
work [GPM*14] for estimating SVBRDF parameters from a sin-
gle image. Specifically, we use an encoder to extract a set of fea-
tures from the input image and use four decoders to synthesize the
SVBRDF parameters, i.e., normal, diffuse albedo, roughness, and
specular albedo. To train the network, we use a set of five discrim-
inators to evaluate the quality of the four estimated parameters as
well as the re-rendered images. We condition all the discrimina-
tors on the input image to ensure the estimated parameters and re-
rendered images follow the distribution of the input image.

Inspired by the hybrid intrinsic decomposition ap-
proaches [BKR18; LS18], we propose a mechanism to train
our system on real images without ground truth SVBRDF pa-
rameters. Our key observation is that a pair of real images of the
same object captured with different flash lights can be used for
supervising the network. We use one of the images as the input
and the other as the ground truth. Since the position of the light
in the ground truth image is unknown, we estimate it through an
auxiliary output. We use a discriminator, conditioned on the input
image, to evaluate the quality of our rendered image. The hybrid
training on both synthetic and real examples, helps our network to
produce realistic results on real examples, as shown in Fig. 1. We
show that our adversarial approach outperforms the state of the art
on both synthetic and real images. In summary, our paper makes
the following contributions:

• We propose an adversarial framework to address the ill-posed
problem of single image SVBRDF estimation (Sec. 3).
• We propose a novel strategy to train our network on real image

pairs without ground truth SVBRDF parameters (Sec. 4).
• We demonstrate that our approach outperforms state-of-the-art

methods on both synthetic and real images.

2. Related Work

The problem of estimating the reflectance properties of real-world
materials has been extensively studied in the past. A large num-
ber of approaches propose to do so using specialized hardware

and many input images [GCHS09; WMP*06; DWT*10; GAHO07;
GCP*10]. For brevity, we only focus on approaches that estimate
reflectance parameters from a small number of images in the wild.

Aittala et al. [AWL*15] propose an approach to estimate the
reflectance properties from a flash/no-flash image pairs. Zhou et
al. [ZCD*16] present a sparse basis model to capture real-world
materials from a few images of an object from different views.
Hui et al. [HSL*17] propose an optimization strategy to reconstruct
SVBRDF and normal from a set of collocated camera-flash images.

The recent approaches use a deep convolutional neural network
(CNN) to handle this application. Aittala et al. [AAL16] propose
an optimization-based neural texture transfer algorithm to estimate
the SVBRDF parameters from a single image. However, their ap-
proach can only handle stationary textures and their output does not
correspond to the input image.

Deschaintre et al. [DAD*18] propose a specifically designed net-
work with a global and a local branch to estimate reflectance given
an input image. Deschaintre et al. [DAD*19] propose several im-
provements and a flexible network architecture to be able to use ar-
bitrary number of images as the input. Deschaintre et al. [DDB20]
proposes a fine-tuning approach to improve the results on the test
example at hand. Li et al. [LSC18] provides pixel coordinates along
with the input image to the network to force the network to behave
differently at different image locations. All these approaches use
pixel-wise loss functions to train their network which limits the
flexibility of the network in handling this underconstrained prob-
lem. Moreover, they use synthetically generated images for train-
ing, which have different data distribution compared to real-world
examples.

Li et al. [LDPT17] attempt to address the gap in data distribution
of synthetic and real images by proposing a self-augmented algo-
rithm to train their network on a real images along with synthetic
images. Ye et al. [YLD*18] improve this approach by proposing
to replace the training on synthetic images with inexact supervi-
sion. The self-augmented training on real images in these methods,
however, provides a weak supervision which is insufficient for pro-
ducing high-quality results.

A couple of more recent techniques, pose the problem as energy
optimization on the test example at hand. Gao et al. [GLD*19] pro-
pose to perform the optimization in the latent space of an encoder-
decoder network. Guo et al. [GSH*20] propose to optimize the
style and noise latent vector of the StyleGAN2 network [KLA*20].
While their approaches are highly effective when multiple images
of the scene are provided as the input, they often struggle to pro-
duce high-quality results from a single input image, as the problem
is highly underconstrained. Zhao et al. [ZWX*20] propose to es-
timate the diffuse map from the input image using a simple strat-
egy and use it as ground truth. They then use the L1 loss between
the estimated and ground truth diffuse map in combination with an
adversarial loss on the rendered images to optimize the network.
However, their method heavily relies on the initially estimated dif-
fuse map. Moreover, their method is not able to handle surfaces
with non-stationary texture. Additionally, the optimization in all of
these approaches is time consuming and, thus, they are inefficient.

In contrast to all of these deep learning methods, we propose
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Figure 2: On the left, we show an overview of our system for training on synthetic images with ground truth SVBRDF parameters. We use
an encoder-decoder architecture with a shared encoder and four decoders to estimate the four parameters given an input image. We also
use a set of fully connected layers to estimate the position of input light from the features extracted by the encoder. To train this network on
synthetic images, we use a set of 4 discriminators to evaluate the quality of the estimated parameters. We also use an additional discriminator
to estimate the quality of the rendered images using the estimated parameters. On the right, we show our novel strategy to train our generators
on real image pairs without ground truth SVBRDF parameters. Given a set of two images of a real scene captured under two different lighting,
we use our generators to estimate the parameters and light position. We then use the estimated parameters from image Ia and the estimated
light position b to render an image. We use a discriminator to evaluate the quality of the rendered image with image Ib used as ground truth.

an adversarial framework with a strong supervision on real images
through a novel strategy to train the network on real image pairs.

3. Adversarial SVBRDF Estimation Framework

Given an input image Iq, captured with a flash light at position q,
our goal is to recover four SVBRDF parameters, i.e., F = {Fi}4

i=1
corresponding to normal, diffuse albedo, roughness, and specular
albedo. We propose an adversarial framework to handle this appli-
cation, as shown in Fig. 2. Specifically, we use a set of four gen-
erators, G = {Gi}4

i=1, to estimate the SVBRDF parameters from
the input image. Our generators are encoder-decoder convolutional
neural networks (CNN) with shared encoder. In our system, the en-
coder is responsible for encoding the input image into a set of com-
pact features. Each decoder then synthesizes an SVBRDF parame-
ter from this feature representation. Note that, we use skip connec-
tions between the encoder and all the decoders to be able to pre-
serve the high-frequency information. The goal of these generators
is to produce results that are indistinguishable from ground truth. In
addition to the four parameters, we also estimate the position of the
light q from the encoded features through a set of fully connected
layers Gl . This auxiliary output helps the network to understand the
scene better and also is important for training the network on real
images, as discussed in Sec. 4.

To effectively train the generators, we use a series of discrimi-
nators that are responsible for distinguishing the fake (estimated by
the generators) from the real (ground truth) results. Specifically, we
train our system by minimizing the following objective on a set of
synthetically generated images:

Esyn =
4

∑
i=1

Ei +λrEren +λlEl , (1)

where the first term Ei refers to the loss function for the four
SVBRDF parameters. We also use a rendering loss Eren to ensure
the estimated feature maps are able to produce high-quality ren-
dered images. Moreover, El ensures that our network can accurately
estimate input light position. Finally, λr and λl are the weights for

the rendering and light position loss terms and we set them to 5 and
10, respectively. Below we describe each loss in detail.

Parameter Loss We use this loss to enforce the estimated pa-
rameters F̂i = Gi(Iq) to be indistinguishable from the ground truth
parameters F . Note that, for synthetically generated data, we have
access to the ground truth parameters. We define this loss as fol-
lows:

Ei = Ladv(Gi,Di)+λ1,pLfeat(Gi,Di)+λ2,p‖Gi(Iq)−Fi‖1, (2)

Here, Ladv(Gi,Di) is the adversarial loss based on the least
squared formulation (LSGAN) [MLX*17]. Our discriminator is
conditional [IZZE17] and takes the input image in addition to the
estimated or ground truth parameters. By minimizing this loss, the
generator tries to estimate parameters that are indistinguishable
from ground truth, while the discriminator tries to effectively dis-
tinguish the estimated parameter from ground truth.

We also use a feature matching loss [WLZ*18] to stabilize the
training. This loss basically minimizes the L1 distance between the
features at different layers of the discriminator, computed using the
estimated and ground truth parameters. The last term in Eq. 2 is the
L1 loss between the estimated parameter F̂i = Gi(Iq) and ground
truth Fi. This is a common term in adversarial frameworks and en-
forces the generator to not only fool the discriminator, but also pro-
duce results that are similar to the ground truth. Finally, λ1 and λ2
are the weight of the feature matching and L1 losses, respectively.
We set λ1,p = 10 and λ2,p = 10 in our implementation.

Rendering Loss Although the parameter loss ensures that the
network produces high-quality SVBRDF parameters, the estimated
maps may not reproduce the appearance of the original material.
Therefore, we use the rendering loss Eren in Eq. 1 to ensure the es-
timated parameters can produce rendered images that are indistin-
guishable from the ground truth. Specifically, we use the estimated
feature maps F̂ along with a random light position p to render an
image through the Cook-Torrance model [CT82] R(F̂ , p) and min-
imize the following loss:
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Figure 3: We show three images illuminated with a flash light at
different positions for six objects from our real training dataset.

Eren = Ladv(G,Dren-s)+λ1,rLfeat(G,Dren-s)

+λ2,r‖R(F̂ , p)− Ip‖1 +λ3,rLvgg(R(F̂ , p), Ip),
(3)

where λ1,r, λ2,r and λ3,r are the weight of the feature, L1 and VGG
terms and we set them to 10, 50 and 10, respectively. Moreover,
Dren is a discriminator responsible for distinguishing the ground
truth images from the ones rendered using the estimated features.
Similar to the discriminators in the parameter loss, this is a con-
ditional discriminator which takes the input image in addition to
the estimated or ground truth images. Finally, Lvgg is the VGG-
based perceptual loss, as proposed by Chen and Koltun [CK17].
Note that by minimizing this loss, we ensure that all the generators
G = {Gi}4

i=1 are able to produce consistent results.

Light Position As discussed, our network also estimates the po-
sition of the input light in the Cartesian coordinate (x, y, z) through
an auxiliary output. To train the network for this task, we use last
term in Eq. 1, El , which is the L1 distance between the estimated
q̂ = Gl(Iq) and ground truth light positions, q.

4. Real Training

As discussed, because of the large gap in data distribution of syn-
thetic and real images, the network trained on only synthetic im-
ages can produce suboptimal results on real examples. To address
this problem, we propose to train our system on a combination of
real and synthetic examples. Unfortunately, obtaining ground truth
SVBRDF parameters for real images is difficult.

To overcome this limitation, we use images of the same object
with different lighting for supervising our generators. Specifically,
given a pair of images, Ia and Ib, we use Ia as the input to our
generators and Ib as ground truth. Using the estimated SVBRDF
parameters from image a, F = G(Ia), we render the object with the
light position of the other image b. The major challenge is that the
light position for the real image Ib is not known. To address this is-
sue, we use our network to estimate the light position b̂ from image
Ib. We use the following objective function to train our system on
real images:

Ereal = Ladv(G,Dren-r)+λ1,rLfeat(G,Dren-r)

+λ2,r‖R(F̂ , b̂)− Ib‖1,
(4)

where we use λ1,r = 10 and λ2,r = 50 in our implementation. By
minimizing this loss on real images in combination with the loss
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Figure 4: Comparison of our estimated parameters against the
other state-of-the-art approaches. See Fig. 5 (right) for the input
image and comparison of the rendered images.

function in Eq. 1 on synthetic images, we ensure the network is
able to produce high-quality results on real examples.

In summary, we use the following loss function to train our sys-
tem on both synthetic and real images:

E = Esyn +λEreal, (5)

where Esyn and Ereal are defined in Eqs. 1 and 4, respectively, and
λr is set to 5 in our implementation.

Note that, Li et al. [LDPT17] and Ye et al. [YLD*18] have also
proposed a strategy to train their networks on real images with-
out ground truth SVBRDF parameters. Specifically, they propose
to first estimate a set of parameters from the input image and use it
to render an image. They then use the rendered image to estimate
another set of parameters. They train the network by minimizing
the L1 loss between these two sets of parameters. However, their
supervision is weak as there are many solutions that can minimize
the loss. In contrast, by using a pair of images, our approach pro-
vides a stronger supervision.

5. Implementation

In this section, we discuss the details required for implementing our
approach. We begin by explaining the architecture of our networks.
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Figure 5: Comparison of the rendered images with three different lighting using the estimated parameters from our method against the other
approaches on three synthetic input images. Our method produces sharper images and reproduces the specular highlights better than the
other techniques. Comparison of the estimated parameters for the image on the right is provided in Fig. 4.

5.1. Architecture

Our architecture for the SVBRDF parameter generators is similar
to the one proposed by Deschaintre et al. [DAD*18] with two dif-
ferences. First, we only use their local branch which is a simple
encoder-decoder network with skip connections. Second, instead of
one decoder, we use four decoders with 3, 3, 1, and 3 output chan-
nels to estimate the normal, diffuse albedo, roughness and specular
albedo. To estimate the position of light sources, we apply a set of
fully connected layers to the features extracted using the encoder.
Specifically, for a 256×256 image, the features at the end of the en-
coder are of size 1×1×512. We pass these 512 features through 6
fully connected layers of size 256, 128, 64, 32, 16, 3. All the layers
are followed by the leaky ReLU activation function except the last
one which is linear. Finally, we use the discriminator architecture
of Wang et al. [WLZ*18] for all of the discriminators.

5.2. Dataset

To train our system on synthetic images, we use the dataset of De-
schaintre et al. [DAD*18]. From a set of SVBRDF parameters, we
use the Cook-Torrance model [CT82] to synthesize the input im-
age as well as the ground truth rendered image used in Eq. 3. For
all the examples, we use orthographic view and randomly select
the position of the point light based on cosine-weighted distribu-

GTOurs GTOurs

Figure 6: We demonstrate the accuracy of our estimated light po-
sitions. The images on the left are obtained by re-rendering the
ground truth images (right) using our estimated light positions and
ground truth reflectance parameters.

tion on the upper hemisphere. We randomly select the distance of
the light source to the center of the surface using exp(d), where d
follows the normal distribution N (µ = 1.0,σ = 0.75). We clamp
the rendered image to one and gamma correct the result. Finally,
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Figure 7: Comparison of the rendered images with three different lighting using the estimated parameters from our method against the other
approaches on three real input images. Our rendered images are overall sharper and have more realistic specular highlights than the other
methods.

we normalize the rendered images to [-1, 1] when passing them as
the input to the network.

For the real images, we use a tripod mounted camera and take a
video of a planar surface under a moving flash light. We collect a set
of roughly 500 videos of a variety of different surfaces in this man-
ner. We then select between one to three crops of each video con-
taining reasonable lighting, producing around 1,000 videos. From
each video, we take a set of 5 to 10 frames with sufficiently differ-
ent light positions and resize them to 256× 256. During training,
we randomly select a pair of images from each scene to be used
based on Eq. 4. A few real image pairs from our training set are
shown in Fig. 3.

5.3. Training

We perform the training in three different stages. We start the train-
ing process on synthetic images and exclude the rendering discrim-
inator in this stage, i.e., optimizing only Eq. 1 without the Eren
term. We perform this training for 250,000 iterations and then in-
corporate the rendering discriminator and continue the training for
another 200,000 iterations. After this stage, we combine the syn-
thetic with real examples and train our system for 100,000 itera-
tions. We use a batch size of 4 during training on synthetic data.
For hybrid training, we use a batch size of 5 consisting of 4 syn-
thetic and one real data. We implement our approach in PyTorch
and use Adam [KB14] with a learning rate of 2× 10−5 and β1 of
0.5; all other parameters are kept to the default. The training takes
around 3 days on a single GeoForce RTX 2080 Ti GPU.

6. Results

We evaluate our approach on a set of synthetic and real images by
comparing against the state-of-the-art techniques. Specifically, we
compare against the approaches by Deschaintre et al. [DAD*18;
DAD*19] and Gao et al. [GLD*19]. Note that, the two approaches
by Deschaintre et al. are trained on synthetic images. On the
other hand, the approach by Gao et al. [GLD*19] estimate the re-
flectance parameters of a test image through optimization. We ini-
tialize their optimization system using the results of Deschaintre et
al.’s approach [DAD*19]. Moreover, the method of Deschaintre et
al. [DAD*19] and Gao et al. [GLD*19] work on arbitrary number
of input images, but we generate their results using a single image
to compare against our single-image method. Finally, we use in-
put images with centered light positions to ensure fair comparisons
against the approaches by Deschaintre et al. [DAD*18] and Gao et
al. [GLD*19]. We use the source code provided by the authors for
all the comparisons. Here, we only show a few results, but in the
supplementary materials, we compare our approach against other
methods on a large number of images.

6.1. Comparison Against the Other Approaches

Synthetic Images We begin by visually comparing our estimated
parameters against the other approaches in Fig. 4. Compared to the
other methods, our approach is able to produce reflectance parame-
ters that are closer to the ground truth. Note that, while Deschaintre
et al.’s approach [DAD*18] properly separates the lighting from the
diffuse component, it produces a blurry map which negatively im-
pacts the quality of renderings (see Fig. 5). We further compare our
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Figure 8: Comparison of the rendered images produced by our method against the other approaches on three real input images with ground
truth. The middle example is from Deschaintre et al. [DAD*19], while the rest are from Guo et al. [GSH*20]. Our rendered images are
overall sharper, have fewer artifacts, and are closer to the ground truth images.

rendered images against other methods on three synthetic images
in Fig. 5. Overall, the other approaches are not able to properly
estimate the color, texture details, and the specular highlights. Ad-
ditionally, since the optimization system by Gao et al. using a sin-
gle image is highly underconstrained, their method often introduces
unnecessary details to the normal maps. In contrast, our method
produces results with realistic appearance compared to the ground
truth. Note that, for the scene on the right, only our approach is able
to properly estimate the orange specular highlights as indicated by
the arrows. Moreover, it is worth noting that Gao et al.’s method is
slow as their optimization is expensive.

Next, we quantitatively compare our method against the other
approaches on a set of 132 synthetic images in Table 1. We use
root mean squared error (RMSE) to evaluate the quality of the re-
flectance parameters, while the rendered images are evaluated in
terms of both RMSE and learned perceptual image patch similarity
(LPIPS) [ZIE*18]. Moreover, we divide the table into two sections.
At the top, we compare our network trained on synthetic (Ourssyn)
and hybrid (Ourshyb) data against the two approaches by Deschain-
tre et al. as well as Gao et al.’s method without refinement. As
seen, our synthetic and hybrid networks produce comparable re-
sults which demonstrates that real training does not negatively im-
pact the quality of the results on this synthetic test set. Moreover,

Table 1: Numerical comparison on a set of 132 synthetic test im-
ages. N, D, R and S refer to normal, diffuse albedo, roughness,
specular albedo. Ren refer to renderings for which the numerical
values are obtained on a set of 20 images of each scene under dif-
ferent lights. Note that we evaluate the quality of rendering both in
terms of RMSE and LPIPS, a perceptual metric.

RMSE LPIPS

N D R S Ren Ren

Des18 0.065 0.058 0.175 0.129 0.086 0.278

Des19 0.092 0.062 0.129 0.066 0.100 0.223

Gao19 0.068 0.065 0.123 0.065 0.072 0.274

Ourssyn 0.054 0.062 0.100 0.065 0.078 0.193

Ourshyb 0.056 0.062 0.104 0.066 0.074 0.187

Gao19+ 0.069 0.065 0.123 0.070 0.068 0.177

Ourssyn+ 0.053 0.063 0.115 0.079 0.058 0.153
Ourshyb+ 0.054 0.063 0.124 0.090 0.059 0.155

our method is able to produce better or comparable results com-
pared to the other approaches in terms of RMSE. However, because
of using adversarial loss, our renderings have significantly better
perceptual quality in terms of the LPIPS metric. Note that, while the
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Table 2: Numerical comparison on a set of 36 real test scenes from
Guo et al. [GSH*20]. For each scene, one image is used as the
input and the remaining 8 images are used as ground truth. We
evaluate the quality of renderings in terms of RMSE and LPIPS.

LPIPS RMSE

Des18 0.349 0.131
Des19 0.335 0.168

Gao19 0.419 0.132

Ourssyn 0.306 0.148

Ourshyb 0.279 0.138

Gao19+ 0.307 0.133

Ourssyn+ 0.275 0.121

Ourshyb+ 0.256 0.119

approach by Deschaintre et al. [DAD*18] produces slightly better
diffuse maps, they are usually blurry and lack fine details.

At the bottom of Table 1, we show the results of Gao et al.’s
method after refinement. Here, we also use a similar refinement
strategy for both versions of our approach where we further refine
the reflectance parameters by minimizing the distance between ren-
dered and input images. The main difference with respect to Gao et
al.’s refinement is that during the initial iterations we only optimize
the roughness and specular components using the average gradient
across all the pixels, before performing per-pixel optimization for
all the parameters. Overall, our method produces better results than
Gao et al.’s approach. In particular, our renderings are significantly
better than theirs in terms of the perceptual LPIPS metric.

Finally, we demonstrate the accuracy of our estimated light posi-
tions in Fig. 6. Here, we use our network to estimate the position of
the light from an input image. We then use our estimated light posi-
tion along with the ground truth feature maps to rerender the input
image. The rerendered images (Ours) and the ground truth input
images (GT) are shown in this figure. As seen, our rendered images
closely match the ground truth, which demonstrates the ability of
our network to accurately estimate the light position.

Real Images Figure 7 compares our rendering results against
the other methods on three real images. We capture these scenes
with a different camera from the one used to capture our real
training set. Moreover, we provide our estimated light position to
Gao et al.’s method approach, since they require it for the opti-
mization. Approaches by Deschaintre et al. [DAD*19] and Gao et
al. [GLD*19] produce results with strong highlights for the rub-
ber material shown on the left. On the other hand, Deschaintre et
al. [DAD*18] is not able to properly represent the texture details.
Our method, however, reproduces the appearance of the material
more realistically.

For the middle examples, Deschaintre et al. [DAD*18] produces
a mostly diffuse appearance, while the other two approaches gener-
ate renderings with strong specular highlights. On the other hand,
our approach is able to properly estimate the texture details and
specular highlights. Finally, for the example on the right, Deschain-
tre et al. [DAD*18] and Gao et al. [GLD*19] generate results with
severe artifacts. While Deschaintre et al. [DAD*19] avoid intro-
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Figure 9: Evaluating the effect of training on real images. Our net-
work trained on both real and synthetic images can reconstruct the
specular highlights and the diffuse map better than our network
trained on only synthetic images.

ducing artifacts, their results are over-smooth. Our method is able
to produce renderings that better match the input image. We show
the estimated reflectance parameters for all these images in the sup-
plementary material.

Furthermore, we compare our rendering results against other
methods on three real images with ground truth in Fig. 8. Over-
all, our approach is able to produce sharper results with specular
highlights that match the ground truth better than the other meth-
ods. Moreover, we quantitatively compare our results against other
approaches on a set of 36 real scenes from Guo et al. [GSH*20] in
Table 2. Our method produces results that are better or compara-
ble in terms of RMSE, but are significantly better than the other
techniques in terms of LPIPS. Additionally, our hybrid network
produces significantly better results than the synthetic one, demon-
strating the effectiveness of training on real images.
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Figure 10: Comparison of our network trained with only L1 loss
against our full adversarial loss.
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Figure 11: Evaluating the effect of the rendering loss.
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Figure 12: Evaluating the robustness of our approach to the posi-
tion of input light source. Top two diagrams show the RMSE of the
estimated parameters (left) and LPIPS/RSME of renderings (right)
for inputs with different light positions. Bottom rows show render-
ing results using estimated SVBRDF parameters from input images
lit by different light positions.

6.2. Ablation Studies

Here, we analyze the effect different components of our system. For
all the ablation experiments, we follow the same training strategy
discussed in Sec. 5.3.

Effect of the Hybrid Training Figure 9 compares our full ap-
proach (hybrid training) against our method trained only on syn-
thetic images on three real images. For the example on the top,
our hybrid network is better at reproducing the appearance of the
specular highlights. In particular, it is able to properly capture the
roughness of the scrateches on the tiles, producing detailed high-
lights. In the middle example, our synthetic network has difficulty
estimating the diffuse map in the regions where the input image
has highlights. Our hybrid network, on the other hand, produces
results without noticeable artifacts. Finally, in the bottom example,
the metal part between the letters is rusty and non-reflective. Our
hybrid network correctly estimates the roughness for this area and
produces the appearance of rusted metal.

Effect of Adversarial Loss To evaluate the effect of the adver-
sarial loss, we compare the results of our generators using only
the L1 loss with our approach trained with the full loss in Fig. 10.
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Figure 13: The failure cases of our approach. On the top, we show
a case where our approach produces fine details and structures that
do not exist in the ground truth. On the bottom, our approach is
not able to properly reconstruct all the details because of lack of
sufficient information in the single input image

Our approach trained with only L1 loss fails to capture details, spe-
cially in the normal map. On the other hand, our approach with the
full loss function is able to produce sharper results with more de-
tails, demonstrating the benefit of the adversarial loss. Moreover,
we quantitatively evaluate the effect of adversarial loss using ren-
derings of 132 synthetic scenes. Our system trained with L1 loss
produces LPIPS/RMSE value of 0.236/0.073, while our system
trained with the full adversarial loss produces LPIPS/RMSE value
of 0.193/0.078. Although training with L1 produces lower RMSE
values, the results are generally blurry and have lower perceptual
quality, as indicated by the LPIPS values.

Effect of Rendering Loss To analyze the effect of the rendering
loss Eren, we compare the results of our network trained with and
without this loss in Fig. 11. Note that, we train the networks in
both cases only on synthetic images to properly evaluate the effect
of Eren term in Eq. 1. As seen, while using the network trained
with four discriminators is able to produce sharp images with fine
details, the renderings are typically not consistent with the ground
truth. Using the rendering discriminator, we are able to generate
results that better match the ground truth renderings.

Effect of Light Position We also analyze the robustness of our
approach to the position of light source in the input image. To do so,
we change the angle of light source and compute the LPIPS/RMSE
value of renderings on 132 synthetic scenes in Fig. 12. As seen,
numerically our system is fairly robust to deviation from the center
up to 35 degrees. This is also confirmed by the visual results where
our approach consistently reproduces the highlights for input im-
ages with light angles up to 35 degrees.

6.3. Limitations and Future Work

In some cases with strong specular highlights, our approach fails
to properly remove the highlights from the estimated parameters.
These often show up in the rendered images in form of highlight
removal artifacts. However, this is also an issue with all the other
approaches. In fact, our adversarial framework is able to better re-
duce these artifacts by inpainting the lost content (see supplemen-
tary material).

Furthermore, since we use an adversarial loss function to train
the network, our method in some cases produce fine details and
structures that do not exist in the ground truth image, as shown
in Fig. 13 (top). However, our results are still visually plausible.
Finally, in some cases, we are not able to properly capture all the
details of the reflectance parameters across the whole image, as
shown in Fig. 13 (bottom). In this case, our method is not able to
properly estimate the map in the regions away from the highlights,
since the single input image does not provide useful information in
these areas. In the future, it would be interesting to resolve this issue
by extending our approach to use multiple images as the input.

7. Conclusion

We have presented an adversarial framework to estimate the four
spatially-varying BRDF parameters from a single input photo-
graph. We do so using an encoder-decoder network with shared
encoder and four decoders and train our network using a set of dis-
criminators to distinguish the estimated results from ground truth.
In addition to training on synthetic images, we propose a novel
strategy to provide a strong supervision for our network on real im-
age pairs. We demonstrate that our approach produces better results
on both synthetic and real images compared to the state-of-the-art
methods.
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