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Fig. 1. The setup and I/O of our system. (a) We attach an additional standard camera to a light field camera using a tripod screw, so they can be easily carried
together. (b) The inputs consist of a standard 30 fps video and a 3 fps light field sequence. (c) Our system then generates a 30 fps light field video, which can be
used for a number of applications such as refocusing and changing viewpoints as the video plays.

Light field cameras have many advantages over traditional cameras, as they
allow the user to change various camera settings after capture. However,
capturing light fields requires a huge bandwidth to record the data: a modern
light field camera can only take three images per second. This prevents cur-
rent consumer light field cameras from capturing light field videos. Temporal
interpolation at such extreme scale (10x, from 3 fps to 30 fps) is infeasible
as too much information will be entirely missing between adjacent frames.
Instead, we develop a hybrid imaging system, adding another standard video
camera to capture the temporal information. Given a 3 fps light field se-
quence and a standard 30 fps 2D video, our system can then generate a full
light field video at 30 fps. We adopt a learning-based approach, which can be
decomposed into two steps: spatio-temporal flow estimation and appearance
estimation. The flow estimation propagates the angular information from
the light field sequence to the 2D video, so we can warp input images to the
target view. The appearance estimation then combines these warped images
to output the final pixels. The whole process is trained end-to-end using
convolutional neural networks. Experimental results demonstrate that our
algorithm outperforms current video interpolation methods, enabling con-
sumer light field videography, and making applications such as refocusing
and parallax view generation achievable on videos for the first time.
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1 INTRODUCTION
Light field cameras have recently become available in the consumer
market (e.g. Lytro), making applications such as post-shot photo-
graph refocusing and viewpoint parallax possible. The great promise
of the light-field camera is that a lot of what used to be a pre-process
(focus, aperture, etc) can now be a post-process – you shoot first
and then decide what you want later. The biggest advantage for this
would be for shooting movies, as the director can experiment with
changing focus within different parts of the video after it has been
captured. It can also save the effort of focus pulling, i.e. manually
shifting the focus plane to remain focused on a moving object within
a shot.
However, recording scenes in both spatial and angular domains

takes a significant amount of data, which limits the maximum data
transfer (write) speed, given a limited bandwidth. For example, the
raw output image of the Lytro ILLUM camera is 5300 × 7600 pixels,
which is nearly 20 times the resolution of 1080p videos. Assuming
we are given the same bandwidth as a 1080p 60 fps video, we can
only record light field images at 3 fps, which is exactly the rate of the
continuous shootingmode for Lytro ILLUM. Although somemodern
film cameras such as the Red camera (2017) can shoot at higher frame
rate, they are usually very expensive, and cannot easily fit the budget
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for “YouTube filmmakers” – artists making high-quality but low-
budget work using consumer-grade equipment and non-traditional
distribution channels. For this new democratized cinematography,
a $30-50k Red camera is usually out of reach. This makes recording
light field videos of normal activities impractical for these artists.
One possible solution is to use a cheaper consumer camera, and

perform video interpolation. That is, given the temporal sampling
of the scene, interpolate between the input frames to recover the
missing frames. However, it is extremely hard to interpolate such a
low frame-rate video. In fact, some motion may be entirely missing
between neighboring frames, making interpolation impossible, as
shown in Fig. 2.

In this paper, we approach this problem in a fundamentally differ-
ent way. We develop a hybrid imaging system, combining the Lytro
ILLUM camera with a video camera capable of capturing a standard
30 fps video (Fig. 1a). The inputs to our system thus consist of a
low frame-rate light field video and a standard 2D video (Fig. 1b).1
The 3 fps light field video captures the angular information, while
the 30 fps video gathers the temporal information. Our goal is to
output a full light field video with all angular views at the standard
video rate (Fig. 1c left). This makes light field image applications
achievable on videos for the first time using consumer cameras,
such as digital refocusing and parallax view generation as the video
is played (Fig. 1c right).
Given the sparse light field sequence and the 2D video, we pro-

pose a learning-based approach to combine these two sources of
information into one. We achieve this by propagating the angular
information captured at the light field frames to the 2D-only frames.
For each target view in the missing light field frames, we solve a
view synthesis problem. We break down the synthesis process into
two steps: a spatio-temporal flow estimation step and an appearance
estimation step (Fig. 3). The first step estimates the flows between
both the 2D frames and the light field frames, and warps them to the
target view accordingly (Sec. 3.1, Fig. 4a). The second step then com-
bines these warped images to output the final pixel color (Sec. 3.2,
Fig. 4b).

For both estimation steps, we adopt the recently popular convolu-
tional neural network (CNN) (LeCun et al. 1998). An advantage of us-
ing CNN methods compared to traditional (i.e. non-learning) meth-
ods is that they can provide end-to-end training, so the generated
results will usually be better than doing each step independently.
Another advantage is that CNNs are much faster than traditional
methods. For example, our flow estimation network is two orders of
magnitude faster than the state-of-the-art optical flow method (Re-
vaud et al. 2015). Overall, our method takes less than one second
to generate a novel view image, and after that, 0.06 seconds for an
additional view. Also note that normally, training flow networks
would require the ground truth flows, which are hard to obtain.
However, we show that we are able to train them by minimizing
errors when the outputs are used to warp images, without utilizing
ground truth (Fig. 8).

1We downsample the video resolution to match the light field sub-aperture resolution.
Therefore, the extra bandwidth required for recording the video is actually minimal
(about 5% more pixels), and in the future, the two cameras may be merged into one
with some hardware modification.

… … … … 

Real sequence 

Direct interpolation 

… … 
Start frame End frame 

Fig. 2. An example of temporal aliasing. Since the light field video is very
low fps, directly interpolating between the sampled frames may lead to
inaccurate results. In this example, the start frame and the end frame are
the same, so all interpolated results are the same.

To better visualize our results, we also develop an interactive
user interface to play the resulting light field video, which allows
the user to focus to any point as the video plays (Fig. 14), track a
given object and remain focused on it throughout the video (Fig. 15),
change the (effective) aperture size to create different depths of field
(Fig. 16), and vary the viewpoints to provide a more lively viewing
experience. Examples of using our interface to achieve these effects
can be found in the accompanying video.

In summary, our contributions are:
1)We propose the first algorithm to generate a 30 fps light field

video using consumer cameras. Experimental results demonstrate
that this cannot be achieved by current state-of-the-art video inter-
polation and depth from video methods (Figs. 11, 12 and 13).

2) We develop a CNN architecture to combine light field and
2D videos (Figs. 3 and 4). In particular, we train a disparity CNN
(Fig. 5a) and an optical flow CNN (Fig. 5b) without utilizing ground
truth, and cascade them to combine the angular and the temporal
information.

2 RELATED WORK
Light Field Video. The origin of light field videos goes back at least

to (Wilburn et al. 2002). Nowadays, there are a few devices which
can capture a light field video. For example, some high-end models
for RayTrix (2017), and the recent Lytro Cinema (2017). However,
these devices either have lower spatial or angular resolutions, or
are very expensive, and are mainly targeted for research and not
for ordinary users. On the other hand, the consumer friendly Lytro
ILLUM camera has an affordable price, but is not able to shoot light
field videos. In this work, we combine it with an additional 2D
camera to interpolate a light field video.

Video Interpolation. Many researchers have tried to upsample the
frame rate of 2D videos by interpolating frames in the temporal do-
main (Baker et al. 2011; Liao et al. 2014; Mahajan et al. 2009; Meyer
et al. 2015). However, most existing approaches aim only for slow
motion videos, taking a standard 30 fps video as input and trying
to generate a very high fps video. This approach, however, is in
general not enough to deal with very low fps videos. For a 30 fps
video, the motion between neighboring frames is usually very small,
which makes interpolation much easier. The same assumption does
not hold for a 3 fps video; in fact, some motion may be entirely
missing between neighboring frames, making interpolation entirely
impossible, as shown in Fig. 2. Moreover, a standard 2D video in-
terpolation method will not produce a consistent light field video
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for applications like refocusing/viewpoint change, even if applied
separately to each view. We show the advantage of our approach
over existing 2D interpolation techniques in Sec. 5.

Light Field Super-resolution. Since a light field has a limited res-
olution, many methods have been proposed to increase its spatial
or angular resolution (Bishop et al. 2009; Cho et al. 2013; Mitra
and Veeraraghavan 2012). Some require the input light fields to
follow a specific format to reconstruct images at novel views (Levin
and Durand 2010; Marwah et al. 2013; Shi et al. 2014). Wanner and
Goldluecke (2014) propose an optimization approach to synthesize
new angular views. Yoon et al. (2015) apply convolutional neural
networks (CNN) to perform spatial and angular super-resolution.
Zhang et al. (2015) propose a phase-based approach to reconstruct
light fields using a micro-baseline stereo pair. To synthesize new
views, Kalantari et al. (2016) break the problem into depth esti-
mation and appearance estimation and train two sequential neural
networks. Wu et al. (2017) apply a CNN-based angular detail restora-
tion on epipolar images to recover missing views. However, none
of these methods are designed for temporal upsampling, which is a
completely different problem.

Hybrid Imaging System. Combining cameras of two different
types to complement each other has also been proposed before.
However, they are either used to increase the spatial resolution (Bhat
et al. 2007; Boominathan et al. 2014; Sawhney et al. 2001; Wang et al.
2016b,a), deblur the image (Ben-Ezra and Nayar 2003), or create
hyperspectral images (Cao et al. 2011; Kawakami et al. 2011). None
of these methods has tried to increase the temporal resolution.

View Synthesis. To synthesize novel views from a set of given
images, many methods first estimate the depth and warp the in-
put images to the target view using the obtained depth (Chaurasia
et al. 2013; Eisemann et al. 2008; Goesele et al. 2010). The final syn-
thesized image is then a combination of these warped images. To
generate a light field video, we also adopt a similar approach. In-
spired by (Flynn et al. 2016; Kalantari et al. 2016; Zhou et al. 2016),
we use a learning-based approach to perform the geometry and
appearance estimations. However, instead of synthesizing images
at new viewpoints, we perform image synthesis in the temporal
domain.

2D to 3D Conversion. Given a 2D video, there are many works
that try to generate the corresponding depth sequence. Konrad
et al. (2012) propose a learning-based approach using millions of
RGB+depth image pairs, and adopt the k nearest-neighbor (kNN)
algorithm to obtain depths for a 2D query video. They then fur-
ther extend it to predict pixel-wise depth maps by learning a point
mapping function from local image/video attributes (Konrad et al.
2013). Karsch et al. (2014) collect an RGBD dataset, and adopt non-
parametric depth sampling to generate depths from a monoscopic
video based on SIFT flows. However, their method requires the
entire training dataset to be available at runtime, which requires
significant memory, and is very time consuming. Besides, the above
methods only generate depths, while our method can produce a
light field sequence.

3 ALGORITHM
Given a standard (30 fps) 2D video and a very low speed light field
video (e.g. 3 fps), our goal is to generate a full light field video. Since
some of the 2D frames have corresponding light fields (denoted as
key frames) while others do not, our main idea is to propagate this
multi-view information from these keyframes to the in-between
frames. As illustrated in Fig. 3, the overall architecture of our system
contains two main parts: spatio-temporal flow estimation CNN
and appearance estimation CNN. The spatio-temporal CNN warps
the input images from the 2D video and the light field images to
the target angular view; the appearance CNN then combines all
the warped images to generate a final image. We chose to train
neural networks over traditional methods for two reasons. First,
using neural networks enables end-to-end training, which typically
yields better performance than manually designing each component
independently. Second, neural networks usually run 10 ∼ 100 times
faster than traditional methods.
Note that the light field camera and the video camera will have

slightly different viewpoints. For simplicity, we first assume the
central view of the light field camera coincides with the 2D video
viewpoint. In practice we estimate another flow between the two
images to calibrate for that, with more details given in Sec. 4. We
also discuss how to handle different color responses between the
two cameras in Sec. 4. To make things simpler, we downsample
the DSLR resolution to match the Lytro resolution, since spatial
super-resolution is not the focus of this paper.
We denote the 2D video frames by I t and light field sequences

by Lt , where t = 1,2,3... is the frame index. Let L0 and LT be two
neighboring keyframes. Our problem can then be formulated as:
given (L0,LT ) and {I0, I1, ..., IT−1, IT }, estimate {L1, ...,LT−1}. We
only compute intermediate frames between two adjacent keyframes
(L0,LT ), and later concatenate all the interpolated results to produce
the full video.

3.1 Spatio-temporal flow estimation network
The spatio-temporal flow network can be divided into three com-
ponents: disparity estimation, temporal flow estimation, and warp
flow estimation, as shown in Fig. 4. The first component estimates
the disparities at the key frames. The second component (temporal
flow estimation) then computes how we can propagate informa-
tion between the 2D frames. Finally, the third component (warp
flow estimation) utilizes the results of the previous two compo-
nents and propagates disparities to all the 2D frames. We first train
each component independently and then end-to-end, along with
the appearance estimation network. The inputs and outputs of each
component are shown in Fig. 5, and described below. The actual
network architectures will be discussed in Sec. 4.

Disparity estimation. Given the light field views of one frame
(denoted as L0 or LT ), we first try to estimate the disparity of this
frame at the central view. Ourmethod is similar to the disparity CNN
proposed by Kalantari et al. (2016), which is inspired by (Flynn et al.
2016). We briefly introduce the idea here. For each disparity level,
we first shift all the views by the corresponding amounts. Ideally, if
we shift them by the correct amount, all views will overlap and their
mean should be a sharp (in focus) image and their variance should
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Fig. 3. Overview of our system. Our system consists of two main parts: the spatio-temporal flow CNN and the appearance CNN. The first CNN warps the
input video frames and light field images to the target angular view. The second CNN then combines all these warped views to generate a final image. Note
that only one view in the light fields is shown here for simplicity. For now, we assume the central view matches the 2D video view for easier explanation.
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Fig. 4. (a) Overall architecture for our spatio-temporal flow estimation network. The system contains three components: disparity estimation, temporal flow
estimation, and warp flow estimation. The first (left) part shows the first two components. First, we estimate the disparity at the key frames, as well as the
temporal flow between the key frame and the current frame in the 2D video. Afterwards, the estimated flows are concatenated to generate five flows that warp
the five input images to the target view. These five images are the two light field angular views at the previous and next keyframes, the two corresponding 2D
video frames, and the current 2D frame. (b) Finally, these warped images are put into the appearance estimation network to output the final image.

be zero. Therefore, the means and variances of the shifted views are
extracted to form a h ×w × 2 feature map, where (h,w ) is the image
size. This process is repeated for n different disparity levels, and the
features are all concatenated together to form a h ×w × 2n feature
map. This feature is then input to a 4-layer fully convolutional
network to generate the depth map.

The only difference of our network from (Kalantari et al. 2016) is
that we have all 64 light field views instead of just 4 corner views,2
so we shift all the 64 views accordingly, and take the mean and
variance of the shifted views. These shifted images are then put into
a CNN to output the disparity d (x ,y) at the key frame. In short, the
inputs to this network are the 64 views of key frame L0, and the
output is the disparity d0 (Fig. 5a). The same process is performed
for the other key frame LT to obtain dT .

To train this network, the usual way is to minimize the difference
between the output disparity and the ground truth. However, ground
truth depths are hard to obtain. Instead, we try to minimize the loss
when the output depth is used to warp other views to the central

2The angular resolution of the Lytro ILLUM is 14 × 14. However, we only use the
central 8 × 8 views as the views on the border are dark.

view, which is similar to (Kalantari et al. 2016). In particular, if we
assume a Lambertian surface, the relationship between the central
view L(x ,y,0,0) and the other views L(x ,y,u,v ) can be modeled as

L0 (x ,y,0,0) = L0 (x + u · d0 (x ,y),y +v · d0 (x ,y),u,v )

= L0 (x + u · d0 (x),u)
(1)

where x = (x ,y) is the spatial coordinate and u = (u,v ) is the
angular coordinate. The loss we try to minimize is then the recon-
struction difference (measured by Euclidean distance) between the
two sides of (1), summed over all viewpoints,

Ed (x) =
∑
u
| |L0 (x,0) − L0 (x + u · d0 (x),u) | |2 (2)

Note that by computing the loss function this way, althoughwe do
not have the ground truth depth maps, we are still able to optimize
for a functional depth map for the purpose of image synthesis.
Also, although we can use methods other than CNN to compute
the disparities directly as well, we found that images synthesized
by these methods often produce visible artifacts, especially around
occlusions. This is because they are not specifically designed for
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Fig. 5. The I/O of each component in our networks. (a) Given the light field
at one keyframe 0, the disparity CNN estimates the central view disparity. (b)
Given two frames 0 and t in the 2D video, the temporal flow CNN generates
the optical flow between them. (c) Given the estimated disparities and
flows, the warp flow CNN computes the disparity at target view Ltu (upper
half). This disparity is then concatenated with the other disparities/flows
to generate five flows, which are used to warp the five images to the target
view (lower half). (d) Finally, the warped images along with disparities/flows
are stacked together and fed into the appearance CNN to output the final
image.

(a) Left image (I 0) 

(b) Right image (I 
T) 

(c) Perfect depth (d 0) (e) Imperfect depth (d*
0) 

(d) Synthesized L using (c) (f) Synthesized L using (e) 

Fig. 6. An example illustrating that perfect depths are not necessarily good
for synthesizing views. (a)(b) Tomake things simple, we just consider a stereo
pair input. (c) A perfect depth for viewpoint 0. Brighter colors represent
nearer depths. (d) Using d0 to synthesize I 0 from IT . Note that although
the depth is correct, it tries to borrow pixels that are already occluded, and
get pixels from the occluder instead. (e) An imperfect depth, which will
actually synthesize a better view as shown in (f).

view synthesis. A schematic example is shown in Fig. 6. Note that
in this case, a “perfect” depth is actually not able to reconstruct the
view around the occlusion boundaries. Instead, a fuzzy depth map
will generate a more visually pleasing result. The advantage of using
learning-based methods is that although we do not explicitly model
occlusions, the network will still try to find some way to handle
them.

Temporal flow estimation. We now try to estimate the optical flow
between the key frames and the in-between frames in the 2D video.
We do this by estimating flows between every pair of neighboring
frames in the video, and cascade the flows to get the flow between
the key frame and the other frames. Without loss of generality, we
consider the case where we estimate the direct flows between two

Temporal flow 
Sub-CNN 

flayer2 

Temporal flow 
Sub-CNN 

flayer1 

Temporal flow 
Sub-CNN flayer0 

upsample 

upsample 

warp 

warp 

Layer 2 

Layer 1 

Layer 0 

(a) Hierarchical architecture of our temporal flow network.
6 128 64 32 2

7

7

7

7

7

77

7

(b) Architecture of the sub-CNNs in (a).

Fig. 7. Our temporal flow CNN. (a) We adopt a hierarchical approach. For
the top (coarsest) layer, the flow estimation works normally. For subsequent
layers, we first warp the input using the flow estimated from the previous
layer, then perform flow estimation on the warped images. This process is
repeated until the flow in the finest level is estimated. (b) Our sub-CNN
contains 4 conv layers. Each convolution except for the last one is followed
by a rectified linear unit (ReLU).

frames I0 and I t below. The inputs to this network are these two
frames. The output is the flow f 0→t that warps I0 to I t (Fig. 5b).
Unlike the disparity estimation, this process is much harder for

two reasons. First, disparity is a 1D problem, while the general flow
is 2D. Second, the pixel displacement in a temporal flow is usually
much larger than the case in light fields, so the search range needs to
be much larger as well. Based on these conditions, if we use the same
architecture as in the previous disparity network, the feature map
we extract will have an intractable size. For example, in (Kalantari
et al. 2016) each shift amount differs by about 0.4 pixels. If we want
to retain the same precision for flows up to 100 pixels, our feature
map will be (200/0.4)2 × 2 = 500,000 dimensional, which is clearly
impractical.

To resolve this, we adopt a hierarchical approach instead (Fig. 7).
For the two input frames I0 and I t , we build a Gaussian pyramid for
each of them. Optical flow is then estimated at the coarsest level,
and propagated to the finer level below. This process is repeated
until we reach the finest level to get the final flow.
Similar to the case of disparity estimation, since ground truth

flows are not available, we try to optimize by using the output flow
to warp images. More specifically, the relationship between I0 and
I t can be written as

I t (x) = I0 (x + f 0→t (x)) (3)
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The loss we try to minimize is the Euclidean distance between the
two sides of (3),

Ef (x) = | |I
t (x) − I0 (x + f 0→t (x)) | |2 (4)

Note that this is in contrast to other optical flow CNN training
procedures such as FlowNet, which requires the ground truth flows.

Warp flow estimation. This step warps the five images shown in
Fig. 3 to the target image Ltu (missing frame). The five images are:
the current 2D frame I t , the two 2D frames I0, IT and two target
views L0

u, LTu at the keyframes. Note that I t is usually closer to
our final output and often contributes the most, since the angular
motion is usually smaller than the temporal motion. However, in
some cases the other images will have more impact on the result.
For example, when part of the scene is static, L0

u will just remain
the same throughout the video, so L0

u (or LTu ) will be closer to Ltu
than I t is to Ltu.

To generate the warp flows that warp these images to the target
view, we first estimate the disparity dtu at the target view u at the
current frame t (Fig. 5c up). We do this by utilizing the disparities
obtained from key frames 0 and T to generate the central view
disparity dt first. To utilize the disparity at key frame 0, we can first
“borrow” its disparity in the same way we borrow its color pixels,

dt (x) = d0 (x + f 0→t (x)) (5)
Similarly, we can also borrow the disparity from key frame T ,

dt (x) = dT (x + f T→t (x)) (6)
The final disparity should be somewhere between these two “bor-
rowed” disparities. Intuitively, when we are closer to frame 0, the
current disparity should be closer to d0, so the weight for it should
be higher, and vice versa. We thus add the temporal position λ as
an input to the CNN, indicating this “closeness”

λ = t/T (7)
However, since we have no idea how the object depth changes be-

tween these two timeframes, there is no simple way to combine the
two disparities. Moreover, what we have now is the disparity which
warps the target view u to the central view (forward mapping),
while we are actually interested in warping the central view to the
target view (backward mapping). This is in general very complex
and no easy solution exists. Therefore, we try to learn this trans-
formation using a neural network. We thus put the two borrowed
disparities and λ into a CNN to output the final disparity. The output
of the network is dtu which satisfies

Lt (x,u) = I t (x − u · dtu (x)) (8)
The loss function of this network is then the Euclidean distance
between the two images,

Ew (x) = | |Lt (x,u) − I t (x − u · dtu (x)) | |
2 (9)

Note that Lt (x,u) is only available in training data, which are col-
lected using the method described in Sec. 4.2.

Warping. After we obtain the disparity dtu, we are now finished
with the estimation part of this step (Fig. 5c up), and can move on
to the warping part (Fig. 5c bottom). Note that this part is entirely
procedural and does not involve any CNNs. We warp all neighbor-
ing images to the missing target view by cascading the flows. For

example, let y ≡ x − u · dtu (x). Then since I t (y) = I0 (y + f 0→t (y))
from (3), we can rewrite (8) as

Lt (x,u) = I t (y) = I0 (y + f 0→t (y))

= I0 (x − u · dtu (x) + f 0→t (x − u · dtu (x)))
(10)

which warps frame 0 of the 2D video to the current target view.
The above example shows how we can warp one input frame,

namely the lower left input image I0 in Fig. 3 to Lt . We denote this
warped image as Ĩ0, where the tilde symbol indicates warped images.
In the same way, we can also warp the four other input images in
Fig. 3, generating five warped images Ĩ t ,̃I0, ĨT , L̃0

u, and L̃Tu . The warp
flows for all the five images are discussed in Appendix A. These five
images are then inputs to the next (appearance estimation) neural
network to estimate Lt (x,u).

3.2 Appearance estimation network
After we warp all the images to the target view, we need to find a
way to combine all these images to generate the final output. Exist-
ing approaches usually use a simple weighted average to linearly
combine them. However, these simple approaches are usually not
sufficient to handle cases in which the warped images differ signifi-
cantly. Instead, we train another network to combine them, inspired
by (Kalantari et al. 2016). We stack all five warped images together,
along with the disparities and flows we estimated, the target view
position u, and the temporal position λ, and put them into a net-
work to generate the final image (Fig. 5d). The disparities and flows
should be useful when detecting occlusion boundaries and choosing
different images we want to use. The angular and the temporal
positions indicate which images should be weighted more when
combining the warped images. Note that unlike (Kalantari et al.
2016), where the input images differ only in the angular domain,
here our input images are different in both angular and temporal
domains, so the weighting mechanism is even more complex. The
final output L̄t (x,u) of the network is the target image. The loss of
this network is thus

Ec (x) = | |L̄t (x,u) − Lt (x,u) | |2 (11)
where Lt (x,u) is available in the training data. The same procedure
is performed for each target view and each time frame to generate
the corresponding images.

4 IMPLEMENTATION
We first explain our network architectures in Sec. 4.1, then describe
how we train and test our models in Sec. 4.2 and Sec. 4.3.

4.1 Network architecture
For our disparity CNN, the architecture is similar to (Kalantari et al.
2016). For the temporal flow CNN, we adopt a hierarchical approach
to estimate the optical flow (Fig. 7). In particular, we first build a
pyramid for the two input images. After the flow in the coarsest
level is estimated, it is upsampled and used to warp the finer image
below. The warped images are then inputs to the network in the
next level. This process is repeated until the finest flow is estimated
(Fig. 7a). For each layer in the pyramid, the network architectures
are the same and are shown in Fig. 7b. For the warp flow CNN and
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Source image 

Target image 

Our flow FlowNet flow 

Our warped result FlowNet warped result 

Fig. 8. Comparison between our flow and flow by FlowNet. Although our
flow is not as good as the result by FlowNet, it generates fewer artifacts
when used to warp images, especially around the occlusion boundaries.
Note that the region around the man’s head, which was occluded in the
source image, cannot be reproduced well by FlowNet, since it tries to borrow
pixels that are already occluded, similar to the case in Fig. 6.

the appearance CNN, the network architectures are similar to the
sub-CNN in the temporal flow CNN.

Finally, note that we train our network to generate better final im-
ages with an image reconstruction loss function, which is different
from previous CNN-based optical flow methods (e.g. FlowNet (Doso-
vitskiy et al. 2015)). In their cases, the ground truth optical flow is
available for networks to directly minimize the flow error. However,
we found our approach usually generates more visually pleasing
results when warping images, since we are explicitly minimizing
the color errors. In particular, in the case of occlusions, the correct
flow will actually try to borrow a pixel that is occluded by some
other object, resulting in visible artifacts (Fig. 8). Although our flow
often looks worse, we are free of this problem by minimizing color
errors instead of flow errors.

4.2 Training and Evaluation
We describe how we obtain the ground truth and some details of
training our model in this subsection. Upon publication, the source
code, the model and the datasets will be released, which will be a
useful resource for further research on light field videos.

Ground truth data. To collect training data for our system, we
shoot about 120 diverse scenes with slow camera motion or slowly
varying object motion using the Lytro ILLUM camera. By collecting
data this way, we are able to capture enough temporal information
from this “slow motion” light field video as ground truth. Each
sequence contains about 10 frames. For each recorded video clip, we
treat the first frame and the last frame as keyframes, and the central
views of light field images as 2D video frames. We then generate
other angular views for the 8 intermediate light field frames via our
approach, and compare the generated output with the ground truth
data we captured. Example training and test scenes are shown in
the supplementary video.

Training details. We now train a network to estimate the light
fields for each of the in-between frames in our captured training
data. For each training example, we randomly crop the image to
extract patches of size 320 × 320. In this way, we have effectively
more than 10,000,000 patches for training. We also perform standard

(a) LF central view (b) 2D video frame (c) Warped LF w/ color adjust 

Fig. 9. An example of NRDC calibration. We warp the light field view (a) to
the video view (b) and perform color calibration using NRDC to obtain the
warped result (c).

data augmentation methods such as randomly scaling the images
between [0.9,1.1] and swapping color channels. We initialized the
network weights using the MSRA filler (He et al. 2015) and trained
our system using the ADAM solver (Kingma and Ba 2014), with
β1 = 0.9, β2 = 0.999, and a learning rate of 0.0001. At every iteration
of training, we update the weights of our network using the gradient
descent approach. Since each operation of our network is differen-
tiable (convolutions, warpings, etc), computing the gradients can be
easily done using the chain rule.

To ease the training difficulty, we first perform stage-wise training
of each component in our system, and then perform joint training
on all components. This is a common trick to train complex net-
works (Hinton and Salakhutdinov 2006).

For the stage-wise training, the losses for the three components
of the spatio-temporal flow network are stated in (2), (4) and (9),
respectively. After this network is trained, we fix its weights to
generate the inputs to the appearance estimation network, and train
the appearance estimation network with the loss described in (11).
For joint training, we train both the spatio-temporal flow CNN

and the appearance CNN jointly to optimize the cost function de-
fined in (11). This is basically the same as training the appearance
CNN only, but allowing the weights in the spatio-temporal flow
CNN to change as well. We initialize the weights of each network
from what we obtained from stage-wise training. To reduce the
memory consumption of joint training, we use a few angular views
instead of all the 64 views in the disparity CNN. More training
details can be found in Appendix B.

Quantitative Evaluation. To evaluate our method quantitatively,
we shot 30 more scenes using the same method (i.e. slow camera
motion and object motion) that we used to acquire the training
data. We treat this as the test dataset for quantitative evaluation,
and compare the image reconstruction error of our method against
other previous approaches in Sec. 5.1.

4.3 Testing in real-world scenarios
For real-world scenarios where the “ideal” central view of light field
images is inaccessible, we build a prototype in which a DSLR is
connected with the Lytro ILLUM via a tripod screw adapter (Fig. 1a).
The DSLR records a standard 30 fps 2D video (rotated by 180 de-
grees), while the Lytro camera captures a 3 fps light field sequence,
both of which are used as inputs to our network.

Camera calibration. Since the DSLR view does not exactly match
the central view of the Lytro camera in terms of viewpoint and color
statistics, we first calibrate them by estimating a flow between the
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two views using non rigid dense correspondence (NRDC) (HaCohen
et al. 2011). We chose NRDC due to its robustness to color differences
between two cameras. Furthermore, it can output the color transfer
function between the two images, so that they can look identical.
Figure 9 shows example results before and after the calibration.
Finally, to reduce blur in the DSLR image, we always use an aperture
of f /11 or smaller for the DSLR.

Camera synchronization. Next, to synchronize the images taken
with the two cameras, we use the shutter sound the Lytro camera
generates when taking images, which is recorded in the video. Typ-
ically, there will be roughly 10 to 15 2D frames between the Lytro
camera shots, since the continuous shooting mode does not take
images very steadily. Using the sound to dynamically adjust to that
gives us better matches than relying on a fixed number.

Testing details. After these two calibrations, the same procedure
follows as in the training process except the following differences.
First, we downsample the DSLR image to match the Lytro camera
resolution. Second, we use all the 64 views in the keyframes rather
than randomly sampling 4 views to compute the disparity maps.
Finally, we now need to generate all the angular views (including
the central view) for each 2D video frame.

5 RESULTS
Below we compare our results both quantitatively (Sec. 5.1) and
qualitatively (Sec. 5.2) to other methods, and show applications
(Sec. 5.3) and discuss limitations (Sec. 5.4) of our system. A clearer
side-by-side comparison and demonstration of our system can be
found in the accompanying video. Our system is also significantly
faster than other methods, taking less than one second to generate
an image. A detailed timing of each stage is described in Sec. 5.1.

5.1 Quantitative comparison
We evaluate our method quantitatively by using the test set de-
scribed in Sec. 4.2. We compare with direct video interpolation
methods and depth from video methods. For video interpolation, we
interpolate the light field frames using Epicflow (Revaud et al. 2015)
and FlowNet (Dosovitskiy et al. 2015), independently for each view-
point. Note that they only have the light field frames as input, since
there is no easy way to incorporate the high speed video frames
into their system. After flows are estimated, the forward warping
process is done using the method described in (Baker et al. 2011).
For depth from video, we compare with depthTransfer (Karsch et al.
2014), which generates a depth sequence by finding candidates in
the training set. Their software also enables production of a stereo
sequence using the obtained depths. We thus provide the light field
keyframes as training sets, and modify their rendering code to out-
put light fields instead of stereo pairs at each 2D frame. The average
PSNR and SSIM values across all in-between frames and the four cor-
ner views are reported in Table 1. Our method achieves significant
improvement over other methods.

To evaluate the effectiveness of our system, we also try to replace
each component in the system by another method. The comparison
is shown in Table 2. For the disparity CNN, we replace it with the
model in (Kalantari et al. 2016), and two other traditional meth-
ods (Jeon et al. 2015; Wang et al. 2015). It can be seen that the

Input central view 

Kalantari et al. 

Wang et al. Jeon et al. 

Ours 

Fig. 10. Comparison on depth estimation methods. Note that our depth is
more accurate around the occlusion boundaries.

Method Epicflow FlowNet DepthTransfer Ours
PSNR 21.35 21.70 24.88 32.22
SSIM 0.628 0.632 0.773 0.949

Table 1. Quantitative comparison to 2D video interpolation and depth from
video methods.

Disparity Optical flow Appearance
Method Kalantari Jeon Wang Epicflow FlowNet Ĩ t Avg
PSNR 29.77 26.41 25.62 31.83 31.16 30.51 31.02
SSIM 0.901 0.828 0.756 0.945 0.935 0.935 0.934

Table 2. Component-wise quantitative comparison for our method. We
replace each component in our system by another method, and let the
rest of the system stay the same. The first row specifies the component of
interest; the second row specifies the replacing method. It can be seen that
all methods achieve worse results than our method (shown in Table 1).

traditional methods are not optimized for synthesizing views, so
their results are much worse; besides, our method is two to three
orders of magnitude faster than these methods. For (Kalantari et al.
2016), although the model is also used for view synthesis, it does
not account for temporal flows in the system. In contrast, our sys-
tem is trained end-to-end with the flow estimation, thus resulting
in better performance. A visual comparison of generated depth is
shown in Fig. 10. For the temporal flow CNN, we replace it with
Epicflow (Revaud et al. 2015) and FlowNet (Dosovitskiy et al. 2015).
Although they can in general produce more accurate flows, they
are not designed for synthesizing views, so our system still per-
forms slightly better. Also note that our flow network is two orders
of magnitude faster than Epicflow. For the warp flow CNN, since
no easy substitute can be found, we do not have any comparisons.
Finally, for the appearance CNN, we replace it with using only Ĩ t

and a weighted average of all warped images. Again, these results
are not comparable to our original result, which demonstrates the
effectiveness of our appearance CNN.

Timing. Our method takes 0.92 seconds to generate a 352 × 512
novel view at a particular timeframe, using an Intel i7 3.4 GHz
machine with a GeForce Titan X GPU. Specifically, it takes 0.66
seconds to estimate the disparities, 0.2 seconds to estimate the tem-
poral flows, 0.03 seconds to evaluate the warp flow CNN and warp
the images, and 0.03 seconds to evaluate the appearance CNN. Also
note that many of these steps (disparity and temporal flow estima-
tions) can be reused when computing different viewpoints, and the
parts that require recomputing only take 0.06 seconds. In contrast,
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Epicflow takes about 30 seconds (15 seconds for computing flows
and 15 seconds for warping images using (Baker et al. 2011)), and
depthTransfer takes about two minutes. Although flow estimation
by FlowNet is fast (around 0.1 seconds), the subsequent warping
process still takes about 15 seconds.

5.2 Qualitative comparison
We visualize the results taken with our prototype (Fig. 1a) qualita-
tively in this subsection.

Comparison against video interpolation methods. For Epicflow and
FlowNet, since these methods cannot easily deal with very low
fps inputs, they usually produce temporally inconsistent results, as
shown in Fig. 11. For the first scene, we have a toy train moving
toward the camera. Note that both Epicflow and FlowNet generate
ghosting around the train head, especially as the train is closer so
it is moving more quickly. For the lucky cat scene, the body of the
cat on the right is swinging. Although optical flow methods can
handle the relatively static areas, they cannot deal with the fast
moving head and arm of the cat. Next, we have a video of a woman
dancing. Again, ghosting effects can be seen around the face and
the arms of the woman. Note that in addition to incorrect flows,
the ghosting is also partly due to the effect shown in Fig. 6, so the
woman appears to have multiple arms. For the dining table scene,
the man at the front is acting aggressively, shaking his body and
waving his arm. As a result, the other interpolation algorithms fail
to produce consistent results. Finally, for the last two scenes, we
capture sequences of walking people, with the camera relatively
still in the first scene and moving in the second scene. Although the
people in general are not moving at a high speed, visible artifacts
can still be seen around them.

Comparison against depth from video methods. Comparing with
depthTransfer requires more care since it also takes the 2D video as
input. In fact, we observe that it usually just copies or shifts the 2D
video frames to produce different angular results. Therefore, their
results seem to be temporally consistent, but they actually lack the
parallax which exists in real light field videos.

To verify the above observation, we first use the test set described
in Sec. 4.2, where we have ground truth available. The results of
the upper leftmost angular views produced by both our method and
depthTransfer are shown in Fig. 12. For each inset, the left column is
our result (above) and the error compared to ground truth (bottom),
while the right column is the result by depthTransfer and its error.
For the first scene, we have a tree and a pole in front of a building.
Note that our method realistically reconstructs the structure of the
branches. For depthTransfer, since it usually just shifts the scene,
although the result may seem reasonable, it lacks the correct parallax
so the difference with the ground truth is still large. Next, we have a
challenging scene of furry flowers. Note that depthTransfer distorts
the building behind and produces artifacts on the flower boundary,
while our method can still generate reasonable results. For the bike
scene, again depthTransfer distorts the mirror and fails to generate
correct parallax for the steering handle. Finally, in the last scene our
method realistically captures the shape of the flower and the leaves,
while depthTransfer has large errors compared to the ground truth.

Next, we compare with depthTransfer using the scenes captured
with our prototype. Example results are shown in Fig. 13. We show
all four corner views at once, so we can see the parallax between dif-
ferent views more easily. It can be seen that results by depthTransfer
have very little parallax, while our method generates more reason-
able results. This effect is even clearer to see in the refocused images,
where results by depthTransfer are actually sharp everywhere. On
the other hand, our refocused images have blurry foreground and
sharp background.

5.3 Applications
After we obtain the 30 fps light field video, we demonstrate that we
are able to do video refocusing. This is useful for changing the focus
plane back and forth in a video, or fixing the focus on a particular
object no matter where it goes. We also develop an interactive user
interface where the user can click on particular points as the video
plays, so the point will become in focus. The usage of the interface
is shown in the accompanying video, and the results are shown
in Fig. 14. In an alternative mode, after the user clicks a point at
the start of the video, our algorithm automatically tracks that point
using KLT and always focuses on it throughout the video; the results
are shown in Fig. 15. Finally, the user can also change the effective
aperture to produce different depths of field at each frame, so that
does not need to be determined when shooting the video (Fig. 16).
All these features are only achievable on light field videos, which
are captured and rendered for the first time using consumer cameras
by our system.

5.4 Limitations and future work
There are several limitations to our system. First, our results are still
not completely artifact-free. We found that artifacts occur mostly
around occlusions and are usually caused by improper flow es-
timation. Since flows between images are undefined in occluded
regions, images warped by these flows tend to have some errors
in the corresponding regions as well. Our system improves upon
current methods by a large margin thanks to end-to-end training,
but still cannot solve this problem entirely. An example is shown in
Fig. 17. A benefit of our system is that we decompose the pipeline
into different components. In the future, if a better flow method is
proposed, we can replace that component with such a new method
to improve results.
Second, since the Lytro ILLUM camera has a small baseline, the

object we try to shoot cannot be too far away. However, if the object
is too close, the two views from the Lytro camera and the DSLR
become too different and will have large occlusions, making the
alignment hard. Therefore, currently our system cannot shoot ob-
jects too close or too far away. This can be mitigated by using a
smaller attachable camera other than a DSLR, e.g. phone cameras,
or having a larger baseline light field camera. Another more funda-
mental way to deal with this problem is to integrate this into the
learning system as well and train end-to-end, so the network can
try to infer the difference between the two cameras. This may also
save us from running NRDC calibration, which is relatively slow.

Third, if motion blur exists in the videos, the flow estimation will
often fail, making the disparity transfer fail. Therefore, currently
we ensure the exposure time is low enough that no motion blur
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Fig. 11. Temporal comparisons against video interpolation methods. For Epicflow and FlowNet, since they lack the 2D video input, they usually produce
ghosting or visible artifacts around the moving objects. Results are best seen electronically when zoomed in, or in the accompanying video.

occurs. Usually this is easily achievable as long as the scene is not
too dark. If capturing a dark scene is inevitable, a possible solution
is to deblur the images first. The process can be made easier if we
have sharp images from one of the two cameras by using different
exposures. This may also make HDR imaging possible.

Next, we do not utilize the extra resolution in the DSLR now. An
improvement over our system would be to take that into account

and generate a high resolution light field video. We leave this to
future work.
Finally, with the availability of light field videos, we would like

to extend previous visual understanding work to videos, such as
estimating saliency (Li et al. 2014), materials (Wang et al. 2016c), or
matting (Cho et al. 2014) for dynamic objects and scenes.
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Fig. 12. Angular comparisons against depthTransfer (dT) on our test set. For each inset, the left column is our result (up) and the error compared to ground
truth (bottom), while the right column is the result by depthTransfer and its error. The ground truth is not shown here due to its closeness to our result. Note
that our results have much smaller errors. The effect is much easier to see in the accompanying video.

our corner views dT corner views our corner views dT corner views 

our refocused result dT refocused result our refocused result dT refocused result 

input frame input frame 

Fig. 13. Angular comparisons against depthTransfer (dT) on real-world scenarios. In the first row, we show the input frame and the four corner views produced
by each method. In the second row, we show the results when refocused to the background. It can be seen that our method generates visible parallax between
different views, while results by depthTransfer have very little parallax, so their refocused results are sharp everywhere. The effect is much easier to see in the
accompanying video.

6 CONCLUSION
We propose a novel algorithm to capture a light field video using
a hybrid camera system. Although current light field technologies
have many benefits, they are mainly restricted to only still images,
due to the high bandwidth usage. By incorporating an additional 2D
camera to capture the temporal information, we propose a pipeline
to combine the 2D video and the sparse light field sequence to gener-
ate a full light field video. Our system consists of a spatio-temporal
flow CNN and an appearance CNN. The flow CNN propagates the
temporal information from the light field frames to the 2D frames,
and warps all images to the target view. The appearance CNN then
takes in these images and generates the final image. Experimental
results demonstrate that our method can capture realistic light field
videos, and outperforms current video interpolation and depth from
video methods. This enables many important applications on videos,
such as dynamic refocusing and focus tracking. We believe this is
an important new page for light fields, bringing light field imaging
techniques to videography.

A CONCATENATION OF FLOWS
We show how we warp the five images I t ,I0,IT ,L0 and LT to Lt

in this section. In the main text we have already shown how to
warp I t and I0 to get Ĩ t and Ĩ0 (by (8) and (10)). We now show how
to warp L0. Let z ≡ y + f 0→t (y). Then since I0 (x) = L0 (x,0) =
L0 (x + u · d0 (x),u) from (1), we can rewrite (10) as

Lt (x, u) = I t (y) = I 0 (z) = L0 (z + u · d0 (z), u)

= L0
(
y + f 0→t (y) + u · d0 (y + f 0→t (y)

)
, u
)

≡ L̃0 = L0
(
x − u · d tu (x) + f

0→t (x − u · d tu (x))+

u · d0 (x − u · d tu (x) + f 0→t (x − u · d tu (x))
)
, u
)

(12)

Similarly, we can write the warp flows for IT and LT as

ĨT (x) = IT
(
x − u · d tu (x) + f

T→t (x − u · d tu (x))
)

(13)

L̃T (x, u) =LT
(
x − u · d tu (x) + f

T→t (x − u · d tu (x))+

u · dT
(
x − u · d tu (x) + f

T→t (x − u · d tu (x))
)
, u
) (14)
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Frame 1 Frame 2 Frame 3 

Fig. 14. Examples of the video refocusing application. After we get the light
fields and disparities at each frame, we can easily change the focus distances
throughout the video. For each sequence, the first row shows when it is
focused at the front, while the second row shows the video focused at the
back. Results are best seen electronically when zoomed in.

B TRAINING DETAILS
For the end-to-end training, ideally a training example should con-
tain all the images between two key frames and try to output the en-
tire light field sequence. That is, we should have the two light fields
(L0,LT ) (which include I0 and IT ) and the 2D frames {I1, ..., I t−1} as
inputs, and try to output {L1, ...,Lt−1}. However, as it is not possible
to fit the entire light field sequence into memory during training,
each training example only samples some views in the light fields
and one frame in the 2D sequence. In particular, instead of using
all angular views in the two key frames 0 and T , each time we only
randomly sample 4 views u1,u2,u3,u4 in addition to the central
view u0. These five views are then used in the disparity estimation
network to generate the disparity at the key frames. Similarly, in-
stead of using the central views of all in-between frames, for each
training example we only select one frame t as input. The flows
between the key frames and frame t are then estimated using the
temporal flow network. This can be seen as angular and temporal
“crop,” just as we would randomly crop in the spatial domain during
training. For output, we also randomly sample one angular view
u at frame t . The warp flow network then takes view u and u0
(the central view) at the two key frames, as well as the 2D frame I t
and warps them. Finally the color estimation network takes these

Fig. 15. Examples of video focus tracking. In the first row, we fixed the focus
plane distance throughout the video. In the second row, we automatically
track the point the user clicks at the beginning (the train on the top and
the tiger’s face in the bottom), and change the focus plane accordingly.

(a) Small aperture (b) Large aperture 
Fig. 16. An example of changing aperture. After the video is taken, the depth
of field can still easily be changed. In (b) we keep the man in the foreground
in focus while blurring the background due to the larger virtual aperture.

Our result Ground truth Ours GT 
Fig. 17. An example on a challenging scene. In the red inset, our method
fails to capture the line structure of the window since it was previously
occluded by the twig. Similarly, in the blue inset, our method generates
elongated leaves compared to the ground truth.

warped images and generates the final output. More clearly, the
inputs for one training example are: six views (u0, ...,u4 and u) in
the two key frame light fields L0 and LT , and one 2D frame I t (I0

and IT are just view u0 from L0 and LT ). The output Lt (x,u) is
one view at frame t . The network then tries to minimize the image
reconstruction loss (measured by Euclidean distance) between the
generated output and Lt (x,u).

ACM Transactions on Graphics, Vol. 36, No. 4, Article 133. Publication date: July 2017.



Light Field Video Capture Using a Learning-Based Hybrid Imaging System • 133:13

ACKNOWLEDGEMENTS
We would like to gratefully thank Manmohan Chandraker and
Ren Ng for valuable discussions. This work was funded in part by
ONR grant N00014152013, NSF grants 1451830, 1617234 and 1539099,
a Google research award, a Facebook fellowship, and the UC San
Diego Center for Visual Computing.

REFERENCES
Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and Richard

Szeliski. 2011. A database and evaluation methodology for optical flow. International
Journal of Computer Vision (IJCV) 92, 1 (2011), 1–31.

Moshe Ben-Ezra and Shree K Nayar. 2003. Motion deblurring using hybrid imaging. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 1. I–657.

Pravin Bhat, C Lawrence Zitnick, Noah Snavely, Aseem Agarwala, Maneesh Agrawala,
Michael Cohen, Brian Curless, and Sing Bing Kang. 2007. Using photographs to
enhance videos of a static scene. In Eurographics Symposium on Rendering (EGSR).
327–338.

Tom E Bishop, Sara Zanetti, and Paolo Favaro. 2009. Light field superresolution. In
IEEE International Conference on Computational Photography (ICCP). 1–9.

Vivek Boominathan, Kaushik Mitra, and Ashok Veeraraghavan. 2014. Improving
resolution and depth-of-field of light field cameras using a hybrid imaging system.
In IEEE International Conference on Computational Photography (ICCP). 1–10.

Xun Cao, Xin Tong, Qionghai Dai, and Stephen Lin. 2011. High resolution multispectral
video capture with a hybrid camera system. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 297–304.

Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis.
2013. Depth Synthesis and Local Warps for Plausible Image-based Navigation. ACM
Transactions on Graphics (TOG) 32, 3 (2013), 30:1–30:12.

Donghyeon Cho, Sunyeong Kim, and Yu-Wing Tai. 2014. Consistent matting for light
field images. In European Conference on Computer Vision (ECCV). 90–104.

Donghyeon Cho, Minhaeng Lee, Sunyeong Kim, and Yu-Wing Tai. 2013. Modeling the
calibration pipeline of the lytro camera for high quality light-field image reconstruc-
tion. In IEEE International Conference on Computer Vision (ICCV). 3280–3287.

Alexey Dosovitskiy, Philipp Fischery, Eddy Ilg, Caner Hazırbaş, Vladimir Golkov, Patrick
van der Smagt, Daniel Cremers, and Thomas Brox. 2015. Flownet: Learning optical
flow with convolutional networks. In IEEE International Conference on Computer
Vision (ICCV). 2758–2766.

Martin Eisemann, Bert De Decker, Marcus Magnor, Philippe Bekaert, Edilson De Aguiar,
Naveed Ahmed, Christian Theobalt, and Anita Sellent. 2008. Floating Textures.
Computer Graphics Forum 27, 2 (2008), 409–418.

John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. 2016. DeepStereo:
Learning to Predict New Views from the World’s Imagery. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 5515–5524.

Michael Goesele, Jens Ackermann, Simon Fuhrmann, Carsten Haubold, Ronny Klowsky,
Drew Steedly, and Richard Szeliski. 2010. Ambient point clouds for view interpola-
tion. ACM Transactions on Graphics (TOG) 29, 4 (2010), 95.

Yoav HaCohen, Eli Shechtman, Dan B Goldman, and Dani Lischinski. 2011. Non-rigid
dense correspondence with applications for image enhancement. ACM Transactions
on Graphics (TOG) 30, 4 (2011), 70.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In IEEE
International Conference on Computer Vision (ICCV). 1026–1034.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensionality of
data with neural networks. Science 313, 5786 (2006), 504–507.

Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai,
and In So Kweon. 2015. Accurate depth map estimation from a lenslet light field
camera. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
1547–1555.

Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. 2016. Learning-
based view synthesis for light field cameras. ACM Transactions on Graphics (TOG)
35, 6 (2016), 193.

Kevin Karsch, Ce Liu, and Sing Bing Kang. 2014. DepthTransfer: Depth extraction from
video using non-parametric sampling. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) 36, 11 (2014), 2144–2158.

Rei Kawakami, Yasuyuki Matsushita, John Wright, Moshe Ben-Ezra, Yu-Wing Tai,
and Katsushi Ikeuchi. 2011. High-resolution hyperspectral imaging via matrix
factorization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2329–2336.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Janusz Konrad, Meng Wang, and Prakash Ishwar. 2012. 2D-to-3D image conversion by
learning depth from examples. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshop. 16–22.

Janusz Konrad, Meng Wang, Prakash Ishwar, Chen Wu, and Debargha Mukherjee. 2013.
Learning-based, automatic 2D-to-3D image and video conversion. IEEE Transactions
on Image Processing (TIP) 22, 9 (2013), 3485–3496.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based
learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

Anat Levin and Fredo Durand. 2010. Linear view synthesis using a dimensionality
gap light field prior. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 1831–1838.

Nianyi Li, Jinwei Ye, Yu Ji, Haibin Ling, and Jingyi Yu. 2014. Saliency detection on
light field. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2806–2813.

Jing Liao, Rodolfo S Lima, Diego Nehab, Hugues Hoppe, Pedro V Sander, and Jinhui Yu.
2014. Automating image morphing using structural similarity on a halfway domain.
ACM Transactions on Graphics (TOG) 33, 5 (2014), 168.

Lytro Cinema. 2017. The ultimate creative tool for cinema and broadcast. https:
//www.lytro.com/cinema. (2017).

Dhruv Mahajan, Fu-Chung Huang, Wojciech Matusik, Ravi Ramamoorthi, and Peter
Belhumeur. 2009. Moving gradients: a path-based method for plausible image
interpolation. ACM Transactions on Graphics (TOG) 28, 3 (2009), 42.

Kshitij Marwah, Gordon Wetzstein, Yosuke Bando, and Ramesh Raskar. 2013. Com-
pressive Light Field Photography Using Overcomplete Dictionaries and Optimized
Projections. ACM Transactions on Graphics (TOG) 32, 4 (2013), 46:1–46:12.

Simone Meyer, Oliver Wang, Henning Zimmer, Max Grosse, and Alexander Sorkine-
Hornung. 2015. Phase-Based Frame Interpolation for Video. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 1410–1418.

Kaushik Mitra and Ashok Veeraraghavan. 2012. Light field denoising, light field super-
resolution and stereo camera based refocussing using a GMM light field patch prior.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop.
22–28.

RayTrix. 2017. 3D Light Field Camera Technology. https://www.raytrix.de/. (2017).
Red Camera. 2017. Red Digital Cinema Camera. http://www.red.com/. (2017).
Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. 2015.

EpicFlow: Edge-preserving interpolation of correspondences for optical flow. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1164–1172.

Harpreet S Sawhney, Yanlin Guo, Keith Hanna, Rakesh Kumar, Sean Adkins, and
Samuel Zhou. 2001. Hybrid stereo camera: an IBR approach for synthesis of very
high resolution stereoscopic image sequences. In ACM SIGGRAPH. 451–460.

Lixin Shi, Haitham Hassanieh, Abe Davis, Dina Katabi, and Fredo Durand. 2014. Light
Field Reconstruction Using Sparsity in the Continuous Fourier Domain. ACM
Transactions on Graphics (TOG) 34, 1 (2014), 12:1–12:13.

Ting-ChunWang, Alexei A Efros, and Ravi Ramamoorthi. 2015. Occlusion-aware Depth
Estimation Using Light-field Cameras. In IEEE International Conference on Computer
Vision (ICCV). 3487–3495.

Ting-Chun Wang, Manohar Srikanth, and Ravi Ramamoorthi. 2016b. Depth from semi-
calibrated stereo and defocus. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 3717–3726.

Ting-Chun Wang, Jun-Yan Zhu, Ebi Hiroaki, Manmohan Chandraker, Alexei A Efros,
and Ravi Ramamoorthi. 2016c. A 4D light-field dataset and CNN architectures for
material recognition. In European Conference on Computer Vision (ECCV). 121–138.

Yuwang Wang, Yebin Liu, Wolfgang Heidrich, and Qionghai Dai. 2016a. The Light Field
Attachment: Turning a DSLR into a Light Field Camera Using a Low Budget Camera
Ring. IEEE Transactions on Visualization and Computer Graphics (TVCG) (2016).

Sven Wanner and Bastian Goldluecke. 2014. Variational Light Field Analysis for
Disparity Estimation and Super-Resolution. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI) 36, 3 (2014), 606–619.

Bennett Wilburn, Michael Smulski, HH Kelin Lee, and Mark Horowitz. 2002. The light
field video camera. In SPIE Proc. Media Processors, Vol. 4674.

GaochangWu, Mandan Zhao, LiangyongWang, Qionghai Dai, Tianyou Chai, and Yebin
Liu. 2017. Light Field Reconstruction Using Deep Convolutional Network on EPI. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Youngjin Yoon, Hae-Gon Jeon, Donggeun Yoo, Joon-Young Lee, and In So Kweon. 2015.
Learning a Deep Convolutional Network for Light-Field Image Super-Resolution. In
IEEE International Conference on Computer Vision (ICCV) Workshop. 57–65.

Zhoutong Zhang, Yebin Liu, and Qionghai Dai. 2015. Light field from micro-baseline
image pair. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
3800–3809.

Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. 2016.
View Synthesis by Appearance Flow. In European Conference on Computer Vision
(ECCV). 286–301.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 133. Publication date: July 2017.

https://www.lytro.com/cinema
https://www.lytro.com/cinema
https://www.raytrix.de/
http://www.red.com/

	Abstract
	1 Introduction
	2 Related work
	3 Algorithm
	3.1 Spatio-temporal flow estimation network
	3.2 Appearance estimation network

	4 Implementation
	4.1 Network architecture
	4.2 Training and Evaluation
	4.3 Testing in real-world scenarios

	5 Results
	5.1 Quantitative comparison
	5.2 Qualitative comparison
	5.3 Applications
	5.4 Limitations and future work

	6 Conclusion
	A Concatenation of flows
	B Training details
	References

