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Fig. 1. We propose a learning-based approach to produce a high-quality HDR image (shown in middle) given three differently exposed LDR images of a
dynamic scene (shown on the left). We first use the optical flow method of Liu [2009] to align the images with low and high exposures to the one with medium
exposure, which we call the reference image (shown with blue border). Note that, we use reference to refer to the LDR image with the medium exposure,
which is different from the ground truth HDR image. Our learning system generates an HDR image, which is aligned to the reference image, but contains
information from the other two images. For example, the details on the table are saturated in the reference image, but are visible in the image with the shorter
exposure. The method of Kang et al. [2003] is able to recover the saturated regions, but contains some minor artifacts. However, the patch-based method of
Sen et al. [2012] is not able to properly reproduce the details in this region because of extreme motion. Moreover, Kang et al.’s method introduces alignment
artifacts which appear as tearing in the bottom inset. The method of Sen et al. produces a reasonable result in this region, but their result is noisy since they
heavily rely on the reference image. Our method produces a high-quality result, better than other approaches both visually and numerically. See Sec. 4 for
details about the process of obtaining the input LDR and ground truth HDR images. The full images as well as comparison against a few other approaches are
shown in the supplementary materials. The differences in the results presented throughout the paper are best seen by zooming into the electronic version.

Producing a high dynamic range (HDR) image from a set of images with

different exposures is a challenging process for dynamic scenes. A category

of existing techniques first register the input images to a reference image and

then merge the aligned images into an HDR image. However, the artifacts

of the registration usually appear as ghosting and tearing in the final HDR

images. In this paper, we propose a learning-based approach to address

this problem for dynamic scenes. We use a convolutional neural network

(CNN) as our learning model and present and compare three different system

architectures to model the HDR merge process. Furthermore, we create a

large dataset of input LDR images and their corresponding ground truth

HDR images to train our system. We demonstrate the performance of our

system by producing high-quality HDR images from a set of three LDR

images. Experimental results show that our method consistently produces

better results than several state-of-the-art approaches on challenging scenes.
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1 INTRODUCTION
Standard digital cameras typically take images with under/over-

exposed regions because of their sensors’ limited dynamic range.

Themost commonway to capture high dynamic range (HDR) images

using these cameras is to take a series of low dynamic range (LDR)

images at different exposures and then merge them into an HDR

image [Debevec and Malik 1997]. This method produces spectacular

images for tripod mounted cameras and static scenes, but generates

results with ghosting artifacts when the scene is dynamic or the

camera is hand-held.

Generally, this problem can be broken down into two stages: 1)

aligning the input LDR images and 2) merging the aligned images

into an HDR image. The problem of image alignment has been

extensively studied and many powerful optical flow algorithms

have been developed. These methods [Liu 2009; Chen et al. 2013]

are typically able to reasonably align images with complex non-rigid

motion, but produce artifacts in the regionswith no correspondences

(see Fig. 2). These artifacts usually appear in the HDR results, which

are obtained by merging the aligned images during the second stage.

Our main observation is that the artifacts of the alignment can be

significantly reduced during merging. However, this is a complex
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process since it requires detecting the regions with artifacts and

excluding them from the final results. Therefore, we propose to learn

this complex process from a set of training data. Specifically, given

a sequence of LDR images with low, medium, and high exposures,

we first align the low and high exposure images to the medium

exposure one (reference) using optical flow. We then use the three

aligned LDR images as the input to a convolutional neural network

to generate an HDR image that approximates the ground truth HDR

image. Note that, the reference refers to the LDR image withmedium

exposure and is different from the ground truth HDR image. As seen

in Fig. 1, the input LDR images can be of dynamic scenes with a

considerable motion between them. To explore this idea, we present

and compare three different system architectures and compute the

required gradients for end-to-end training of each architecture.

One challenge is that we need a large number of scenes to properly

train a deep network, but such a dataset is not available. We address

this issue by proposing an approach to create a set of LDR images

with motion and their corresponding ground truth image (Sec. 4).

Specifically, we generate the ground truth HDR image using a set of

three bracketed exposure images captured from a static scene. We

then capture another set of three bracketed exposure images of the

same scene with motion. Finally, we replace the medium exposure

from the dynamic set with the corresponding image from the static

set (see Fig. 7). We create a dataset of 74 training scenes with this

approach and substantially extend it with data augmentation.

Experimental results demonstrate that our method is robust and

handles challenging cases better than state-of-the-art HDR recon-

struction approaches (see Fig. 1). In summary, our work makes the

following contributions:

• We propose the first machine learning approach for recon-

structing an HDR image from a set of bracketed exposure

LDR images of a dynamic scene (Sec. 3).

• We fully explore the idea by presenting three different sys-

tem architectures and comparing them extensively (Sec. 3.2).

• We introduce the first dataset suitable for learning HDR re-

construction, which can facilitate future learning research

in this domain (Sec. 4). In addition, our dataset can poten-

tially be used to compare different HDR reconstruction

approaches. Note that, existing datasets, such as the one

introduced by Karaduzovic et al. [2016], contain limited

scenes and are not suitable for training a deep CNN.

2 RELATED WORK
High dynamic range imaging has been the subject of extensive

research over the past decades. One class of techniques captures

HDR images in a single shot by modifying the camera hardware.

For example, a few methods use a beam-splitter to split the light

to multiple sensors [Tocci et al. 2011; McGuire et al. 2007]. Several

approaches propose to reconstruct HDR images from coded per-

pixel exposure [Heide et al. 2014; Hajisharif et al. 2015; Serrano et al.

2016] or modulus images [Zhao et al. 2015]. These methods produce

high-quality results on dynamic scenes since they capture the entire

image in a single shot. Unfortunately, they require cameras with a

specific optical system or sensor, which are typically custom made

and expensive and, thus, not available to the general public.

Another category of approaches reconstructs HDR images from a

stack of bracketed exposure LDR images. Since bracketed exposure

images can be easily captured with standard digital cameras, these

methods are popular and used in widely available devices such as

smartphone cameras. We categorize these approaches into three

general classes and discuss them next.

2.1 Rejecting Pixels with Motion
These approaches start by registering all the input images globally.

The static pixels will have the same color across the stack and can

be merged into HDR as usual. If a pixel is moving, these methods

detect it and reject it. Different approaches have different ways of

detecting the motion.

Khan et al. [2006] compute the probability that a given pixel

is part of the background and assign weights accordingly. Jacobs

et al. [2008] detects moving pixels by computing local entropy of

different images in the stack. Pece and Kautz [2010] compute median

threshold bitmaps for each image to generate a motion map. Zhang

and Cham [2012] propose to detect movement by analyzing the

image gradient. Several approaches predict the pixel colors of an

image in another exposure and compare them to the original pixel

colors to detect motion [Grosch 2006; Gallo et al. 2009; Raman and

Chaudhuri 2011]. Heo et al. [2010] assign a weight to each pixel by

computing a Gaussian-weighted distance to a reference pixel color.

Granados et al. [2013] detects the consistent subset of pixels across

the image stack and then solves a labeling problem to produce a

visually pleasing HDR result. Detecting the inconsistent pixels with

a bidirectional approach has been investigated by Zheng et al. [2013]

and Li et al. [2014]. Rank minimization has also been used [Lee et al.

2014; Oh et al. 2015] to reject outliers and reconstruct the final HDR

image. However, these methods are not able to handle moving HDR

content as they simply reject their corresponding pixels.

2.2 Alignment Before Merging
These approaches first align the input images and then merge them

into an HDR image. Several methods have been proposed to per-

form rigid alignment using translation [Ward 2003] or homogra-

phy [Tomaszewska and Mantiuk 2007]. However, they are unable

to handle moving HDR content.

Bogoni [2000] estimates local motion using optical flow to align

the input images. Kang et al. [2003] use a variant of the optical flow

method by Lucas and Kanade [1981] to estimate the flow and propose

a specialized HDR merging process to reject the artifacts of the

registration. Jinno and Okuda [2008] pose the problem as a Markov

random field to estimate a displacement field. Zimmer et al. [2011]

find optical flow by minimizing an energy function consisting of

gradient and smoothness terms. Hu et al. [2012] align the images by

finding dense correspondences usingHaCohen et al.’s method [2011].

Gallo et al. [2015] propose a fast motion estimation approach for

images with small motion. These approaches use simple merging

methods to combine the aligned LDR images, and thus, are not able

to avoid alignment artifacts in challenging cases.

2.3 Joint Alignment and Reconstruction
The approaches in this category perform the alignment and HDR

reconstruction in a unified optimization system. Sen et al. [2012]
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propose a patch-based optimization system to fill in the missing

under/over-exposed information in the reference image from the

other images in the stack. Hu et al. [2013] propose a similar patch-

based system, but include camera calibration as part of the opti-

mization. Although these two methods are perhaps the state of

the art in HDR reconstruction, patch-based synthesis produces

unsatisfactory results in challenging cases where the reference

has large over-exposed regions or is significantly under-exposed

(Figs. 1, 13, 14, 16 and Table 1).

3 ALGORITHM
Given a set of three LDR images of a dynamic scene (Z1,Z2,Z3),
our goal is to generate a ghost-free HDR image, H , which is aligned

to the medium exposure image Z2 (reference). This process can be

broken down into two stages of 1) alignment and 2) HDR merge.

During alignment, the LDR images with low and high exposures,

defined with Z1 and Z3, respectively, are registered to the reference

image, denoted as Z2. This process produces a set of aligned images,

I = {I1, I2, I3}, where I2 = Z2. These aligned images are then

combined in the HDR merge stage to produce an HDR image, H .

Extensive research on the problem of image alignment (stage 1)

has resulted in powerful techniques over the past decades. These

non-rigid alignment approaches are able to reasonably register the

LDR images with complex non-rigid motion, but often produce ar-

tifacts around the motion boundaries and on the occluded regions

(Fig. 2). Since the aligned images are used during the HDR merge

(stage 2) to produce the final HDR image, these artifacts could po-

tentially appear in the final result.

Our main observation is that the alignment artifacts from the first

stage can be significantly reduced through the HDR merge in the

second stage. This is in fact a challenging process and there has been

significant research on this topic, even for the case when the images

are perfectly aligned. Therefore, we propose to model this process

with a learning system.
1
Inspired by the recent success of deep

learning in a variety of applications such as colorization [Cheng

et al. 2015; Iizuka et al. 2016] and view synthesis [Flynn et al. 2016;

Kalantari et al. 2016], we propose to model the process with a con-

volutional neural network (CNN).

3.1 Overview
In this section, we provide an overview of our approach (shown in

Fig. 3) by explaining different stages of our system.

Preprocessing the Input LDR Images. If the LDR images are not in

the RAW format, we first linearize them using the camera response

function (CRF), which can be obtained from the input stack of images

using advanced calibration approaches [Grossberg and Nayar 2003;

Badki et al. 2015]. We then apply gamma correction (γ = 2.2) on
these linearized images to produce the input images to our system,

Z1,Z2,Z3. The gamma correction basically maps the images into a

domain that is closer to what we perceive with our eyes [Sen et al.

2012]. Note that, this process replaces the original CRF with the

gamma curve which is used to map images from LDR to the HDR

domain and vice versa.

1
We also experimented with learning the alignment process, but the system had similar

performance as the optical flow method, since most artifacts could be reduced through

the merging step.

Our HDR Reference High Aligned High Our HDR Ground Truth
Fig. 2. We use the optical flowmethod of Liu [2009] to align the images with
high and low exposures (only high is shown here) to the reference image.
As shown in the top inset, optical flow methods are able to reasonably align
the images where there are correspondences. However, in the regions with
no correspondence (the bottom row), they produce artifacts. Our learning-
based system is able to produce a high-quality HDR image by detecting
these regions and excluding them from the final results.

Alignment. Next, we produce aligned images by registering the

images with low (Z1) and high (Z3) exposures to the reference image,

Z2. For simplicity, we explain the process of registering Z3 to Z2,
but Z1 can be aligned to Z2 in a similar manner. Since optical flow

methods require brightness constancy to perform well, we first raise

the exposure of the darker image to the brighter one. In this case, we

raise the exposure of Z2 to match that of Z3 to obtain the exposure

corrected image. Formally, this is obtained as Z2,3 = clip(Z2∆
1/γ
2,3 ),

where the clipping function ensures the output is always in the

range [0, 1]. Moreover, ∆2,3 is the exposure ratio of these two images,

∆2,3 = t3/t2, where t2 and t3 are the exposure times of the reference

and high exposure images.

We then compute the flow between Z3 and Z2,3 using the optical

flow algorithm by Liu [2009]. Finally, we use bicubic interpolation

to warp the high exposure image Z3 using the calculated flow. This

process produces a set of aligned images I = {I1, I2, I3} which are

then used as the input to our learning-based HDRmerge component

to produce the final HDR image, H . An example of aligned images

can be seen in Fig. 9.

HDR Merge. The main challenge of this component is to detect

the alignment artifacts and avoid their contribution to the final

HDR image. In our system, we use machine learning to model this

complex task. Therefore, we need to address two main issues: the

choice of 1) model, and 2) loss function, which we discuss next.

1) Model: We use convolutional neural networks (CNNs) as our

learning model and present and compare three different system

architectures to model the HDR merge process. We discuss them in

detail in Sec. 3.2.

2) Loss Function: Since HDR images are usually displayed after

tonemapping, we propose to compute our loss function between the

tonemapped estimated and ground truth HDR images. Although

powerful tonemapping approaches have been proposed, these meth-

ods are typically complex and not differentiable. Therefore, they are

not suitable to be used in our system. Gamma encoding, defined

as H1/γ
with γ > 1, is perhaps the simplest way of tonemapping

in image processing. However, since it is not differentiable around

zero, we are not able to use it in our system.

Therefore, we propose to use µ-law, a commonly-used range

compressor in audio processing, which is differentiable (see Eq. 5)

and suitable for our learning system. This function is defined as:
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Input LDR Images Aligned LDR Images

HDR Merger
Sec. 3.2 Tonemapper

Final Tonemapped 
HDR Image

Alignment with
Optical Flow

Final HDR Image

Fig. 3. In our approach, we first align the input LDR images using the optical flow method of Liu [2009] to the reference image (medium exposure). We
then use the aligned LDR images as the input to our learning-based HDR merge system to produce a high-quality HDR image which is then tonemapped to
produce the final image.

Our Tonemapped HDR Image Linear Ours Ground Truth
Fig. 4. We compare the result of training our system using the loss func-
tion in Eq. 2 in the linear and tonemapped (indicated as “Ours”) domains.
Tonemapping boosts the pixel values in the dark regions, and thus, opti-
mization in the tonemapped domain gives more emphasis to these darker
pixels in comparison with the optimization in the linear domain. Therefore,
optimizing in the linear domain often produces results with discoloration,
noise, and other artifacts in the dark regions, as shown in the insets.

T =
log(1 + µH )

log(1 + µ)
, (1)

where µ is a parameter which defines the amount of compression,

H is the HDR image in the linear domain, and T is the tonemapped

image. In our implementation, H is always in the range [0, 1] and

we set µ to 5000. In our approach, we train the learning system

by minimizing the ℓ2 distance of the tonemapped estimated and

ground truth HDR images defined as:

E =
3∑

k=1

(
T̂k −Tk

)
2

, (2)

where T̂ and T are the estimated and ground truth tonemapped

HDR images and the summation is over color channels.

Note that we could have chosen to instead train our system by

computing the error in Eq. 2 directly on the estimated (Ĥ ) and

ground truth (H ) HDR images in the linear domain. Although this

system produces HDR images with small error in the linear HDR

domain, the estimated images typically demonstrate discoloration,

noise, and other artifacts after tonemapping, as shown in Fig. 4.

3.2 Learning-Based HDR Merge
The goal of the HDR merge process is to take the aligned LDR

images, I1, I2, I3, as input and produce a high-quality HDR image, H .

Intuitively, this process requires estimating the quality of the input

aligned HDR images and combining them based on their quality.

For example, an image should not contribute to the final HDR result

in the regions with alignment artifacts, noise, or saturation.

Generally, we need the aligned images in both the LDR and HDR

domains to measure their quality. The images in the LDR domain

are required to detect the noisy or saturated regions. For example,

a simple rule would be to consider all the pixels that are smaller

Estimated 
HDR Image

LDR

Aligned Images

HDR

CNN
Fig. 6

Blending
Weights

Alpha Blend
Eq. 6

Estimated 
HDR Image

CNN
Fig. 6

Blending
Weights

Alpha Blend
Eq. 6

Estimated 
HDR Image

Re�ned
Aligned

CNN
Fig. 6

HDR Merger

3) Weight and Image Estimator (WIE)

2) Weight Estimator (WE)

1) Direct

HDR Merger

HDR Merger

LDR

Aligned Images

HDR

LDR

Aligned Images

HDR

Fig. 5. Each row demonstrates a different architecture for learning the
HDR merge process. The top row shows the architecture where we model
the entire process using a CNN. We constrain the problem for the other
two architectures (middle and bottom rows) by using the knowledge from
existing techniques. See the text in Sec. 3.2 for more details.

than 0.1 and larger than 0.9, noisy and saturated, respectively. More-

over, the images in the HDR domain could be helpful for detecting

misalignments by, for example, measuring the amount of deviation

from the reference image.

Therefore, the HDR merge process can be formally written as:

H = д(I,H), (3)

where д is a function which defines the relationship of the HDR

image, H , to the inputs. Here, H is the set of aligned images in

the HDR domain, H1,H2,H3. Note that these are obtained from the

aligned LDR images, Ii , as: Hi = I
γ
i /ti , where ti is the exposure

time of the ith image.
2
As discussed earlier, the HDR merge process,

which is defined with the function д, is complex. Therefore, we

propose to model it with a learning system and present and compare

three different architectures for this purpose (see Fig. 5).

We start by discussing the first and simplest architecture (direct),

where the entire process is modeled with a single CNN. We then use

knowledge from the existing HDR merge techniques to constrain

the problem in the weight estimator (WE) architecture by using the

network to only estimate a set of blending weights. Finally, in the

weight and image estimator (WIE) architecture, we relax some of the

constraints of the WE architecture by using the network to output a

set of refined aligned LDR images in addition to the blendingweights.

Overall, the three architectures produce high-quality results, but

have small differences which we discuss later.

2
During the preprocessing step, a gamma curve is used to map the images from linear

HDR domain to the LDR domain, and thus, we raise the LDR images to the power of

gamma to take them to the HDR domain.
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1) Direct. In this architecture, we model the entire HDR merge

process using a CNN, as shown in Fig. 5 (top). In this case, the CNN

directly parametrizes the function д in terms of its weights. The

CNN takes a stack of aligned images in the LDR and HDR domains

as input, {I,H} and outputs the final HDR image, H .

The estimated HDR image is then tonemapped using Eq. 1 to

produce the final tonemapped HDR image (see Fig. 3). The goal of

training is to find the optimal network weights,w , by minimizing

the error between the estimated and ground truth tonemapped

HDR images, defined in Eq. 2. In order to use gradient descent based

techniques to train the system, we need to compute the derivative

of the error with respect to the network weights. To do so, we use

the chain rule to break down this derivative into three terms as:

∂E

∂w
=
∂E

∂T̂

∂T̂

∂Ĥ

∂Ĥ

∂w
. (4)

The first term is the derivative of the error function in Eq. 2

with respect to the estimated tonemapped image. Since our error is

quadratic, this derivative can be easily computed. The second term

is the derivative of the tonemapping function, defined in Eq. 1, with

respect to its input. Since we use µ-law function as our tonemapping

function, this derivative can be computed as:

∂T̂

∂Ĥ
=

µ

log(1 + µ)

1

1 + µĤ
. (5)

Finally, the last term is the derivative of the network output with

respect to its weights which can be calculated using backpropaga-

tion [Rumelhart et al. 1986].

Overall, the CNN in this simple architecture models the entire

complex HDR merge process, and thus, training the network with a

limited number of scenes is difficult. Although this architecture is

able to produce high-quality results, in some cases it leaves residual

alignment artifacts in the final HDR images, as will be shown later

in Fig. 9 (top row). In the next architecture, we use some elements

of the previous HDR merge approaches to constrain the problem.

2) Weight Estimator (WE). The existing techniques typically com-

pute a weighted average of the aligned HDR images to produce the

final HDR result:

Ĥ (p) =

∑
3

j=1 α j (p)Hj (p)∑
3

j=1 α j (p)
, where Hj (p) =

I
γ
j

tj
. (6)

Here, the weight α j (p) basically defines the quality of the jth

aligned image at pixel p and needs to be estimated from the input

data. Previous HDR merging approaches calculate these weights

by, for example, the derivative of inverse CRF [Mann and Picard

1995], a triangle function [Debevec andMalik 1997], or modeling the

camera noise [Granados et al. 2010]. Unfortunately, these methods

assume that the images are perfectly aligned and do not workwell on

dynamic scenes. To handle the alignment artifacts, Kang et al. [2003]

propose to use a Hermite cubic function to weight the other images

based on their distance to the reference.

We propose to learn the weight estimation process using a CNN.

In this case, the CNN takes the aligned LDR and HDR images as

input, {I,H}, and outputs the blending weights, ααα . We then com-

pute a weighted average of the aligned HDR images using these

estimated weights (see Eq. 6) to produce the final HDR image.

To train the network in this architecture, we need to compute the

derivative of the error with respect to the network’s weights. We

use the chain rule to break down this derivative into four terms as:

∂E

∂w
=
∂E

∂T̂

∂T̂

∂Ĥ

∂Ĥ

∂ααα

∂ααα

∂w
. (7)

Note that, the last term is basically the derivative of the network’s

output with respect to its weights and can be calculated using back-

propagation [Rumelhart et al. 1986]. Here, the only difference with

respect to Eq. 4 is the third term. This term, ∂Ĥ/∂ααα , is the derivative
of our estimated HDR image with respect to the blending weights,

α1,α2,α3. Since the estimated HDR image in this case is obtained

using Eq. 6, we can compute this derivative as:

∂Ĥ

∂αi
=

Hi (p) − Ĥ (p)∑
3

j=1 α j (p)
. (8)

This architecture is more constrained than the direct architecture

and easier to train. Therefore, it produces high-quality results with

significantly fewer residual artifacts (see Fig. 9). Moreover, this

architecture produces the final HDR results using only the original

content of the aligned LDR images. Therefore, it should be used

when staying faithful to the original content is important.

3) Weight and Image Estimator (WIE). In this architecture we relax
the restriction of the previous architecture by allowing the network

to output refined aligned images in addition to the blending weights.

Here, the network takes the aligned LDR and HDR images as input

and outputs the weights and the refined aligned images, {ααα , ˜I}. We

use Eq. 6 to compute the final HDR image using the refined images,

Ĩi , and the estimated blending weights, αi .
Again we can compute the derivative of the error with respect to

the network weights using the chain rule as:

∂E

∂w
=
∂E

∂T̂

∂T̂

∂Ĥ

∂Ĥ

∂{ααα , ˜I}

∂{ααα , ˜I}

∂w
. (9)

The only difference with respect to Eq. 7 lies in the third term,

∂Ĥ/∂{ααα , ˜I}, as the network in this case outputs refined aligned

images in addition to the blending weights.

The derivative of the estimated HDR image with respect to the

estimated blending weights, ∂Ĥ/∂ααα , can be estimated using Eq. 8.

To compute ∂Ĥ/∂ ˜I we can use the chain rule to break it down into

two terms as:

∂Ĥ

∂Ĩi
=
∂Ĥ

∂H̃i

∂H̃i

∂Ĩi
. (10)

Here, the first term is the derivative of the estimated HDR image

with respect to the aligned images in the HDR domain. The relation-

ship between Ĥ and H̃i is given in Eq. 6, and thus, the derivative

can be computed as:

∂Ĥ

∂H̃i
=

αi∑
3

j=1 α j
. (11)

Finally, the second term in Eq. 10 is the derivative of the refined

aligned images in the HDR domain with respect to their LDR version.

Since the HDR and LDR images are related with a power function

(see Eq. 6), this derivative can be computed with the power rule as:

∂H̃i

∂Ĩi
=

γ

ti
Ĩ
γ−1
i . (12)
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Fig. 6. We use a network with four fully convolutional layers and decreasing
kernel sizes as our model. We use sigmoid as the activation function for the
last layer and use rectified linear unit (ReLU) for the rest of the layers. We
use the same network in our three different system architectures with the
exception of the number of outputs which is different in each case.

The direct end-to-end training of this network is challenging

and usually the convergence is very slow. Therefore, we propose to

perform the training in two stages. In the first stage, we force the

network to output the original aligned images as the refined ones,

i.e.,
˜I = I, by minimizing the ℓ2 error of the output of the network

and the original aligned images. This stage constrains the network

to generate meaningful outputs and produce results with similar

performance as the WE architecture.

In the second stage, we simply perform a direct end-to-end train-

ing and further optimize the network by synthesizing refined aligned

images. Therefore, this architecture is able to produce results with

the best numerical errors (see Table 1). However, as shown in

Figs. 11 and 12, this additional flexibility in comparison to the WE

architecture comes at the cost of producing slightly overblurred

results in dark regions.

Network Architecture. As shown in Fig. 6, we propose to use a CNN
with four convolutional layers similar to the architecture proposed

by Kalantari et al. [2016]. We particularly selected this architecture,

since they were able to successfully model the process of generating

a novel view image from a set of aligned images, which is a similar

but different problem. In our system, the networks have a decreasing

filter size starting from 7 in the first layer to 1 in the last layer. All the

layers with the exception of the last layer are followed by a rectified

linear unit (ReLU). For the last layer, we use sigmoid activation

function so the output of the network is always between 0 and 1.

We use a fully convolutional network, so our system can handle

images of any size. Moreover, the final HDR image at each pixel can

usually be obtained from pixel colors of the aligned images at the

same pixel or a small region around it. Therefore, all our layers have

stride of one, i.e., our network does not perform downsampling or

upsampling.

We use the same network in the three system architectures, but

with different number of output channels, no . Specifically, this num-

ber is equal to 3 corresponding to the color channels of the output

HDR image in the direct architecture. In theWE architecture the net-

work outputs the blending weights, α1,α2,α3, each with 3 channels,

and thus, no = 9. Finally, for the network in the WIE architecture

no = 18, since it outputs the refined aligned images, Ĩ1, Ĩ2, Ĩ3, each
with 3 color channels, in addition to the blending weights.

Discussion. In summary, the three architectures produce high-

quality results, better than state-of-the-art approaches (Table 1),

Eq
. 6

Dynamic Set Static Set

Ground Truth HDR Image

Middle Image of Static Set

Input LDR Images

Fig. 7. We ask a subject to stay still and capture three bracketed exposure
images on a tripod which are then combined to produce the ground truth
image. We also ask the subject to move and capture another set of bracketed
exposure images. We construct our input set by taking the low and high
exposure images from this dynamic set and the middle exposure image from
the static set.

0 10.5

1

0 10.5

1

0 10.5

1

Fig. 8. The triangle functions that we use as the blending weights to gener-
ate our ground truth HDR images.

but have small differences. The direct architecture is the simplest

among the three, but in rare cases leaves small residual alignment

artifacts in the results. The WE architecture is the most constrained

one and is able to better suppress the artifacts in these rare cases.

Finally, similar to the direct architecture, the WIE architecture is

able to synthesize content that is not available in the aligned LDR

images. However, the direct and WIE architectures slightly overblur

images in dark regions to suppress the noise, as will be shown later

in Figs. 11 and 12. Therefore, we believe the WE is the most stable

architecture and produces results with the best visual quality.

4 DATASET
Training deep networks usually requires a large number of training

examples. In our case, each training example should consist of a set

of LDR images of a dynamic scene and their corresponding ground

truth HDR image. Unfortunately, most existing HDR datasets either

lack ground truth images [Tursun et al. 2015, 2016], are captured

from static scenes [Funt and Shi 2010], or have a small number of

scenes with only rigid motion [Karaduzovic-Hadziabdic et al. 2016].

We could potentially use the HDR video dataset of Froehlich et

al. [2014] to produce our training sets. However, the number of

distinct scenes in this dataset is limited, making it unsuitable for

training deep networks.

To overcome this problem, we create our own training dataset of

74 different scenes and substantially extend it through data augmen-

tation. Next, we discuss the capturing mechanism, data augmenta-

tion, and the process to generate our final training examples.

Capturing Process. The goal is to produce a set of LDR images

with motion and their corresponding ground truth HDR image. For
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Aligned LDR WE (Tonemapped HDR Image)Input LDR Direct WE WIE GTSimple Merging

Fig. 9. We compare the result of our three architectures on the two insets indicated by the green and red boxes. We also show the result of simply merging the
aligned LDR images (shown on the left) into an HDR result. The direct architecture sometimes leaves the residual alignment artifacts in the final results, while
the other two architectures are more effective in suppressing these artifacts, as shown in the top inset. Moreover, the direct and WIE architectures are able to
synthesize content, and thus, can reduce noise (top inset) and recover small highlights (bottom inset). In comparison, the WE architecture produces the final
HDR results using the content of the aligned LDR images, and thus, is more constrained to the available content. Note that, we have adjusted the brightness
and contrast of the top inset to make the differences visible.

this process, we consider mostly static scenes and use a human

subject to simulate motion between the LDR images.

To generate the ground truth HDR image, we capture a static set

by asking a subject to stay still and taking three imageswith different

exposures on a tripod (see Fig. 7). Since there is no motion between

these captured LDR images, we use a simple triangle weighting

scheme, similar to the method of Debevec and Malik [1997], to

merge them into a ground truth HDR image using Eq. 6. The weights

in this case are defined as:

α1 = 1 − Λ1(I2), α2 = Λ2(I2), α3 = 1 − Λ3(I2), (13)

where Λ1,Λ2, and Λ3 are shown in Fig. 8. Although more sophisti-

cated merging algorithms, such as Granados et al.’s approach [2010],

can be used to produce the ground truth HDR image, we found that

the simple triangle merge is sufficient for our purpose.

Next, we capture a dynamic set to use as our input by asking the

subject to move and taking three bracketed exposure images either

by holding the camera (to simulate camera motion) or on a tripod

(see Fig. 7). Since in our system, the estimated HDR image is aligned

to the reference image (middle exposure), we simply replace the

middle image from the dynamic set with the one from the static set.

Therefore, our final input set contains the low and high exposed

images from the dynamic set as well as the middle exposed image

from the static set.

We captured all the images in RAW format with a resolution of

5760 × 3840 and using a Canon EOS-5D Mark III camera. To reduce

the possible misalignment in the static set, we downsampled all the

images (including the dynamic set) to the resolution of 1500 × 1000.

To ensure diversity of the training sets, we captured our bracketed

exposure images separated by two or three stops.

We capturedmore than 100 scenes, while ensuring that each scene

is generally static. However, we still had to discard a quarter of these

scenes mostly because they contained unacceptable motions (e.g.,

leaves, human). These motions could potentially produce ghosting

in the ground truth images and negatively affect the performance

of the training. We note that slight motions are unavoidable, but

they are rare and treated as outliers during training.

Data Augmentation. To avoid overfitting, we perform data aug-

mentation to increase the size of our dataset. Specifically, we use

color channel swapping and geometric transformation (rotating 90

degrees and flipping) with 6 and 8 different combinations, respec-

tively. This process produces a total of 48 different combinations

of data augmentation, from which we randomly choose 10 combi-

nations to augment each training scene. Our data augmentation

process increases the number of training scenes from 74 to 740.

Patch Generation. Finally, since training on full images is slow,

we break down the training images into overlapping patches of size

40 × 40 with a stride of 20. This process produces a set of training

patches consisting of the aligned patches in the LDR and HDR

domains as well as their corresponding ground truth HDR patches.

We then select the training patches where more than 50 percent

of their reference patch is under/over-exposed, which results in

around 1,000,000 selected patches. This selection is performed to

put the main focus of the networks on the challenging regions.

5 RESULTS
We implemented our approach in MATLAB and used MatCon-

vNet [Vedaldi and Lenc 2015] for efficient implementation of the

convolutions in our CNNs. To train our network in all three ar-

chitectures, we first initialized their weights using the Xavier ap-

proach [Glorot and Bengio 2010]. We then used ADAM solver to

optimize the networks’ weights with β1 = 0.9, β2 = 0.999, and a

learning rate of 0.0001. We performed the training in all three archi-

tectures for 2,000,000 iterations on mini-batches of size 20, which

took roughly two days on an Intel Core i7 with 64 GB of memory and

a GeForce GTX 1080 GPU. Our method takes roughly 30 seconds to

generate the final HDR image from three input LDR images of size

1000 × 1500. Specifically, it takes 28.5 seconds to align the images

using the optical flow method of Liu [2009] and 1.5 seconds to evalu-

ate the network and generate the final HDR result. The HDR results

demonstrated here are all tonemapped with Photomatix [2017] to

properly show the HDR details in each image.

Comparison of the Three Architectures. We begin by comparing

our three system architectures (Sec. 3.2) in Fig. 9. We also show the

result of simple triangle merging (Eqs. 6 and 13) to demonstrate

the ability of our method to hide the alignment artifacts. As seen,

all three architectures are able to suppress artifacts and produce
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Re�ned (     )Aligned (     ) Re�ned (     )Reference (     )

Blending WeightsBlending Weights

Weight and Image Estimator (WIE)Weight Estimator (WE)

Fig. 10. We show the outputs of the network in WE and WIE architectures
for the image in Fig. 9. As seen, the blending weights produced by the two
architectures have similar patterns. The weight α1 is responsible for drawing
information from the low exposure image, and thus, has large values in
the bright regions. In contrast, α3 is large in the dark regions to utilize
the information available in the high exposure image. Moreover, the two
architectures assign small weights to the regions with artifacts (indicated
by green arrows) to avoid introducing these artifacts to the final results.
Finally, we show the refined aligned images for the WIE architecture on the
right. Note that, since our training is end-to-end, the network sometimes
produces invalid content in the regions that do not contribute to the final
results, e.g., green areas in Ĩ1. As shown in the red inset, our network in this
architecture is able to hallucinate the highlight in the refined image, Ĩ1, and
consequently, reconstruct the highlight in the final HDR image (bottom row
Fig. 9). Moreover, in the regions where the high exposure image contains
alignment artifacts, our network synthesizes a refined image with slightly
less noise than the reference image (green inset).

high-quality HDR results. However, they have small differences

which comes from their design differences.

Overall, the direct architecture is the most simple and straightfor-

ward one among the three. However, since training the network in

this architecture is difficult, it produces results with residual align-

ment artifacts in some cases (top inset in Fig. 9). In comparison, the

other two architectures are more constrained, and thus, are able to

better suppress the artifacts in these cases. Specifically, the weight

estimator (WE) architecture is the most constrained one and pro-

duces the final HDR results using only the content of the original

aligned LDR images. Therefore, if the fidelity to the content is of

major concern, this architecture should be used. Finally, the weight

and image estimator (WIE) is slightly less constrained and is able

to synthesize content which is not available in the aligned images.

Therefore, similar to the direct architecture, WIE is able to reduce

noise and recover small highlights in some cases.

Ground TruthWIEWEDirect
Fig. 11. We show the result of our three architectures on an inset taken
from Fig. 1. The direct and WIE architectures overblur the fine details of the
flower to remove the noise. The WE architecture keeps the details, but is
slightly more noisy.

WIEWEDirectWE Result Ground Truth

Fig. 12. The direct and WIE architectures reproduce highlights at the top
inset, but slightly overblur the fine structures of the lady’s hair. This can be
seen better by toggling back and forth between the images in the supple-
mentary materials.

In Fig. 10, we demonstrate the output of the networks in the WE

and WIE architectures. As expected, in both networks the predicted

blending weights, αi , measure the quality of each aligned image. For

example, the weight for the low exposure image (α1) has large values
in the highlights and bright regions, while the weight for the high

exposure image (α3) has large values in the dark regions. It is worth

noting that our network in both cases avoids introducing artifacts

to the final results by assigning small weights to the regions with

artifacts, such as the ones shown with green arrows in the bottom

row. Furthermore, as discussed, our network in theWIE architecture

is able to hallucinate small highlights (red inset) and reduce the noise

through reconstruction of the refined aligned images (green inset).

However, because of this additional flexibility, the WIE and di-

rect architectures reduce noise through overblurring, as shown in

Fig. 11. In contrast, theWE architecture is faithful to the content and

produces results that are slightly better visually, but more noisy. Fig-

ure 12 shows another case, where the direct and WIE architectures

are able to recover the highlights in the region where alignment

fails, but overblur the fine details of the lady’s hair. Overall, while

all three architectures produce high-quality results, we believe the

WE architecture produces results with slightly better visual quality.

Comparison on Test Scenes with Ground Truth. Next, we compare

our three architectures against several state-of-the-art techniques.

Specifically, we compare against the two patch-based methods of

Hu et al. [2013] and Sen et al. [2012], the motion rejection method of

Oh et al. [2015], and the flow-based approach of Kang et al. [2003].

We used authors’ code for all the approaches, except for Kang et

al.’s method that we implemented ourself since the source code is not

available. Note that, we used the optical flow method of Liu [2009]

(same as ours) to align the input LDR images in Kang et al.’s ap-

proach. Furthermore, the method of Oh et al. is a motion rejection

approach which has a mechanism to align the images by estimating

homography through an optimization process. However, we provide
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Kang Sen Hu Oh Ours Ours Ours

(2003) (2012) (2013) (2015) Direct WE WIE

PSNR-T 39.10 40.75 35.49 32.19 42.92 42.74 43.26

HDR-VDP-2 64.46 63.43 60.86 61.31 67.45 66.63 67.50

PSNR-L 39.97 37.95 30.40 34.43 41.69 41.25 41.60

Table 1. Quantitative comparison of our three system architectures against
several state-of-the-art methods. The PSNR-T and PSNR-L refer to the PSNR
(dB) values calculated on the tonemapped (using Eq. 1) and linear images,
respectively. All the values are averaged over 15 test scenes and larger values
mean higher quality.

Oh et al.
36.27

Ours
43.58

Ground
Truth

Hu et al.
38.23

Sen et al.
41.85

Kang et al.
37.24

Fig. 13. Comparison of our approach against several state-of-the-art meth-
ods on one of the 15 test sets. See supplementary materials for the full
images including the input LDR images.

our aligned images as the input to their method, which we found

to significantly improve their results. To evaluate the results, we

compute the PSNR values for images in the tonemapped (PSNR-T)
3

and linear (PSNR-L) domains. Note that, since we observe the HDR

images after tonemapping, the PSNR values in the tonemapped do-

main better reflect the quality of the HDR images. However, we

also show the PSNR values in the linear domain for completeness.

Moreover, we measure the quality of the results using HDR-VDP-

2 [Mantiuk et al. 2011], which is a visual metric specifically designed

to evaluate the quality of HDR images.

Table 1 shows the result of this comparison averaged over 15 test

scenes. Note that, none of the test scenes are included in the training

sets and they are captured from different subjects. As can be seen,

all our three architectures produce results with better numerical

errors than the state-of-the-art techniques. Moreover, while all the

architectures have similar numerical errors, the WE architecture is

slightly worse. This is perhaps because this architecture is the most

constrained, and thus, is not as flexible as the other architectures in

minimizing the error. However, we believe the WE architecture is

slightly more stable and produces results with higher visual quality,

and thus, use it to produce the results in the rest of the paper.

3
Note that, we use Eq. 1 as our tonemapping operator in this case, which is different

from the operator used to show the final images. Since the operator in Eq. 1 does not

clamp the images, the tonemapped images contain all the HDR information.
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OursHu et al.Sen et al.Our Tonemapped HDR Image
Fig. 14. Comparison of our approach against the patch-based methods of
Sen et al. [2012] and Hu et al. [2013].

In Fig. 13, we compare our approach against other methods on

one of these scenes, demonstrating three people in a dark room with

bright windows. The first row of insets shows a region where the

highlights need to be reconstructed from the low exposure image.

The methods of Kang et al. and Oh et al. are able to recover the

highlights despite having small artifacts as indicated by the arrows.

The patch-based approaches of Sen et al. and Hu et al. are not able

to find corresponding patches in the low exposure image, and thus,

produce saturated highlights. Our approach is able to recover the

highlights and produces an HDR image which is reasonably close

to the ground truth. The second row demonstrates a region with

significant motion, where the approaches by Kang et al. and Oh

et al. are not able to avoid introducing the alignment artifacts in

the final results. The methods of Sen et al. and Hu et al. are able to

faithfully reconstruct the hands. However, they often heavily rely

on the reference image, and thus, produce an overall noisy result.

In contrast, our approach is able to avoid alignment artifacts, but

draws information from the high exposure image and produces a

relatively noise-free results.

Comparison on Natural Scenes. We compare our method against

the patch-based approaches of Sen et al. and Hu et al. on three chal-

lenging test scenes in Fig. 14. Note that, we do not have ground truth

images in these cases as we captured images of natural dynamic

scenes. The top row shows a picture of an outdoor scene with a

moving car. In this case, the patch-based approaches are not able to

recover the top of the building, which is saturated in the reference

image, because of the car’s significant motion. Moreover, these two

techniques produce noisy results in the dark regions because they

heavily rely on the reference.
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OursOh et al.Kang et al.Our Tonemapped HDR Image
Fig. 15. Comparison of our approach against the approaches by Kang et
al. [2003] and Oh et al. [2015].

The second row demonstrates a picture of a man walking in a

dark hallway. The patch-based methods are not able to effectively

suppress the noise in the top inset. Moreover, these approaches

typically have problemwith the structured regions, and thus, are not

able to properly reconstruct the edges of the bricks in the bottom

inset. Our method is able to reduce noise in the dark areas and

properly reconstruct the saturated regions. Finally, the third row

shows a picture of an outdoor scene on a bright day with a walking

person. All the methods are able to plausibly reconstruct the moving

person. However, this particular scene has large saturated regions

in the reference image (see supplementary materials). Therefore,

the patch-based approaches are not able to properly reconstruct the

saturated regions due to insufficient constraints. On the other hand,

our method produces a high-quality HDR image.

Figure 15 shows a comparison of our approach against the meth-

ods of Kang et al. and Oh et al. on three other test scenes. The top

row shows an outdoor scene with a bright background where a man

is sitting in a dark area. Here, the other approaches are not able to

avoid alignment artifacts and generate results with duplicate (Kang

et al.) or missing (Oh et al.) hands. However, our method is able

to produce a noise-free high-quality HDR result. The second row

shows a picture of a lady and a baby in a dark room with a bright

window. The two other approaches are not able to properly recon-

struct the baby’s hand as alignment fails in this region because of

the motion blur. Note that, only our approach is able to reconstruct

the bright highlight on the lady’s shirt and the baby’s face without

noise and other artifacts.

Finally, the third row demonstrates an outdoor scene with a large

dynamic range and significant motion. Kang et al.’s method is not

able to suppress the alignment artifacts around the motion bound-

aries. Similarly themethod of Oh et al. introduces alignment artifacts
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Fig. 16. Comparison against the patch-based methods of Sen et al. [2012]
and Hu et al. [2013] on Tursun et al.’s scenes [2015; 2016].

OursOh et al.Kang et al.Our Tonemapped HDR Image
Fig. 17. Comparison against the approaches by Kang et al. [2003] and Oh
et al. [2015] on Tursun et al.’s scenes [2015; 2016].

to the final results and is noisy. However, our method properly re-

constructs the areas around the motion boundaries and produces a

high-quality HDR result.

We also compare our approach against other methods on several

scenes from Tursun et al. [2015; 2016]. These scenes have 9 images

with one stop separation from which we select three images with

two or three stop separations. Note that these scenes are captured

using different cameras than the one we used to capture our training

scenes. Figure 16 shows comparison of our approach against the

methods of Sen et al. [2012] and Hu et al. [2013] on the Fountain

(top) and Cafe (bottom) scenes. Since the motion of water in the

Fountain scene is complex, the patch-based approaches are not able

to find correspondences in these regions. Therefore, these methods

are not able to recover the highlights on the water. The Cafe scene

contains bright windows on the right, which are completely satu-

rated in the reference image. Although other methods recover the
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building, they produce results with crooked (Sen et al.) or replicated

and blurred (Hu et al.) structures, which are common problems of

patch-based synthesis.

In Fig. 17, we show comparison of our method against the ap-

proaches by Kang et al. [2003] and Oh et al. [2015] on theMuseum1

(top) and Cars (bottom) scenes. Since the person walking in front

of the camera in theMuseum1 scene has motion blur, the warped

images contain severe alignment artifacts due to inaccuracies in

optical flow. As a result, the other approaches produce images with

missing head and hand, while our method generates a high-quality

HDR image. Similarly, optical flow is not able to align the fast mov-

ing cars in the Cars scene, and thus, other methods produce results

with artifacts on the two cars.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK
As discussed in Sec. 2, there are approaches that capture the multiple

exposures in a single shot by, for example, varying the per-pixel

exposure [Heide et al. 2014; Hajisharif et al. 2015; Serrano et al. 2016].

Although these approaches inherently handle dynamic scenes, they

require special types of sensors, which are not readily accessible. In

contrast, bracketed exposure images, as used in our method, can be

easily captured using standard digital cameras. This is perhaps why

stack-based HDR imaging approaches are popular and implemented

in commercial devices such as smartphone cameras.

It is worth noting that dynamic range can also be increased

by combining multiple images captured with the same exposure

time [Zhang et al. 2010; Hasinoff et al. 2016]. Comparing to brack-

eted exposure methods, the images in these techniques have similar

content, and thus, alignment is generally simpler. However, these

methods typically demonstrate increasing dynamic range by only

two or three stops. The main reason is that, to increase the dynamic

range by a large factor, these methods require capturing and pro-

cessing an impractically large number of input images. For example,

increasing the dynamic range by four or six stops, as we show in

this paper, requires capturing 16 or 64 images, respectively. There-

fore, bracketed exposure approaches, like ours, are more suitable

for capturing scenes with large dynamic range.

The main limitation of our approach is that our network takes

a specific number of images as the input. We demonstrated that

our system is able to produce high-quality results with a set of

three input images. Although we observed that three images are

sufficient to capture the dynamic range of most scenes, it would

be interesting to retrain our network for cases with more than

three inputs (e.g., 5 or 7) and evaluate its performance. Moreover,

investigating flexible network architectures to make the system

independent of the number of inputs would be an interesting future

research topic.

In this paper, we trained our networks on scenes with two and

three stop separations. It is worth noting that our system is able to

produce high-quality results on scenes with separations that it has

not been trained on, e.g., the scene in Fig. 15 (middle) is captured at

-2.66, 0, and +3.33 stops. However, to produce high-quality results

on scenes with significantly different separations than two or three

stops, our system needs to be retrained.

Another limitation of our method is that in some cases, because

of the camera motion, the low and high exposure images do not

have information at the boundaries of the image. In these situations,

we simply use the content of the reference image to reconstruct the

HDR image. Therefore, the final HDR image could appear noisy or

saturated if the reference image is under/over-exposed in these re-

gions. While all the other flow-based techniques have this limitation,

the patch-based methods are usually able to perform hole-filling

and synthesize the content of these regions. However, this is not

a major limitation as the same patch-based hole-filling could be

performed in a postprocess after reconstructing the HDR image

with our system.

Since our goal is to handle alignment artifacts, we train our net-

works on images with significant motion. In this case, our system

learns to properly merge the images in the aligned regions, while

avoiding the artifacts in the regions with misalignments. As a result,

we produce results that are slightly noisier than the images obtained

by noise optimal merging approaches [Hasinoff et al. 2010; Grana-

dos et al. 2010] in the aligned regions. Considering the ability of our

approach in avoiding significant alignment artifacts, we believe this

is an acceptable sacrifice.

As discussed, while ourWIE architecture produces the best results

numerically (PSNR-T in Table 1), it sometimes overblurs the noisy

regions producing results that are not visually pleasing, as shown

in Fig. 11. In the future, it would be interesting to see if training

the network in a perceptual way by, for example, using generative

adversarial networks [Goodfellow et al. 2014], could improve the

visual quality of the results.

Finally, in this paper we used optical flow to align the input im-

ages. However, the flow estimation could potentially be learned

using an additional CNN and trained end-to-end to minimize the

error between the estimated and ground truth HDR images. We per-

formed a simple experiment to learn the final flow by providing a

network with a homography field, optical flow, and a flow obtained

by matching patches. However, the final HDR images generated

with this system were generally similar to the ones generated by our

system. This experiment suggests that the optical flow is perhaps

the best among the three inputs to the network and the artifacts of

the alignment can be easily avoided by the merge network. How-

ever, in this simple experiment, the network was basically selecting

the best flow among the three input flows. In the future, it would

be interesting to investigate the possibility of training a network,

perhaps similar to the one proposed by Dosovitskiy et al. [2015] or

Ilg et al. [2016], to estimate the flow from the input images.

7 CONCLUSION
We have presented the first learning-based technique to produce

an HDR image using a set of LDR images captured from a dynamic

scene. We use a convolutional neural network to generate the HDR

image from a set of images aligned with optical flow. To properly

train the network, we proposed a strategy to produce a set of in-

put LDR images and their corresponding ground truth image. We

present three architectures for our learning-based techniques and

find through extensive comparison that using the knowledge from

existing techniques in our learning system leads to improvement.

Specifically, we found that using the network to estimate blending

weights for combining aligned LDR images is slightly better than

modeling the entire process with a network. This finding implies
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that learning approaches could use elements of existing techniques

to potentially solve complex problems more efficiently.
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