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Fig. 1. We use our learning-based techniques to synthesize an 8 × 8 light field from an input image, captured with a standard Canon camera. One of our

synthesized corner views along with all the corner views for two insets are shown on the left. On the right, we use our synthesized light field to generate two

refocused images. The image is courtesy of Wang et al. [2017].

We propose a learning-based approach to synthesize a light field with a

small baseline from a single image. We synthesize the novel view images

by first using a convolutional neural network (CNN) to promote the input

image into a layered representation of the scene. We extend the multiplane

image (MPI) representation by allowing the disparity of the layers to be

inferred from the input image. We show that, compared to the original

MPI representation, our representation models the scenes more accurately.

Moreover, we propose to handle the visible and occluded regions separately

through two parallel networks. The synthesized images using these two

networks are then combined through a soft visibility mask to generate the

final results. To effectively train the networks, we introduce a large-scale

light field dataset of over 2,000 unique scenes containing a wide range of

objects. We demonstrate that our approach synthesizes high-quality light

fields on a variety of scenes, better than the state-of-the-art methods.
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1 INTRODUCTION

4D light fields capture both the intensity and direction of light,

enabling appealing effects such as viewpoint change, synthetic aper-

ture, and refocusing. However, capturing a light field is difficult as it

requires taking a set of images from different views at the same time.

While off-the-shelf cameras such as Lytro and RayTrix capture light

fields, they are not as widespread as standard digital and cellphone

cameras. To make light fields widespread, our goal in this work is

to synthesize 4D light fields from a single 2D RGB image.

With the rise of deep learning in recent years, the problem of

single image view synthesis has received considerable attention [Liu

et al. 2018; Niklaus et al. 2019; Park et al. 2017; Tulsiani et al. 2018].

However, these approaches are not designed to generate structured

4D light fields with small baselines. Specifically, they are not able

to resolve the ambiguity in the scale of the scene’s depth, often

producing light fields with incorrect scale. The only exceptions are

the approaches by Srinivasan et al. [2017] and Cun et al. [2019].

These methods first estimate the scene geometry at the new view

and use it to warp the input and reconstruct the novel view image.

Unfortunately, because of the per view estimation of the scene

geometry, when trained on general scenes, these methods typically

produce results with incorrect depth and inconsistent parallax.

To address these problems, we build upon multiplane image (MPI)

representation [Zhou et al. 2018] that describes a scene through

a series of RGBα images at fixed depths. Once this representation

is estimated for a scene, novel view images can simply be recon-

structed through alpha composition of the reprojected RGB images

at different layers. Although MPI has been successfully used for

multi-image view synthesis [Mildenhall et al. 2019; Srinivasan et al.

2019; Zhou et al. 2018], it produces sub-optimal results in our ap-

plication of single image view synthesis with small baselines (See
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Fig. 3). Therefore, we propose to extend this representation by allow-

ing the disparity1 of each layer to be inferred from the scene. Our

representation, called variable multiplane image (VMPI), is able to

better describe a scene as the disparity of the layers are set according

to the distribution of the depth of the objects in the scene.

Moreover, we observe that reconstructing the visible and oc-

cluded regions from a single image requires two different processes.

The content of the visible regions exist in the input image, but the

occluded areas need to be hallucinated. Therefore, we propose to

handle these two types of areas through two parallel convolutional

neural networks (CNN). In our system, one network handles the

visible areas, while the other is responsible for reconstructing the oc-

cluded areas. Specifically, the networks estimate two sets of VMPIs

using a single image and its corresponding depth, obtained with a

pre-trained network. These VMPIs are then used to reconstruct two

novel view images which are in turn fused using a soft visibility

mask to generate the final image. We train the visible network with

an L1 loss, but use a perceptual loss to train the occluded network

to hallucinate visually pleasing content in the occluded regions.

To effectively train our networks on general scenes, we introduce

a new light field dataset of 2,000 unique scenes containing a variety

of objects such as building, bicycle, car, and flower. Although all

of our training light fields have an angular resolution of 8×8, we

propose a training strategy to supervise our network for generating

15×15 light fields. Using light fields with a fixed baseline as our

training data, our system learns to infer the scale of the scene’s

depth from the input data. We demonstrate that our approach is

able to produce high-quality light fields that match the ground

truth better than the state-of-the-art methods. Overall, our main

contributions are:

• We present an extension of MPI scene representation and

demonstrate its advantage over the original MPI for single

image view synthesis with small baseline (Sec. 3.1).

• Wepropose to handle the visible and occluded regions through

two parallel networks (Sec. 3.2).

• We introduce a new large-scale light field dataset containing

over 2,000 unique scenes (Sec.3.3).

2 RELATED WORK

The problem of synthesizing novel views from one or more im-

ages has been studied for several decades. Here, we provide a brief

overview of the previous approaches by classifying them into two

general categories.

Multi-Image View synthesis. View synthesis approaches typically

leverage the scene geometry [Chaurasia et al. 2013; Hedman et al.

2017; Hedman and Kopf 2018; Penner and Zhang 2017] to utilize the

content of the input views and properly synthesize the novel view

image. In recent years and with the emergence of deep learning,

many approaches based on convolutional neural networks (CNN)

have been proposed. Flynn et al. [2016] estimate the color and depth

using two CNNs and synthesize the novel view using these estimates.

Choi et al. [2019] propose to estimate depth probability volume to

1Disparity and depth are closely related in a structured light field and, thus, we use
them interchangeably.

reconstruct an initial image and then refine it to produce the final

image. Zhou et al. [2018] propose to magnify the baseline of a pair of

images with small baselines by introducing multiplane image (MPI)

scene representation. Srinivasan et al. [2019] use MPI for extreme

view extrapolation, while Mildenhall et al. [2019] and Flynn et al.

[2019] utilize it for large baseline view synthesis. We build upon the

MPI representation, but use a single image as the input and tackle

the specific problem of synthesizing structured light field images.

Several approaches have been specifically designed to synthesize

light fields from a sparse set of input views. Kalantari et al. [2016]

propose to reconstruct a light field from the four corner images by

breaking the problem into disparity and appearance estimations. To

handle scenes with non-Lambertian effects, Wu et al. [2017] propose

to increase the angular resolution of a light field by operating on

epipolar-plane images (EPI). Wang et al. [2018a] propose a similar

approach, but use 3D CNN and 2D strided convolutions on stacked

EPIs to avoid the pre- and post-processing steps of Wu et al.’s ap-

proach. These methods require at least four images to reconstruct a

light field and are not able to work on a single image.

Single-Image View synthesis. A large number of methods have

proposed to use CNNs to estimate novel views from a single im-

age [Olszewski et al. 2019; Park et al. 2017; Rematas et al. 2016;

Tatarchenko et al. 2015; Yan et al. 2016; Yang et al. 2015], but they

are only applicable to a specific object or scene. Zhou et al. [2016]

propose to synthesize novel views by first predicting a flow and

then using it to warp the input image. Tulsiani et al. [2018] estimate

layered depth image representation of a scene using view synthesis

as a proxy task. Liu et al. [2018] estimate a set of homography trans-

formations and masks and use them to reconstruct the novel view.

Dhamo et al. [2019] use a conditional generative adversarial network

to estimate novel views by breaking the scene into foreground and

background layers. To generate 3D Ken Burn effects from a single

image, Niklaus et al. [2019] use their estimated depth to map the

input image to a point cloud and use a network to fill in the missing

areas. Evain and Guillemot [2019] introduce a lightweight neural

network and train it on a set of stereo images. Using an input RGB-

D image, Shih et al. [2020] reconstruct a 3D photograph through

layer depth image representation. Wiles et al. [2020] introduce a

point cloud based view synthesis approach from a single image

without needing 3D ground truth information for supervising the

network during training. While these approaches work well for

their intended applications, because of the scale ambiguity of the

depth, they cannot properly reconstruct structured light fields with

small baselines.

A couple of approaches propose to synthesize structured light

field images from a single image. Srinivasan et al. [2017] use two

sequential networks to perform disparity estimation and image

refinement. The first network estimates a set of disparities at all the

novel views. These disparities are then used to warp the input image

to the novel view and they in turn are refined through the second

network. Cun et al. [2019] propose to estimate a flow from the input

image, depth, and the position of novel view. The flow is then used

to warp the input image and reconstruct the novel view image.

These approaches estimate the scene geometry independently for

each view and, thus, produce results with inconsistent parallax and
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Visible CNN

Occluded CNN

Image + Depth

VMPI representations

Novel view image

Blend (Eq. 3)

Rendered images

Fig. 2. Our system consists of two CNNs for handling the visible and occluded regions. Our networks take a single image along with its corresponding depth

(estimated using Wang et al.’s approach [2018b]) as the input and estimate our proposed VMPI scene representation. The two VMPI representations are then

used to reconstruct two images, which are then combined through a soft visibility mask to generate the final image. The visibility mask is calculated using the

transparency layers of the visible network’s VMPI (see Eq. 6).

inaccurate depth, when trained on general scenes. In contrast, we

use a unified representation of the scene geometry to reconstruct

all the views and are able to produce results with high quality.

Finally, the concurrent work by Tucker and Snavely [2020] also

propose an MPI-based approach for single image novel view syn-

thesis. However, they mostly perform large baseline view synthesis

and only demonstrate their results for small baseline light fields on

the dataset of Srinivasan et al. [2017], which is limited to flowers. In

contrast, our goal is to develop a practical system for small baseline

view synthesis with the ability to handle general scenes.

3 APPROACH

Given a single image I and the position of the novel view q (inu and

v directions), our goal is to synthesize the novel view image Iq . Our
system consists of two parallel networks that are responsible for

generating results in the visible and occluded areas. To do this, each

network estimates a novel layered representation of the scene from

the input image and its corresponding depth. These representations

are then used to render two images, which are in turn combined

using a soft visibility mask to generate the final image.

To estimate the layered scene representation, our system needs

to understand the geometry of the scene. In multi-image view syn-

thesis where several images from different views are provided as

the input to the system, the depth can be easily inferred through

correspondences between the input images. However, in our ap-

plication, only a single image is provided to the system and, thus,

the geometry needs to be inferred through contextual information.

Unfortunately, it is difficult to train a network to do so using limited

light field training data. Therefore, we use the pre-trained single

image depth estimation network by Wang et al. [2018b] to estimate

the depth and use it along with the image as the input to our system.

We note that the input depth is relative as there is an inherent

ambiguity in the scale of the estimated depth from a single image.

However, by training our system on light fields with fixed baselines,

our network can infer this scale from the input image. This is in

contrast to the large baseline view synthesis approaches like the one

by Niklaus et al. [2019], where the estimated depth is directly used

to reconstruct the novel view images. Because of this, as shown in

Sec. 4, Niklaus et al.’s method produces novel view and refocused

images that do not match the ground truth.

In the following sections, we start discussing different compo-

nents of our system by first explaining our new scene representation.

The overview of our approach is given in Fig. 2.

3.1 Variable Multiplane Image Representation

Our method builds upon multiplane image (MPI) scene representa-

tion, proposed by Zhou et al. [2018]. MPI represents a scene at the

input coordinate frame through a set of N fronto-parallel planes

at fixed disparities D = {d1, · · · ,dN }. Each plane Li consists of an
RGB color image Ci and a transparency map αi , i.e., Li = {Ci ,αi }.
To reconstruct the image at novel view Îq , we first translate the

planes to the coordinate frame of the novel view based on their

corresponding disparity as follows:

Li ,q (p) = Li (p + diq) (1)

where p is the pixel position in x and y directions, while q is the

novel view position inu andv directions. The final novel view image

can then be reconstructed by alpha blending the color images at

each layer from back to front through standard over operator [Porter

and Duff 1984]. This can be formally written using the following

recursive function:

Ii ,q = (1 − αi ,q ) Ii−1,q + αi ,q Ci ,q , where I1,q = C1,q . (2)

where IN ,q is the estimated novel view image Îq . Note that, the

transparency of the background layer α1 is always 1 to ensure there
are not any holes in the final image.

To utilize this representation in our single image view synthesis

application, we can simply use a CNN to estimate the MPI of a scene

from an input image and its corresponding depth. This network

can be trained by minimizing the L1 loss between the rendered and

ground truth novel view images. However, such a system is not able

to produce satisfactory results, as shown in Fig. 3. When using a

large number of planes (N = 32), the network tends to repeat the

content over multiple planes and produce a blurry rendered image.

This is mainly because the L1 loss does not sufficiently penalize
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blurriness to force the network to place the content on a single

plane with the correct depth. On the other hand, with fewer layers

(N = 8) the depth planes are sufficiently separated and the network

can properly place the content on the correct planes. However, in

cases where an object falls in between two planes, the network

places the object on multiple planes to simulate the correct depth,

producing results with ghosting artifacts. Note that, as discussed at

the end of this section, this problem is specific to the use of MPI in

our application of single image view synthesis with small baselines.

We address this problem by extending the original MPI repre-

sentation to have layers with scene-dependent disparities. In our

representation, called variable multiplane image (VMPI), the dispar-

ity of each layer is inferred from the input. The main advantage of

our representation is that we can use fewer planes (N = 8), but place

them more accurately throughout the scene and avoid ghosting and

blurring artifacts, as shown in Fig. 3.

To estimate the VMPI representation, we need to estimate the

disparity di (scalar) at each layer, in addition to the color image Ci
and the transparency map αi . To do this, our network estimates a 5-

channel output for each layer; three channels for RGB, one channel

for α , and one channel for disparity. The final disparity of each

layer is then computed by averaging the pixel values in the disparity

channel of the corresponding layer. We use the estimated disparity

at each layer (instead of the fixed ones) to perform the warping in

Eq. 1 and then blend the warped images through Eq. 2 to reconstruct

novel view images. Note that since the estimated disparities could

potentially be out of order, we first sort them before using Eq. 2 to

blend the planes. Alternatively, we can force the network to estimate

the disparities in order by introducing a penalty for out of order

estimations during training.

We also experimented with estimating the disparity of each layer

using a set of fully connected layers, but this strategy produced

results with lower quality than our approach. This is mainly because

the network needs to know the disparity of each VMPI layer to be

able to appropriately estimate their RGBα values. However, in this

case, the disparities are estimated by a separate fully connected

branch and the main branch is unaware of the estimated disparities.

Discussion. It is worth noting that existing MPI-based techniques

do not face the blurriness problem, discussed in this section. This is

mainly because all of these approaches use a perceptual VGG-based

loss [Zhou et al. 2018] between the rendered and ground truth novel

view images to train their network. The VGG-based loss enforces the

network to assign the content to one of the MPI layers, as blurriness

is heavily penalized by this loss. This is even the case when using

a small number of planes, as the VGG-based loss function favors

slight misalignment over blurriness.

Unfortunately, when using the VGG-based loss in our application,

the network tends to estimate the input image for all the novel

views, i.e., Iq = I ∀q. This is mainly because the VGG-based loss

is robust to slight misalignment and favors sharpness. Since our

baseline is small, the input and other novel views are relatively

close. Therefore, the sharp and high-quality input image with slight

misalignment produces lower error than what the network can

potentially reconstruct from a single image.

Our novel view

MPI 8MPI 32 VMPI 8MPI 16 GT
Fig. 3. Comparison of our approach with MPI and our proposed VMPI

representations. MPI with a large number of planes produces results with

blurriness, while MPI with a small number of planes produces ghosting

artifacts. Our VMPI representation with a small number of planes can

accurately represent the scene and produce high-quality results.

3.2 Two-Network Fusion

The network trained with L1 loss to estimate VMPI representation,

as discussed in the previous section, is able to produce reasonable

results, but has difficulty reconstructing the object boundaries, as

shown in Fig. 4 (Visible). In these regions, which are occluded in the

input view, the CNN simply replicates the visible content, producing

results with ghosting artifacts. Our main observation is that the

process of reconstructing these two areas is different. The content of

the visible regions is available in the input image, but the occluded

areas need to be hallucinated.

Therefore, we propose to handle these areas separately through

two parallel networks (see Fig. 2). The visible and occluded networks

first estimate two sets of VMPI representations. These VMPIs are

then used to reconstruct the visible and occluded images. We then

fuse reconstructed images using a soft visibility mask to generate

the final novel view image. This can be formally written as:

Îq = Mq Iv ,q + (1 −Mq ) Io,q , (3)

where Iv ,q and Io,q are the reconstructed images using the output

of the visible and occluded networks, respectively. Moreover, Mq

is a soft mask representing the visible regions, i.e., one in the fully
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Visible Fusion Mask Occluded
Fig. 4. Our single visible CNN (first column) is not able to properly recon-

struct the occluded regions, producing results with ghosting artifacts as

indicated by the red arrows. Our system with two parallel networks (second

column) significantly reduces these artifacts. For each scene, we also show

the maskMq (third column), obtained through Eq. 6, as well as the occluded

image. Note that for better visualization, we combine the occluded image

with an all white image, i.e., Mq1 + (1 −Mq )Io,q .

visible regions and zero in the completely occluded areas. This

mask basically identifies the regions where the visible network

has difficulty reconstructing high-quality results, since they are

occluded in the input image.

We propose to compute the mask using the transparency maps

of the VMPI representation, estimated by the visible network. Our

high level idea is that the occluded regions are reconstructed using

areas of the VMPI layers that are not visible in the input image. To

compute the visibility of each VMPI layer, we first rewrite Eq. 2 in

explicit form as follows [Flynn et al. 2019]:

I =
N∑

i=1

βiCi where βi = αi
∏

j>i

(1 − α j ). (4)

Note that, this equation is written in the input coordinate frame,

and I is the reconstructed input image using the VMPI represen-

tation. Here, βi basically indicates how much each color image Ci
is visible in the input image. To measure the visibility in the novel

view, we first warp βi to the coordinate frame of the novel view:

βi ,q (p) = βi (p + dq). (5)

The soft visibility maskMq can then be computed as follows:

Mq = min(

N∑

i=1

βi ,q , 1), (6)

where the min operation ensures that the mask is clamped to one. In

the occluded regions, all the βi ’s are close to zero and, consequently,
Mq has a value around zero. On the other hand, in the visible areas,

βi of at least one layer is close to one. Therefore, the visibility mask

in the visible areas is roughly one.

Our network architecture is similar to that of Zhou et al. [2018],

but with smaller number of filters in each layer (see Table 1). We

use the same architecture for both visible and occluded networks.

All the layers with the exception of the last layer are followed by a

ReLU activation function and batch normalization [Ioffe and Szegedy

2015]. The last layer has a tanh activation function and outputs a

tensor with 40 channels (8 VMPI layers each consisting of 5 channels

for RGBα and disparity).

As discussed, we use L1 distance between the estimated and

ground truth novel view images to train the visible network. How-

ever, we train the occluded network using the VGG-based perceptual

loss [Zhou et al. 2018], as implemented by Koltun and Chen [2017],

to produce visually pleasing results in the occluded regions.

Note that, Mildenhall et al. [2019] also propose a fusion strategy,

but they fuse rendered images from different views. In contrast, our

approach works on a single input image and the fusion is performed

between the rendered images of the same view.

3.3 Dataset

To effectively train our system, we collect over 2,000 light fields (See

Fig. 5) using a Lytro Illum camera from various indoor and outdoor

scenes. Our indoor scenes contain a variety of objects such as tables,

chairs, shelves, and mugs, while the outdoor scenes include objects

like flowers, trees, signs, bicycles, cars, and buildings. We set the

focal length as 35 mm for all the light fields, but choose the other

camera parameters, such as shutter speed and ISO, manually based

on the lighting condition for best quality.

We split this dataset into a set of 1950 scenes for training and 50

scenes for testing. We also use the Stanford Multiview Light Field

dataset [Dansereau et al. 2019] for training and testing. This dataset

has a set of 850 unique scenes each containing 3 to 5 light fields from
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Table 1. Our network architecture. Here, k is the kernel size, s is the stride,

and d is the kernel dilation. Moreover, “channels” refers to the number of

input and output channels at each layer and ’+’ indicates concatenation.

Layer k s d channels input

conv1_1 3 1 1 4/32 input + depth

conv1_2 3 2 1 32/64 conv1_1

conv2_1 3 1 1 64/64 conv1_2

conv2_2 3 2 1 64/128 conv2_1

conv3_1 3 1 1 128/128 conv2_2

conv3_2 3 1 1 128/128 conv3_1

conv3_3 3 2 1 128/256 conv3_2

conv4_1 3 1 2 256/256 conv3_3

conv4_2 3 1 2 256/256 conv4_1

conv4_3 3 1 2 256/256 conv4_2

conv5_1 4 .5 1 512/128 conv4_3 + conv3_3

conv5_2 3 1 1 128/128 conv5_1

conv5_3 3 1 1 128/128 conv5_2

conv6_1 4 .5 1 256/64 conv5_3 + conv2_2

conv6_2 3 1 1 64/64 conv6_1

conv7_1 4 .5 1 128/64 conv6_2 + conv1_2

conv7_2 3 1 1 64/64 conv7_1

conv7_3 3 1 1 64/40 conv7_2

different views. We use a set of 766 scenes for training containing

roughly 3800 light fields. From the rest of the 84 scenes, containing

around 400 light fields, we select 100 light fields for test. In summary,

combining the Stanford and our dataset, we have a total of 1950 +

3800 light fields for training and 50 + 100 for testing.

The angular resolution of Lytro Illum light fields is 14×14, but

we only use the center 8 × 8 views as the corner views are outside

the aperture. To train our network, we randomly select one of the

4 corner sub-aperture images as the input. We then randomly se-

lect one of the remaining views as ground truth. With this simple

strategy, we are able to supervise our system for generating light

fields with angular resolution of 15× 15 from only 8× 8 views. Note

that, this is not possible with Srinivasan et al.’s approach as their

network estimates the entire 8 × 8 light field in a single pass.

We use the approach by HaCohen et al. [2011] to match the color

of raw light fields to their processed version. We train our system

on randomly cropped patches of size 192 × 192. We apply a series

of data augmentations including randomly adjusting the gamma,

saturation, hue, and contrast, as well as swapping the color channels

to reduce the chance of overfitting.

3.4 Training

Training both networks by directly minimizing the loss in one stage

is difficult. Therefore, we perform the training in two separate steps.

In the first stage, we train the visible network by minimizing the

l1 loss between the reconstructed Iv ,q and ground truth Iq novel

view images. At the end of this stage, the visible network is able

to produce high-quality results in the visible areas, but produces

ghosting artifacts in the occluded areas, as shown in Fig. 4. We

use the output of this network to estimate the soft visibility mask,

identifying the problematic occluded regions.

In the second stage, we freeze the weights of the visible network

and only train the occluded network by minimizing the VGG-based

perceptual loss between the final reconstructed Îq and ground truth

Fig. 5. We introduce a new light field dataset containing over 2,000 unique

scenes covering a wide range of objects, nine of which are shown here. We

capture our dataset using a Lytro Illum camera from various locations and

under different lighting conditions. The epipolar images shown on the right

and below each image demonstrate the depth complexity of our scenes.

Table 2. Comparison of our approach against two state-of-the-art view

synthesis methods, as well as a version of their approach with the depth

estimated by Wang et al. [2018b] as the input. We evaluate synthesized

8×8 and 15 × 15 light fields on three datasets in terms of PSNR and SSIM

(higher is better in both cases). The best results are shown in bold. Note

that, all the results are generated by training our method and both versions

of Srinivasan et al.’s approach on the training set of Stanford/Ours dataset.

8×8 LF 15×15 LF

Algorithm PSNR↑ SSIM↑ PSNR↑ SSIM↑

S
ta
n
fo
rd
/O

u
rs Srinivasan 29.92 0.9177 NA NA

Srinivasan + Wang 30.03 0.9215 NA NA

Niklaus 24.00 0.7616 20.04 0.5835

Niklaus + Wang 23.88 0.7864 21.02 0.6456

Ours 30.53 0.9306 28.52 0.9033

S
ri
n
iv
as
an

Srinivasan 24.94 0.7935 NA NA

Srinivasan + Wang 25.75 0.8182 NA NA

Niklaus 25.00 0.7639 22.06 0.6532

Niklaus + Wang 26.38 0.8188 24.32 0.7409

Ours 26.78 0.8547 25.56 0.7990

K
al
an
ta
ri

Srinivasan 26.96 0.8638 NA NA

Srinivasan + Wang 27.60 0.8829 NA NA

Niklaus 24.18 0.7948 22.04 0.6886

Niklaus + Wang 24.94 0.8219 24.26 0.7791

Ours 29.03 0.9188 27.36 0.8841

Iq images. Note that, we compute the loss using the final fused

image instead of the reconstructed image by the occluded network

Io,q . By doing so, we ensure that the synthesized content in the

occluded regions blends with the reconstructed image in the visible

areas in a coherent and visually pleasing manner. Fine-tuning both

networks did not improve the results and, thus, we use the trained

networks after the second stage to produce all the results.

4 RESULTS

We implement our approach in PyTorch [Paszke et al. 2019] and

train our networks using Adam [Kingma and Ba 2015] with the

default parameters (β1 = 0.9, β2 = 0.999, ϵ = 1e-8). We use a learning
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Table 3. We compare of our approach with VMPI using two-network fusion

against our method with a single network as well as our technique with MPI

representation with different numbers of planes. We evaluate synthesized

8×8 and 15 × 15 light fields in terms of PSNR and SSIM (higher is better in

both cases). The best results are shown in bold.

8×8 LF 15×15 LF

Algorithm PSNR↑ SSIM↑ PSNR↑ SSIM↑

MPI 8 29.57 0.9137 27.89 0.8856

MPI 16 29.39 0.9198 26.87 0.8856

MPI 32 29.28 0.9149 26.68 0.8626

VMPI 8 (Single) 30.53 0.9305 28.51 0.9033

VMPI 8 (ours) 30.53 0.9306 28.52 0.9033

rate of 2 × 10−4 and a batch size of 8 throughout the training. We

perform both training and testing on a machine with an Nvidia GTX

1080Ti GPU with 11 GB of memory. Throughout this section, we

compare our approach against the following state-of-the-art single

image view synthesis approaches:

Srinivasan et al. [2017]. This approach uses a network to estimate

the disparity at the novel view using the input image. The disparity

is then used to backward warp the input image. Finally, this warped

image is passed to a second network for refinement. In the original

approach both networks are trained in an end-to-end fashion on a

training set containing light fields of flowers. To ensure fairness, we

retrain their networks on our training dataset, described in Sec. 3.3.

We use the code provided by the authors for all the comparisons.

Srinivasan et al. [2017] + Wang et al. [2018b]. The only difference

here is that in addition to the input image, we also provide the depth,

estimated using the method of Wang et al. as the input to Srinivasan

et al.’s disparity estimation network. By doing so, we decouple the

effect of depth on the quality of the results since our approach uses

the same depth as the input.

Niklaus et al. [2019]. This method first uses a network to estimate

the depth given an input image. The depth is then used to forward

warp the input image into the novel view. Note that, since the depth

is computed on the input image, backward warping is not possible.

The last stage of this approach is to use another network to inpaint

the potential holes in the warped image. Again, we use the source

code provided by the authors for all the comparisons.

Niklaus et al. [2019] + Wang et al. [2018b]. Here, we use Wang et

al.’s depth instead of the depth estimated by Niklaus et al.’s depth

estimation network. Again, this comparison will decouple the effect

of the depth from the quality of the results.

To ensure fairness, we train both versions of Srinivasan et al.’s

approach on our training set. However, since the main component

of Niklaus et al.’s approach (forward warping) is non-learning we

use their provided source code for comparisons.

4.1 Quantitative Comparison to Other Approaches

In Table 2, we compare our approach against the other methods

for generating 8 × 8 and 15 × 15 light fields in terms of PSNR and

SSIM [Wang et al. 2004]. Note that, since the views in Srinivasan et

al.’s approach [2017] are hard-coded, this method can only generate

8 × 8 light fields. Since the test light fields are all 8 × 8, we perform

Our corner view

Srinivasan Niklaus Ours GT Srinivasan Niklaus Ours GT

Our corner view

Srinivasan Niklaus Ours GT Srinivasan Niklaus Ours GT

Our corner view Our corner view

Srinivasan Niklaus Ours GT Srinivasan Niklaus Ours GT

Our corner view Our corner view

Fig. 6. Comparison against other approaches on six challenging scenes. The

red bars are of the same length and show the distance between a foreground

and background object.

the numerical evaluation for 15 × 15 light fields by using each one

of the four corner views of an 8 × 8 light field as the input and

reconstructing the rest of the views.

We perform the comparisons on three different tests sets. Specif-

ically, Stanford/Ours, Srinivasan et al., and Kalantari et al. [2016],

containing 150, 100, and 30 light fields, respectively. Compared to

the other approaches, our method produces significantly better re-

sults both in terms of PSNR and SSIM. Since both approaches by

Srinivasan et al. and Niklaus et al. perform better using Wang et al.’s

depth in almost all cases, we use this variant of their approaches for

the rest of the comparisons in the paper. However, we refer to them

as Srinivasan and Niklaus for simplicity.

We also compare our approach with VMPI representation (8

planes), against ours with MPI representation using 8, 16, and 32

planes in Table 3. Our VMPI representation with 8 planes produces

better results than all the MPI variations. The gap in quality is

even larger for synthesized 15 × 15 light fields. See Fig. 3 for visual

comparison of VMPI and MPI representations.
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Deeplens depth (center) Srinivasan’s disparity (top-left) Our disparity (top-left)Input

Fig. 7. We compare our disparity at the novel view against Srinivasan et

al.’s disparity and Wang et al.’s estimated depth at the center view on two

scenes from Fig. 6.

N
iklaus

O
urs

Our corner view Top-left Top-right

N
iklaus

O
urs

Fig. 8. Comparison against Niklaus et al.’s method for synthesizing 15 × 15

light fields on two challenging scenes.

Moreover, we compare our approach against our method with

just the single visible network. As can be seen, quantitatively, the

differences are minor as the occluded areas are typically only small

regions around occlusion boundaries. However, as shown in Fig. 4,

our approach with the two networks significantly improves the the

results qualitatively.

4.2 Qualitative Comparison to Other Approaches

Here, we compare our approach against other methods on a variety

of scenes. We first show comparisons on 8 × 8 light fields because

of the restriction of Srinivasan et al.’s approach. In Fig. 6, we show

comparison on six complex scenes captured with a Lytro Illum

camera selected from the three datasets, discussed in the previous

section. Here, we use the center view of a light field as the input to

synthesize the full light field.

Srinivasan et al.’s approach is not able to properly estimate the

disparity at the novel view even with the depth as the input, creat-

ing results with incorrect parallax, as indicated with the red bars.

Niklaus et al. directly use the input depth to forward warp the input

image. However, this depth is relative and, thus, this approach still

generates incorrect parallax in most cases, as indicated by the red

bars. Moreover, it cannot properly handle the object boundaries in

some cases, as shown by the arrows. Furthermore, their forward

Srinivasan
N

iklaus
O

urs

Our corner view

Srinivasan
N

iklaus
O

urs

Top left Top right
Fig. 9. Comparison against other approaches on images captured with

standard cameras. We show insets of two synthesized corner views for each

image. The red lines for each method have the same length and are used to

better show the distance between a foreground and a background object in

the two views. Our method correctly synthesizes both the foreground and

background regions without objectionable artifacts.

warping scheme slightly overblurs the results in some cases (see sup-

plementary video). In contrast, our approach generates high-quality

results that are reasonably close to the ground truth.

In Fig. 7, we compare our estimated disparity against Srinivasan

et al. and Wang et al.’s depth for two scenes from Fig. 6 (the bottom

two on the right column). As seen, our disparity computed on the

VMPI layers is overall sharper than the input depth by Wang et

al. [2018b]. This is in part the reason for Niklaus et al.’s problem

around occlusion boundaries. Note that, we also generated Niklaus

et al.’s results with their depth estimator, but those were of lower

quality. Moreover, although both our approach and Srinivasan et al.

use Wang et al.’s depth as the input in this case, our disparity is con-

siderably better than theirs. This is mainly because their network

is trained to generate a disparity map for each view by maximiz-

ing the quality of that particular view. Therefore, each novel view

image during the training process, provides a supervision for only

the corresponding disparity map. In contrast, we use the same rep-

resentation to generate all the novel view images. So each novel

view image during training, provides a supervision for the same

representation.

Furthermore, we compare our approach with Niklaus et al.’s

method on synthesized 15 × 15 light fields, in the Fig. 8. As seen,

unlike the result of Niklaus et al., ours do not suffer from the objec-

tionable artifacts around occlusion boundaries. We also compare

our approach against the other methods on two images captured

with standard cameras in Fig. 9. Note that in these cases, ground

truth novel view images are not available. Srinivasan et al. is not

able to reconstruct the top scene with proper parallax. Moreover,

in their results for the scene in the bottom row, the texture on the
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Ours focused on foreground Ours focused on background

Srinivasan Niklaus Ours GT Srinivasan Niklaus Ours GT

Ours focused on foreground Ours focused on background

Srinivasan Niklaus Ours GT Srinivasan Niklaus Ours GT

Fig. 10. Comparison of our refocusing results against the other methods.

Our method produces results that are closer to the ground truth than the

other methods.

sign moves between the two views because of inaccurate disparity.

Furthermore, the results of Niklaus et al.’s approach for both scenes

contain ghosting artifacts around the boundaries. Our method is

able to produce reasonable results in both cases.

4.3 Comparison to Other Methods on Refocusing

Our synthesized light fields can be used to generate refocused im-

ages, as shown in Fig. 11. Here, we demonstrate the ability of our

approach to focus on different areas of the scene by showing two

refocused images for each scene. Although Srinivasan et al. handles

the foreground regions, their two refocused images in the back-

ground areas have the same blurriness. This is mainly because their

estimated disparity in the background areas is often inaccurate, as

seen in Fig. 7 (see discussion in Sec. 4.2). Niklaus et al. produce

results with incorrect defocus in both cases as they directly use the

input depth which is relative and does not match the disparity of

the ground truth. Our method produces considerably better results

that are similar to the ground truth.

5 LIMITATIONS AND FUTURE WORK

Single image light field reconstruction is challenging and undercon-

strained and, thus, our results do not perfectly match with ground

truth in all cases. Despite that, our synthesized light fields are vi-

sually pleasing and contain fewer objectionable artifacts than the

other approaches. Moreover, in some cases the estimated depth map

by Wang et al.’s approach is inaccurate and, thus, our approach

Input Wang et al.’s depth Our depth

Fig. 11. Here, the input depth by Wang et al. [2018b] is inaccurate. Our

method improves upon this input depth, but still cannot correctly esti-

mate the disparity of the wooden bench. See supplementary video for the

synthesized views and comparison to the other methods.

Our result on light field video

O
urs

W
ang et al.

Fig. 12. On the left, we show a corner view of our synthesized light field

frame from an input 2D video. On the right, we show an inset of all our

synthesized corner views and compare them against Wang et al.’s ap-

proach [2017]. Note that, the approach by Wang et al. uses an additional

light field video with a low frame rate as the input. Despite that, we produce

light field frames with comparable quality. However, our light field video

shows slight flickering as we synthesize each frame independently (see

supplementary video).

is not able to synthesized high-quality novel views. However, as

shown in Fig. 7, our VMPI still improves upon the input depth.

Finally, our system can be used to synthesize a light field video

from a standard video. This can be done by using our networks to

synthesize a light field image for each frame of the video. While

our synthesized light field frames are of high-quality (see Fig. 12),

the video is not temporally coherent (see supplementary video). In

the future, we would like to improve the quality of the synthesized

videos, by enforcing the network to synthesize temporally coherent

frames through a specially designed loss function.

6 CONCLUSION

We present a learning-based approach for synthesizing a light field

from a single 2D image. We do this by introducing a new lay-

ered scene representation, called variable multiplane image (VMPI),

where the disparity of each layer is inferred from the input image.

Moreover, we propose to handle the visible and occluded regions

separately, through the two parallel networks, to reduce ghosting

artifacts in the occluded areas. In our system, each network synthe-

sizes a novel view image and the two images are fused using a soft

visibility mask to produce the final image. We introduce a light field

dataset containing over 2,000 unique scenes for training. We show

through extensive experiments that our approach produces better

results than the other methods on view synthesis and refocusing.
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