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Fig. 1. Our technique renders specular microstructure by learning high-frequency angular patterns (which we term generalized NDFs) from synthetic or
measured examples. We utilize conditional generative adversarial networks (GANs). Left: the result with a GAN trained on a dataset synthetically generated
using a wave optics model. Right: different looks can be achieved by training from different datasets. The top two rows show materials based on synthetic data
(using geometric optics and wave optics) and the bottom row is an example trained with measurements of a real surface. The right two columns show example
NDF images from the dataset and the generator, to illustrate how the generator mimics the distribution of training data.

Rendering specular material appearance is a core problem of computer

graphics. While smooth analytical material models are widely used, the

high-frequency structure of real specular highlights requires considering

discrete, finite microgeometry. Instead of explicit modeling and simulation

of the surface microstructure (which was explored in previous work), we

propose a novel direction: learning the high-frequency directional patterns
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from synthetic or measured examples, by training a generative adversarial

network (GAN). A key challenge in applying GAN synthesis to spatially

varying BRDFs is evaluating the reflectance for a single location and direction

without the cost of evaluating the whole hemisphere. We resolve this using

a novel method for partial evaluation of the generator network. We are also

able to control large-scale spatial texture using a conditional GAN approach.

The benefits of our approach include the ability to synthesize spatially

large results without repetition, support for learning from measured data,

and evaluation performance independent of the complexity of the dataset

synthesis or measurement.
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1 INTRODUCTION

When simulating the appearance of specular highlights, the widely

used material models are analytic, based on smooth averages over

unresolved statistical microgeometry. However, recent progress has

shown that utilizing discrete, finite sub-pixel microgeometry is able

to reproduce the high-frequency directional structure of real specu-

lar highlights. Previous work explored using various microstructure

types and either geometric or wave optics as the underlying phys-

ical model. Most of these existing methods are based on explicit

modeling and simulation of the microstructure, given either by

heightfields or normal maps [Yan et al. 2016, 2018], or by focusing

on a specific effect such as reflective flakes or scratches [Jakob et al.

2014; Raymond et al. 2016; Werner et al. 2017]. These methods are

either expensive in terms of performance and storage, or limited in

their supported set of appearances.

Our idea is to instead learn the required high-frequency direc-

tional patterns from synthetic or measured examples. Generative

learning models, such as GANs [Goodfellow et al. 2014; Radford

et al. 2015], are able to synthesize high-resolution, plausible results

in various domains, including images, audio, and video. Our paper

introduces GANs to appearance modeling: we learn a model from

training data that captures the complex directional distributions

induced by specular microstructure (Section 5). The functions we

learn resemble smooth microfacet NDFs but are not necessarily

proper distributions, can be functions of vectors other than the half

vector, and can even contain RGB colors; we term these learned

directional distributions generalized normal distribution functions

(GNDFs). At runtime, we evaluate the trained model, rather than

computing the result using explicit physical simulation like in previ-

ous work. This means we can use much smaller textures compared

to full microgeometry, or even eliminate textures entirely.

Larger-scale structures that induce correlations between pixels

(e.g. scratches on metals or weave patterns on fabrics) pose a chal-

lenge for basic GANs, which simply generate samples resembling

the training set without any addditional control. We solve this by

defining a low-dimensional feature vector that has the right corre-

lation, making it an additional input to a conditional GAN (cGAN)

[Mirza and Osindero 2014]. This feature vector can itself be learned

using an autoencoder network (Section 5.4).

One challenge is that evaluating the full network for synthesizing

the entire GNDF at a given pixel is wasteful. Instead, at each surface

location, we are only interested in evaluating a single GNDF value,

to obtain the reflectance for a specific light direction.We address this

efficiency issue by introducing partial evaluation of convolutional

neural networks. Given a small range of interest in the generator

output (say, a single element or a small block), we find corresponding

ranges in the internal layers of the network that influence the values

of interest, and compute only these values (Section 6 and Figure 8).

An advantage of generative models is that they can be trained on

any data, real or synthetic, geometric or wave optics. We demon-

strate results trained on synthetic BRDF data computed using both

geometric and wave optics, and on data captured using a spherical

gantry. The key novel contributions of our approach are thus:

• The first method to use GANs and cGANs (or deep learning in

general) to render complex sub-pixel specular microstructure.

• A novel partial evaluation algorithm, allowing for point or

range queries of generator network output.

We make several additional technical contributions, including the

reformulation of wave-optics glints [Yan et al. 2018] in a GNDF

framework and computing the wave GNDFs efficiently using FFTs,

mapping fiber-based cloth models into the GNDF framework, and

hole filling in measured data during training. Our solution has the

following advantages over previous work:

• Evaluation performance and rendering algorithm complexity

are independent of the training dataset. This allows for ex-

pensive synthesis or measurement methods without slowing

down the rendering.

• Ability to synthesize results without obvious spatial repeti-

tion, which is difficult to achieve for previous methods work-

ing from explicit microstructures. In our cGAN results, the fea-

ture texture can have much lower spatial resolution than the

microstructure itself; therefore, it can cover a much larger spa-

tial area with the same storage. Note that our non-conditional

results are naturally infinite and non-repeating.

• Ability to learn the model from a measured dataset. While

measuring appearance data is not the primary goal of our

paper, we include one example dataset to illustrate this pos-

sibility. Using measured data for rendering directly is theo-

retically possible, but impractical due to massive storage and

artifacts due to tiling and holes; our solution is much more

convenient.

• The storage requirement of the trained generator network is

just over 1 megabyte (∼300,000 weights using 32-bit floats),

regardless of the size of the microstructure description or the

training dataset, which can be arbitrarily large. The network

thus becomes a convenient material representation and ex-

change format; the rendering system using it does not need

to know about the advanced optics models, measurement or

training techniques that went into producing it.

Figure 1 shows a result generated with our method; please refer

to the supplementary video for animated results. We demonstrate

the generality of our approach by showing a diverse set of results

including several isotropic glinty metallic materials (synthesized

using geometric and wave optics, and measured), an anisotropic

brushed metal, as well as scratched ceramic and fabric examples

(the latter two using a cGAN controlled with feature textures).

We believe our work is a step towards appearance models that

achieve or surpass the quality of explicit microstructure rendering,

without the run-time algorithmic complexity and storage cost.

2 RELATED WORK

In this section, we review previous work on rendering detailed spec-

ular microgeometry, followed by related work on material capture,

generative models in machine learning, and more.

Explicit heightfields. Several previous methods target spatially-

varying fine-scale details and “glints.” Yan et al. [2014; 2016] pre-

sented glint integrators for rendering surfaces defined by explicit

high-resolution heightfields (or normal maps), under geometric
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optics. These approaches are successful at simulating very high-

resolution, spatially varying glinty behavior. The key idea is to

extend the NDF from standard microfacet models [Cook and Tor-

rance 1982; Walter et al. 2007] to a patch-based P-NDF, essentially

replacing the large-area average for the whole surface by a unique

BRDF per given small patch of the surface. Lately, Yan et al. pro-

posed an approach that addresses the same problem using wave

optics models instead [2018]. Our method succeeds in replicating

the results of these methods with much lower storage requirements

and (in most cases) faster performance, but also allows a broader

range of input data (measured GNDFs, fabric microgeometry).

Scratches and flakes. Raymond et al. [2016] represents the surface

as a collection of one-dimensional scratches over a smooth BRDF.

Werner et al. [2017] take a similar approach based on wave optics,

rendering surfaces with collections of randomly oriented scratches

using a Harvey-Shack-based model. In each of these approaches,

the solution for a single scratch can be found analytically or pre-

computed. Jakob et al. [2014] also simulated glinty surfaces but used

a statistical distribution of tiny mirror-like flakes rather than an

explicit surface. The locations of the flakes are defined implicitly

through a procedural hierarchy in position-normal space. How-

ever, this algorithm only generates a specific kind of microstructure

similar to metallic paint flakes.

Material capture. A broad area of computer graphics focuses on

acquisition of materials from physical measurements; here we only

mention recent work that uses deep learning. Aittala et al. [2016] cap-

tured stationary spatially-varying SVBRDFs from a single flash-lit

photograph using a neural texture descriptor. Further work [De-

schaintre et al. 2018; Li et al. 2017, 2018] has been able to capture

some non-stationary SVBRDFs with an end-to-end deep convo-

lutional architecture. However, only parameters of smooth BRDF

models are captured with a single estimate per pixel at relatively low

resolution, unlike our focus on complex specular microstructure

within a pixel.

Microgeometry capture. Dong et al. [2015] acquired the surface

microgeometry of real metallic surfaces using interferometry, and

applied wave optics theory to successfully predict their smooth,

large-area average BRDFs. We considered using their captured mi-

crogeometry data, but found we would need larger spatial area to

provide sufficiently varied training data for our method. Note that

Dong et al. do not render directly from the measured microgeometry.

Instead, they generate textures from their sparse data by relying on

two simplifying assumptions: the NDFs fit a simple analytic model

(ellipsoid NDF, essentially a generalization of GGX) and the spatial

patterns are 1D separable products. However, these assumptions do

not hold for our datasets and our method does not use them.

Another line of previous research focuses on capturing microge-

ometry explicitly using visible light [Graham et al. 2013; Nagano

et al. 2015; Nam et al. 2016]. Unlike this prior work, we do not try to

explicitly reconstruct the microgeometry of the surface, but instead

measure a slice of the local BRDF which is then used to infer the

GNDF. As such we need more light positions but less spatial resolu-

tion. However, microgeometry scanned using these methods could

be used as input to our GNDF synthesis.

Generativemodels. Generative adversarial networks (GANs) [Good-

fellow et al. 2014] have become widely used to synthesize plausible

results in various domains, including image [Radford et al. 2015],

video [Tulyakov et al. 2018], and audio [Donahue et al. 2018]. A

GAN typically consists of two competing networks; a generator and

a discriminator. The generator is trained to produce results that are

indistinguishable from the real data, while the discriminator learns

to identify them.

Extensive research has been conducted to improve the quality of

the synthesized results through better network architectures (e.g.,

DCGAN [Radford et al. 2015]), more powerful loss functions [Ar-

jovsky et al. 2017], and training strategies [Karras et al. 2018]. Be-

cause of these developments, GANs have been used to handle a vari-

ety of applications such as image-to-image translation [Wang et al.

2018], image inpainting [Iizuka et al. 2017], and super-resolution

[Ledig et al. 2017]. In this paper, we utilize GANs for appearance

modeling, a rather different application. We use a network architec-

ture similar to DCGAN [Radford et al. 2015] and introduce point-

wise and range evaluations to improve the efficiency. To our knowl-

edge, none of the previous work on GANs or related generative

models considered the problem of point-wise and/or range evalua-

tion of the models, but this operation is critical in our application.

Other related work. Recent work on neural BTF compression

[Rainer et al. 2019] uses an autoencoder framework to compress

BTFs, which is a different but related appearance representation to

our GNDFs. However, they do not focus on detailed glinty microge-

ometry rendering. We also use autoencoders to control the feature

vectors in our cGAN; we find the decoder produces smooth blurry

results compared to GANs, so it is likely that a GAN framework

like ours is required to generate high-frequency results in the direc-

tional domain. Galerne et al. [2012] proposed a system to synthesize

Gabor noise from examples; this is in a sense a generative model

as well, and could be considered as an alternative to GANs in our

framework.

3 OVERVIEW

Several existing methods for rendering specular microstrucure can

be seen as using a microfacet BRDF with modified (generalized)

normal distribution functions (GNDFs). The high-level idea of our

approach is to generate examples of these GNDFs, learn a GAN (or

cGAN) model to synthesize GNDFs indistinguishable from the ones

in the dataset, and design an efficient way to use the generator at

rendering time to produce final pixel values.

3.1 Our material model

Recall the standard microfacet BRDF [Cook and Torrance 1982;

Walter et al. 2007]:

fr (i,o) =
F (i · h) G(i,o) D(h̄)

4 (i · n) (o · n)
(1)

Definitions of all symbols can be found in Table 1. We use i , o,h, and
n to refer to input, output, half vector, and macrosurface normal,

respectively. We use h̄ to denote the projected half vector (dropping

the z-coordinate of the unit vector h). The key term that determines
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Table 1. Notation used in the paper.

symbol domain definition

H hemisphere

D unit disk (projected hemisphere)

n H macrosurface normal

i H incoming direction

o H outgoing direction

ψ R
3 sum vector,ψ = i + o

h H half vector, h =ψ/‖ψ‖

h̄ D projected half vector (drop 3rd coord.)

ψ̄ R
2 projected sum vector (drop 3rd coord.)

u R
2 surface position

d D or R2 projected direction (either h̄ or ψ̄)
z R

100 latent random vector (generator input)

n(u) R
2 → D microsurface normal function

Gp (u) R
2 → R pixel footprint Gaussian

Gc (s) R
2 → R coherence kernel Gaussian

D(h̄) D → R normal distribution function (NDF)

D∗(u,d) R
2 × R2 → R generalized NDF

F (i · h) R→ R Fresnel term (accurate or Schlick)

G(i,o) H ×H → R shadowing/masking term

G∗(i,o) H ×H → R extra term ( 14 (ψ · n)2 for wave optics,

G(i,o) for geometric optics)

the shape of the specular highlight is the normal distribution func-

tion (NDF) D(h̄), giving the probability distribution of microfacet

normals describing the surface. The NDF is indeed a pdf on the pro-

jected hemisphere D (it integrates to 1 on this domain, but would

need an additional cosine term onH ).

Most previous work on specular glints can be thought of as replac-

ing the smooth, global NDF D(h̄) by a different function D∗(u, h̄) or
D∗(u,ψ̄), whereψ = i +o and ψ̄ is the projectedψ; u is a 2D spatial

location. In this paper we will therefore consider spatially varying

BRDFs in the following microfacet-like form:

fr (u, i,o) =
F (i · h) G∗(i,o) D∗(u,d)

4 (i · n) (o · n)
(2)

The main difference from equation (1) is in the NDF term, which

we replaced by a generalized NDF D∗(u,d). For brevity we use a d
parameter in the definition, which stands for any projected direction,

h̄ or ψ̄. We also introduce an extra term G∗(i,o), which is defined

differently for geometric optics and wave optics models (see Table 1

and next section). Therefore, this single definition encapsulates both

the geometric optics and wave optics models used in this paper.

The function D∗(u,d) depends on the surface location u and

typically contains high directional frequencies. In a slight abuse of

terminology, we still call these functions generalized NDFs, even

though they are not necessarily distributions of normals anymore,

and may even contain color variation. In other words, we use the

term GNDFs in a broad sense, to mean directional functions that

resemble (or fit into) the NDF component of the microfacet model.

(In previous work, the term P-NDFs is sometimes used.)

3.2 Learning generalized NDFs

While several previous methods compute values of the generalized

NDF precisely from an explicit surface heightfield or normal map,

Fig. 2. Examples of geometric optics GNDF images, computed by binning.

we take a different approach: we learn a GAN that generates these

complex GNDF distributions, by providing a training set. We define

a GNDF image to be the discretized directional variation of D∗(u,d),
for a fixed u, discretizing the projected directions d in the plane.

The training set is simply a collection of such GNDF images for

different surface locations u.

The surface microstrucure types we are considering in this paper

have very limited spatial coherence (i.e., small patches that are

tens of microns apart exhibit largely unrelated microstrucure). This

allows us to design an approach consisting of the following steps:

(1) Generate a training dataset of example GNDF images, either

synthetically (by covering a given heightfield texture or fiber-

lever fabric model with footprints and computing the corre-

sponding GNDFs) or by measurement on a spherical gantry.

The number of training images in our experiments is between

65 and 75 thousand. For isotropic microstructures (where the

microstructure is rotationally invariant), the dataset can be

augmented by random rotation.

(2) Learn a GAN that produces GNDF images indistinguishable

from the ones in the dataset, parameterized by a latent random

vector z. We use a network structure inspired by DCGAN,

with transposed convolution operations used in the generator.

(3) For examples with large-scale spatial structure (scratched

ceramic and fabric), we use an additional feature texture

defining f at each spatial location, which is produced by

autoencoder learning and texture synthesis.

(4) To be able to evaluate the BRDF from equation (2), we need

to define the corresponding D∗(u,d). This is done by either

assigning a different latent vector z to each pixel, or by defin-

ing a grid of latent vectors in texture space, interpolating

latent vectors within the grid cells (the first method is faster

while the second is more general). For a given u, we thus find

the appropriate z (and optionally f ) and run the generator

network to produce the corresponding GNDF image, which

gives the directional variation as a function of d (i.e., ψ̄ or h̄).
This GNDF is then plugged into the full BRDF equation (2).

3.3 Partial evaluation of generator networks

As described, the above procedure has one highly inefficient step: for

a single query, it runs the entire generator network to compute the

full GNDF image, only to query a single location d in it and throw

away the rest. A key contribution of our work is to enable partial

evaluation of generator networks, computing only the portion of

the network that affects the desired point or range query.

The next three sections will cover the above steps in detail: data

generation/measurement, GAN training, and final model evaluation.
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4 DATA GENERATION AND MEASUREMENT

The input to our GAN training procedure is a dataset of example

GNDF images. We produce this dataset either synthetically from a

given heightfield (bump map) texture, fiber-lever fabric model, or

by measurement using a spherical gantry. Figure 3 illustrates the

shapes of some of our dataset GNDFs, as well as the corresponding

generated GNDFs (discussed in Section 5).

4.1 Synthetic GNDF generation

We start with a high-resolution input heightfield texture. The height-

field is then covered by a uniform grid of footprints. To compute the

GNDFs corresponding to these footprints, we explore two different

models: using geometric optics [Yan et al. 2014] and using wave

optics [Yan et al. 2018].

4.1.1 Geometric optics GNDFs. Yan et al. [2014] consider an en-

tire patch (footprint) of a surface heightfield at once, and consider

the actual distribution of surface normals across this patch. More

precisely, let D be the unit disk (projected hemisphere). A normal

map is defined as a function n : R2 → D from points u in texture

space to normals n(u) on the unit disk. This normal map can be

easily computed from the gradient of the heightfield, using bicubic

interpolation. Define a Gaussian footprint Gp (u) with standard de-

viation σp . Let X be a random variable distributed according to this

Gaussian. The GNDF for this footprint can then be defined as the

probability distribution on D of the random variable n(X ).

We compute the geometric optics GNDFs by a binning (histogram)

approach: we generate samples of the random variableX , and bin the

resulting values of n(X ). The noise in this approach is significantly

reduced by stratifying the sampling of X . We find that one million

samples per GNDF are sufficient for our purposes.When binning, we

further jitter the value n(X ) by a Gaussian whose standard deviation

matches half a pixel size in the GNDF image, to alleviate box filtering

artifacts from the bins; this is equivalent to the intrinsic roughness

defined by Yan et al. [2014]). Examples of GNDF images computed

in this way are shown in Figure 2.

4.1.2 Wave optics GNDFs. More recently, a wave optics method

for rendering glints was introduced [Yan et al. 2018]. This paper

proposes multiple forms of the spatially varying wave-optics BRDF.

Here we will use the “reciprocal original Harvey-Shack” (R-OHS)

model, which can be written as follows:

fr (u, i,o) =
(ψ · n)2F (i · h)

4Acλ2 (i · n) (o · n)

����
∫
R2

Ru(s) e
−i 2π

λ
(ψ̄ ·s )ds

����
2

, (3)

where λ is the wavelength, and

Ru(s) = Gc (s) e
−i 4π

λ
h(s ) (4)

is the reflection function weighted by the coherence kernel Gc (s).
This coherence kernel is centered at u and has a standard deviation

σc (typically 5-10 microns). Ac =
∫
R2

Gc (s)2 ds is a normalizing

constant. Please refer to Yan et al. [2018] for a more detailed deriva-

tion and explanation of the BRDF model and the coherence kernel

concept.

While this formulation does not explicitly use the concept of

normals and their distributions, we find that it is useful to rewrite it

in the form (2) matching a microfacet BRDF with a modified “wave

optics GNDF”. This can be done as follows:

fr (u, i,o) =
F (i · h) G∗(i,o) D∗(u,ψ̄)

4 (i · n) (o · n)
, (5)

where

D∗(u,ψ̄) =
4

Acλ2

����
∫
R2

Ru(s) e
−i 2π

λ
(ψ̄ ·s )ds

����
2

. (6)

andG∗(i,o) = 1
4 (ψ ·n)2. Defining the normalization this way makes

the extra term G∗(i,o) bounded by 1, and the wave GNDF has a

range of values comparable to the geometric GNDF of the same

microstructure. A similar rewrite was proposed by Dong et al. [2015]

in the context of the Kirchhoff wave optics model.

Looking at the definition of this GNDF, we find it is (ignoring the

multiplicative terms in the front) essentially the squared absolute

value of the Fourier transform of the weighted reflection function

Ru(s), queried at pointψ̄/λ. This suggests we can use the fast Fourier
transform to compute the GNDF image efficiently for each coherence

footprint. This computation is deterministic; it does not use random

sampling, unlike our geometric optics binning method.

The above GNDF definition depends on the wavelength λ. A
spectral version can be constructed simply by evaluating several

wavelengths (each using a separate FFT) and converting into RGB

space. We find that 8 spectral samples are sufficient for this purpose.

Furthermore, the pixel footprint is typically larger than the co-

herence kernel. We resolve this by averaging several GNDF images

computed as above, to obtain GNDF images matching the target

pixel size. Note, this is not equivalent to simply enlarging the co-

herence kernel, as the coherence integral is in the complex domain

(within the squared absolute value operator), while the pixel averag-

ing happens in the real domain. Figure 4 shows examples of wave

GNDFs; the top of the figure shows the coherence kernel GNDFs,

while the bottom shows the averaged pixel footprint GNDFs.

4.2 Fabric GNDFs

Modeling cloth at the fiber level is a growing area of research with

remarkable recent progress [Leaf et al. 2018; Zhao et al. 2016]; the

explicit fiber representation can be used for high-fidelity render-

ing, but the cost is prohibitive in most applications. The situation

is different in our case, where the cost is incurred only in dataset

creation, not in training or rendering. We extend our approach to

render fabrics, by synthesizing and learning GNDFs from a bas-

ket weave cloth pattern simulated at the fiber level. We shade the

fibers using the hair BSDF model of Chiang et al. [2016]. The GNDF

data synthesis is accomplished by covering the cloth area by 2562

footprints, and computing the corresponding GNDFs by sampling

scattering paths with random incoming direction through the fabric.

We bin the resulting path throughput at the half vector given by the

path incoming and outgoing direction.

The true BRDF of this material is not in the form required by our

equation 2, so this approach is an approximation to the true BRDF.

In terms of the half-vector and difference vector parameterization

of BRDFs [Rusinkiewicz 1998], we are ignoring the difference vec-

tor dimension (i.e. averaging over it), keeping only the half vector

dimension. However, this approximation is quite effective for sin-

gle fiber reflection, and still produces a reasonable appearance for
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Fig. 3. Comparison of ground truth (dataset) GNDFs and GNDFs generated by our method. Our method not only accurately captures the general distributions
of GNDFs for each different material, but also generates each individual GNDF with high quality and detail.

Fig. 4. Examples of wave optics GNDFs. Top: GNDF images corresponding
to coherence kernels. Bottom: GNDFs corresponding to pixel footprints;
these are essentially weighted averages of the images above.

low-order scattering (we are limiting the maximum depth to 5 fiber

interactions).

4.3 Measurement of GNDFs

For GNDF measurement, we used a spherical gantry consisting of a

camera and a light source mounted on robotically controlled arms,

automatically calibrated before each run using computer vision

techniques. The camera and sample were kept fixed; we only moved

the light to measure a variety of incoming directions.

The sample used is a steel Q-Panel with matte finish, manufac-

tured by Q-Lab Corporation. The camera is a Canon 70D with a 100

mm macro lens configured to keep a fixed focus and aperture. It is 1

meter away from the sample and rotated 15 degrees from vertical,

so we can observe GNDF peaks. The setup is shown in Figure 5 (top).

For each measurement, we combine multiple exposures to create an

HDR image. The images were downsized by a factor of 2 to reduce

noise and converted to grayscale (as there was little color variation

for this particular sample). The resulting pixel spacing corresponds

to roughly 70 microns on the sample surface.

The light source is a 19 mm diameter white LED at a distance of

60cm from the sample.We tookmeasurements at 4681 light positions

covering the hemisphere above the sample except for grazing angles

and a small retro-reflection region where the light source would

obstruct the camera’s view. The light source intensity is calibrated

by observing a reference material within the field of view.

60 cm 100 cm

moving
light source

fixed
camera

material
sample

15 deg.

Fig. 5. Left: Our measurement setup, with a camera 15 degrees off vertical
direction, and a moving light. Right: Examples of measured GNDFs, with
blue color indicating missing data (grazing angles or occlusion).

For each pixel and light position, the measured values are con-

verted to BRDF values. Assuming a microfacet model, we further

convert these into GNDF estimates, approximating the shadow-

ing/masking term as 1 and the Fresnel term as constant over the

region of interest (as grazing angles are excluded). For each pixel,

the measured values are interpolated over the hemisphere of direc-

tions using a kernel with a 3 degree radius. Thus, each visible pixel

of the sample gives rise to a single measured GNDF image. Several

examples are shown in Figure 5 (bottom).

5 MODEL AND TRAINING

Here we describe the network structure of our GAN, and the training

procedure. Our implementation uses the PyTorch framework.

5.1 Data transformations

We apply a log transformation log(1 + x) to the data, as the original

GNDF values have fairly high dynamic range. This is commonly

used by recent techniques that deal with HDR data [Eilertsen et al.

2017; Zhang and Lalonde 2017] as it makes the training process

better behaved. We keep all training data positive; we currently do

not center the values at zero.

We further apply a polar transformation to the data. We find that

the training performance is significantly improved, because GNDF

images have a broadly circular structure and the convolution can

reuse the features. For GNDFs with rotationally symmetric statistics,
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a rotation becomes horizontal translation: a natural setup for a

convolutional network. This ensures that our learned convolutional

kernels treat the GNDF values at the same distance from the center

equally.

5.2 Network structure

Our generator and discriminator networks broadly follow DCGAN

[Radford et al. 2015], and are visualized in Figure 6. The generator

starts from a latent vector of length 100, followed by five transposed

convolution layers. Increasing the length of the latent vector is possi-

ble, but has little impact on quality or performance. The transposed

convolutions have a kernel size of 4 × 4 and a stride of 2. Unlike

DCGAN, which uses between 64 and 1024 internal channels, the

number of channels of our internal layers is always 64. The output

layer has 1 or 3 channels. The discriminator is symmetric to the

generator, using standard convolutions instead of transposed ones.

The generator output (in the polar domain) has a 64 × 64 resolu-

tion; this is sufficent to achieve high directional frequencies (and

resulting high temporal frequencies with slow light movement)

in our results. Larger resolutions should be possible, if very high

directional frequencies are desired.

Due to our use of the polar domain, we introduce horizontally

wrapped convolution operators (both in the generator and discrimi-

nator). In the polar domain, the columns of our images correspond

to angles and the rows correspond to radii. As we would like our

result to be continuous in angles, we need the convolution and trans-

posed convolution operators to wrap around horizontally across

the image edges; this applies to internal as well as output layers. For

this purpose, we introduce two custom neural network modules,

Conv2dHWrap and ConvTranspose2dHWrap; their implementation

is in PyTorch and does not require new C++ primitives.

Some further differences from DCGAN include omitting the batch

normalization operations in the generator and the tanh function at

the end of the generator. We use leaky ReLU in both generator and

discriminator.

5.3 Training process

We use noisy labels similarly to what is proposed by Salimans et

al. [2016]; this appears to improve stability in the beginning of the

training process.

We utilize random rotation to augment our training data, for the

materials that are isotropic; their statistics are rotationally invariant,

so the distribution of rotated GNDF images looks the same as the

original distribution. In polar coordinates, this random rotation

becomes particularly easy, simply requiring a horizontal pixel shift

with wrap-around. (This does not apply to brushed, scratched and

fabric examples, as they are not rotationally invariant.)

For training with RGB examples (as needed for the spectral wave

optics and fabric models), we find that while it is possible to train the

networks with RGB examples directly, the convergence is notably

worse than with grayscale GNDF images. We found that we can

achieve an improved convergence for RGB datasets by starting the

training process with grayscale versions of the images (say over the

first 10,000 batches), and gradually blending in the color (say over

the next 10,000 batches or so).
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Fig. 6. The network structure of our GAN.

We further compute the mean of the dataset GNDF images, as well

as the generated GNDFmean.We find that these match fairly closely

in their overall scaling, so the GAN succeeds in generating GNDF

values with the correct integrals. However, we find that there is a

slight directional pattern in the generated mean. Therefore, during

evaluation, we correct the remaining generator bias by multiplying

the output by the ratio of dataset and generated means. Note, this

slight mismatch between dataset and generated mean occurs for

traditional GAN applications as well, but is not a problem for them,

because generated images are used individually and not as a big

collection at once. Once the training is done, the discriminator is

discarded and we generate the results using only the generator.

5.4 cGAN and feature vectors

For microstructures with large-scale texture variation (scratches or

fabric yarns), the spatial correlations between pixels are important to

the appearance. We extend our model to account for this correlation

by using a cGAN to make the generated GNDF distribution depend

on a low-dimensional feature vector f . The feature vector varies
according to a texture to efficiently model the visually important

spatial structure of the material. One could, in theory, design such

feature vectors by hand (for example, for the scratched ceramic

example it could be a dominant scratch direction and footprint

coverage). We however find it more powerful and general to learn

the feature space itself, through an autoencoder architecture.

Our encoder and decoder shapes are virtually identical to the

discriminator and generator, respectively. The difference is that the

encoder outputs the feature vector f (using 9 dimensions in our

results) and the decoder takes it as input, attempting to reconstruct

the encoder input. We train the autoencoder with the same GNDF

training set, using an L1 loss. The decoder thus has a similar role

as the generator; however its outputs tend to be blurry and lack

detail, which the adversarially-trained generator produces much

more effectively.

This allows us to compute a feature vector for each GNDF in

the training set, giving rise to a 2562 feature texture. In the case of

scratched ceramic and fabric, this texture is too small to produce non-

repeating results, and needs to be extended; we currently achieve

that by a patch-based texture synthesis [Efros and Freeman 2001].

Figure 7 demonstrates the idea: an initial scratched heightfield is
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Fig. 7. Left: initial scratched heightfield. Middle: feature vector texture
computed using our autoencoder from the GNDFs (showing 3 out of 9
channels as RGB colors). Right: the feature texture extended by texture
synthesis.

used to create a GNDF training set, resulting in a feature vector

texture, which is finally extended by texture synthesis.

Using the feature f in the generator is straightforward; we simply

append it to the latent random vector z. For the discriminator, we

pass f through the decoder first and use the resulting image as an

additional discriminator input.

In summary, we are using a two-pass learning system. First, we

train an autoencoder and fix its weights. Then, we use the result-

ing fixed feature vectors (textures) to train a cGAN. After training

the autoencoder for a particular material, we evaluate the encoder

for each of the 256x256 NDF images in the input data, produc-

ing a 9-dimensional feature vector for each NDF. The resulting

9-dimensional feature vectors form a 256x256x9 texture. The feature

textures can furthermore be extended through synthesis, to cover

much larger areas without repetition.

We opted for training separate models for each material because

we want to keep the networks as small as possible. A more general

network would require more weights to represent all required vari-

ations. That said, in the future it may be possible to train a single

general (larger) cGAN for multiple materials, conditioned on the

material type.

5.5 Hole filling in measured data

In measured GNDFs, some positions could not be captured due

to obstruction of the camera by the light, resulting in holes. As a

first step, we mask the holes in captured GNDF images by using

the average value at that direction. Moreover, we randomly rotate

captured GNDF images, so the hole is not in the same spot. For our

generator, we apply the same mask to the output, but randomly

rotate it. That way, the generator does not need to generate a hole

for the discriminator. The discriminator therefore sees the hole in

different positions for both measured and generated data, and the

generator learns to generate complete GNDF images without holes.

6 MODEL EVALUATION

In this section, we describe the evaluation of the full BRDF model

(2), using the trained generator networks. A key component of this

section is our partial network evaluation; this is critical for efficency

of the whole solution. To evaluate the BRDF, the only non-trivial

component is the evaluation of the GNDF; all other terms (Fresnel,

normalization, etc.) can be incorporated easily.

full
1 x 1 x 100 full

4 x 4 x 64
full

8 x 8 x 64
full

16 x 16 x 64 full
32 x 32 x 64 full

64 x 64 x C

partial
5 x 5 x 64

partial
4 x 4 x 64

partial
3 x 3 x 64

partial
1 x 1 x C

Fig. 8. Partial evaluation of the generator network. The full layers are shown
in light blue, while the portions required by partial evaluation are shown in
yellow. In this example, we are only interested in evaluating index (34, 42) in
the output layer. Using the range bounding approach, we find that within the
third, fourth and fifth layer, we need to evaluate ranges (blocks) [2, 6]×[3, 7],
[7, 10] × [9, 12], and [16, 18] × [20, 22], respectively.

6.1 Pixel sampling for GNDF evaluation

There are two possible ways to render the pixels of the image. The

first option is to assign one latent vector z per pixel of the appro-
priate material. This approach is convenient due to its simplicity

and performance, and has the additional advantage of supporting

random rotation of isotropic GNDFs. (Note: this result rotation at

rendering time is distinct from the rotation of the input data during

training, which is always valid for isotropic microstructures.) Ran-

dom rotation gives a slightly improved result, further equalizing

the angular statistics. This simple per-pixel approach requires the

network to be trained for a given pixel footprint size, and will only

work optimally with a fixed camera, and on objects rendered at the

right distance.

Alternatively, and more generally, latent vectors can be defined

on the vertices of a rectangular texel grid and smoothly interpolated

within texels, which leads to smoothly changing resulting GNDF

queries, due to the continuity of the generator network as a function

of z. We find that interpolating the latent vectors gives a reasonable

“morphed” GNDF. This is similar to previous GAN approaches for

e.g. faces, where latent interpolation gives rise to usually valid

intermediate faces [Karras et al. 2018]. This morphed GNDF is not

equivalent to a bilinear blend of the initial GNDFs, but it is similarly

acceptable as an approximation to the unknown intermediate GNDF.

For choosing the spacing in the UV-domain, we generally follow

the convention of choosing a Gaussian footprint with standard

deviation σp (typically a few microns), and making the spacing

(grid cell side-length) for synthetic data generation equal to σp , thus
getting some overlap of footprints. In effect, each training dataset

is captured at a particular spatial scale and the object UV-mapping

should preserve this. Latent vectors are then defined on vertices of

the same grid. These heuristics may indeed not be optimal; previous

work also does not provide answers about optimal or automatic

footprint/scale selection, and this problem remains open.

For the brushed metal example, we define the latent vectors on

the vertices of a texel grid. Each grid cell is anisotropic (rectangular),

with a side ratio of 1:30. The latent vectors are smoothly interpolated

within the grid cells, which interpolates GNDF images in a smooth

non-linear way, resulting in the horizontally elongated features of

brushed metal. Care must be taken to normalize the interpolated

latent vectors in order to have the same norm distribution as original

vectors.
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6.2 Partial generator evaluation

To describe our partial evaluation approach, we first review the

definition of standard and transposed convolution, then describe

range bounding for transposed convolution, and finally discuss how

to extend the range bounding idea to support full-featured generator

networks.

6.2.1 Review of standard and transposed convolution. For simplicity,

let’s assume single-channel input and output images. A standard

1-dimensional convolution is a “gather”-type operation, where each

output value is a linear combination of k input values, weighted by

a kernelW . Similarly, a 2-dimensional convolution computes each

output value as a weighted linear combination of the corresponding

k × k values of the input.

More precisely, let I (i, j) and O(i, j) be the input and output im-

ages, respectively. LetW (p,q) be the k × k convolution kernel. Let s
be the stride of the convolution. The default stride of 1 achieves a

one-to-one mapping between the image resolutions, while a stride

of 2 causes the output resolution to be half the input resolution. This

convolution can be written as:

O(i, j) =
k−1∑
p=0

k−1∑
q=0

W (p,q) I (si + p, sj + q). (7)

For simplicity, we assume that accessing the input image beyond

its bounds simply returns zero; other boundary conditions (such as

wrap-around) can be easily handled as well.

A transposed convolution is defined as the multiplication by the

transpose of the sparse matrix that describes the (linear) convolution

operation. Therefore, a transposed convolution can be seen as a

“scatter” instead of a “gather” operation. This ismost easily expressed

using the following pseudocode:

(1) initialize O(i, j) to 0

(2) for each input image pixel (i, j):
• O(si : si + k − 1, sj : sj + k − 1) += I (i, j)W (:, :)

That is, the entire kernelW is splatted into ak×k block of the output,

weighted by the input pixel value I (i, j). Note that in a transposed

convolution, a stride of 2 will double the resolution of the output,

compared to the input.

6.2.2 Range bounding for partial evaluation. Consider a transposed

convolution operation with kernel size k × k and stride s . The key
question that needs to be answered to enable partial evaluation is:

given a block of interest in the output image, which block in the

input image can influence the values in the output block?

Let the output block of interest be Bo = [i1, i2] × [j1, j2] , where
the ranges are assumed to include their endpoints. We would like

to find the input block Bi = [i ′1, i
′
2] × [j ′1, j

′
2] such that values in Bi

affect values in Bo . After some analysis, we find that

i ′1 =

⌊
i1 − k + s

s

⌋
i ′2 =

⌊
i2
s

⌋
(8)

and similarly

j ′1 =

⌊
j1 − k + s

s

⌋
j ′2 =

⌊
j2
s

⌋
(9)

If the computed input block goes beyond the input image dimen-

sions, we simply clamp it. Therefore, for any desired block in the

Fig. 9. Computational cost of partial evaluation, for a 2×2 range query,
visualized as a fraction of the cost of doing full evaluation for different
points on a GNDF. The image represents a circular domain in the projected
hemisphere, though we use polar coordinates for the actual evaluation. The
average cost of partial evaluation is just 1.75% compared to full evaluation.
The variation in cost is due to the transposed convolution interacting with
the padding/wraparound near the edges. We typically evaluate a 2×2 region
instead of just 1×1, since we use bilinear interpolation in GNDF lookups.

output image, the above formulas let us find the corresponding block

of the input image, over which we need to iterate, to guarantee cov-

erage of the desired output block.

6.2.3 Partial evaluation of full generator network. The above simpli-

fied situation needs to be extended to support the full set of features

used in our generator network. This entails:

(1) Supporting multiple channels in the input and output images.

This simply requires more computation when splatting into

a given output pixel index.

(2) Supporting bias and leaky ReLU operations: these are per-

element operations and can be handled easily.

(3) Supporting multiple layers. This is achieved by recursively

propagating the block query backwards through the network.

Boundary conditions (padding) need to be accounted for in

the propagation.

(4) Supporting horizontal wraparound. This is slightly more tech-

nically involved, and requires blocks that cross the image

boundary. First, we compute the ranges assuming no horizon-

tal wraparound and the size of the input being infinite. Then,

we clamp the horizontal ranges to their respective wrap sizes.

In summary, we find that this partial evaluation approach can

compute any desired values of the output layer with no numerical

error, while saving between 97.7% and 99.7% of the computation,

depending on output size and query location. See Figure 9 for a

visualization of the computational cost of partial evaluation. In

practice, we implement the partial evaluation in C++ inside CPU

rendering code (a Mitsuba BSDF plugin). The actual wall clock

speedup of partial evaluation over full evaluation (using the same

CPU code) is 150x. Our smaller memory footprint/caching enables

an even greater (3x) speedup beyond that expected solely from the

number of operations performed.

6.3 Discussion of alternatives

An alternative idea to our partial evaluation is to learn a network

that takes the value ofd as input, in addition toz (and f ), and directly
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Query-based method (mode collapse) Our partial GAN evaluation (better variety)

Fig. 10. Left: The alternative query-based method, taking the query vector
d as input. In our experiments, this method exhibits mode collapse, where
the same examples are repeated with minor variations; we mark one such
case with circles but there are clearly others. Right: our partial generator
evaluation has no such issue.

outputs the final value of the GNDF at that direction. We could still

use an adversarial training scheme, evaluating the network for all d
and passing the concatenated result to the discriminator as usual.

We have tried this idea in several different versions, but could

not obtain good results. We experimented with different network

architectures and different d parameterizations. They all generated

results that are notably less accurate than with our partial evaluation

approach. The results also suffered from mode collapse, so that the

learned distribution failed to reflect the full variation of the training

data; this is obvious from Figure 10.

Another serious issue with this approach is that training becomes

very expensive. If we want to generate a single GNDF, we need to

evaluate 64x64 = 4096 individual networks. Doing that "in parallel"

does not help, as essentially none of the computation is shared. The

backpropagation becomes slow and memory intensive.

Yet another alternative we considered is to evaluate appearance

matching in the final renderings, as opposed to the GNDF domain.

However, to obtain temporal glint coherence with light (or camera)

movement, we would need to use videos instead of images, and the

computational challenges are formidable.

7 IMPLEMENTATION DETAILS

Here we discuss more details about training dataset generation and

including our method within full global illumination simulations.

7.1 Training data generation

All GANs are trained on datasets of size 65 and 75 thousand GNDF

images. The synthetic datasets are obtained by uniformly covering

the heightfield textures (or fiber-level cloth model) by 2562 or 2742

footprints and computing the corresponding GNDF images. The

measured dataset is similarly obtained by taking a 2562 window

from the camera view.

7.2 Combining with other light paths

To render full global illumination, we need to combine the result

of our technique with other light paths; there are several ways this

can be done. Typically, the high-frequency directional effects are

not visible in indirect and environment illumination. We therefore

take the approach of computing the direct illumination on the glinty

Table 2. Comparison of our rendering time (our evaluation component only,
excluding global illumination) versus the corresponding previous method
for different material types.

Scene Type Our Time Prev. Time

Macbook Geom. 4.5s 2.0s

Macbook Wave 5.9s 234s

Plate Geom. 12.3s 45.8s

Phone Geom. 6.4s 3.3s

Cloth Fabric 10.1s n/a

surface in a first pass. We compute other light paths (indirect and

environment illumination) in separate passes, approximating the

glinty material by a standard smooth microfacet BRDF with a match-

ing roughness. The roughness of the smooth (average) GNDF for

indirect/environment lighting can be obtained from the mean GNDF

image of the dataset. Various other sampling schemes are also possi-

ble, but this approach currently gives the best performance for our

example scenes.

8 RESULTS AND DISCUSSION

In this section, we show the behavior of our approach on six different

learned materials, showcased on five different scenes. We discuss the

performance and storage of our method in comparison to previous

work, and conclude with a discussion of limitations and future work.

The performance details are given in Table 2.

We implemented our rendering (including partial cGAN evalua-

tion) in C++ as a CPU Mitsuba plugin. We run on an Intel 8-core

i7-7820X machine, using an with NVIDIA 2080Ti GPU for training.

The GAN training uses the PyTorch framework and takes around 3

hours per material. The synthetic dataset generation can take from

1 to 6 hours depending on the type of material. Currently our data

synthesis is CPU-based, so the GPU was used only for training.

8.1 Rendered images

Our geometric optics result for an isotropic noise heightfield can

be seen in Figure 11 (left), as well as in Figure 12 (left). In Figure 12

(right), we also provide a comparison to a result computed using the

method of Yan et al. [2016]. Our method can achieve similar spatial

and temporal patterns. While we can exceed the performance of

the highly optimized previous work [Yan et al. 2016] only in some

cases, our storage requirements are much lower. We also show a

brushed metal material in Figure 14. This is using geometric optics

and an anisotropic spacing of latent vectors in texture space, and

also demonstrating a moving geometry.

Our wave optics result can be seen in Figure 11 (middle), as well

as in the teaser (Figure 1). A comparison with the wave optics

method of Yan et al. [2018] is provided in Figure 11 (right). Again,

our result is quite close in its spatial and temporal behavior, as well

as the subtle color effects. The previous wave optics method is quite

expensive, and our method has significantly faster performance, as

well as lower storage requirements.

A result rendered with the measured GNDF dataset is shown in

Figure 13 and compared to the naive approach of using the measured

data directly. Our method is much more practical, not requiring the

massive data storage, avoiding tiling artifacts, as well as learning

to fill the holes. While it may well be possible to fix the missing
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a) Our geometric GAN b) Our wave optics GAN c) [Yan et al. 2018] wave optics

Fig. 11. Laptop. From left to right: our geometric optics GAN, our wave optics GAN and Yan et al.’s [2018] wave optics method.

a) Our geometric GAN b) [Yan et al. 2016] geometric optics

Fig. 12. Phone. Comparison of our geometric optics GAN to Yan et al.’s [2016] explicit method for geometric optics.

a) Our GAN learned from the measured GNDFsa) Directly using the measured GNDFs

Fig. 13. The left image shows the naive approach of using the measured data for rendering directly. This is clearly not viable, and illustrates the need for some
texture synthesis and hole filling in order to use this data effectively. Our GAN result learned from the measured GNDF dataset (right) shows closely matching
highlight size and intensity, and similar glint appearance, but fixes the issues with holes and the visible tiling pattern.
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Fig. 14. Tumbler. This scene demonstrates our anisotropic brushed metal
extension.

data hole and render good images directly, without requiring our

full framework, the drawback of having to store a large number of

NDFs would remain. The fact that our method handles the storage

and missing data issues cleanly is a notable advantage.

Figure 15 shows a scratched ceramic example using our cGAN

technique. We show a comparison between [Yan et al. 2016] (left)

and our method using a feature texture describing the same area as

the original heightfield (middle). The images match fairly well, while

our rendering is about 3 times faster. However, both images show a

clear pattern repetition issue, as the original microstructure covers

too little area. The image on the right shows our method rendered

with a much larger feature texture, synthesized using image quilting

[Efros and Freeman 2001], with a greatly reduced pattern repetition

problem. This can be done at no performance cost, and with minimal

storage increase for the larger feature texture.

Figure 16 shows a fabric example, with GNDFs constructed from

fiber-levelmicrogeometry, also using our cGAN technique to achieve

seamless texturing. As above, we used image quilting to extend the

feature texture. This example shows that our method can be applied

to microgeometry types that are not expressible as heightfields.

Finally, figure 17 shows six additional material variations, with dif-

ferent microgeometry leading to alternative GNDFs and feature

maps, all of which can be handled by our framework.

We strongly encourage the reader to view the temporal behavior

of these examples in the supplementary video, as static images can

convey only a partial impression of our technique’s capabilities.

8.2 Performance and storage comparison

Our method can reproduce the results of previous glints methods,

but has multiple advantages over them. Since we pretrain our net-

work, rendering time is independent of the complexity of optical

simulation and the patch size covered by the pixel; this is not the

case for previous methods. For example, in the case of Yan et al.

[2018] wave optics, the simulation is very computationally expen-

sive. Moreover, they use a fixed coherence kernel σc ; where the

pixel is several times larger than the coherence kernel (like in the

laptop example), their method needs to be rendered with a higher

sample count to cover the pixel. Our method can train the network

with GNDF images already integrated for the pixel size. Rendering

the laptop scene using the previous wave optics method took 234

seconds, while our method took just 5.9 seconds (both for the glints

component only, ignoring global illumination).

Another advantage of our method is its low storage requirement.

The size of our network is small (under 1.3 MB) and independent

of the heightfield or training data size. In addition, because we do

partial evaluation, we just need under 20 KB to evaluate it. On the

other hand, the previous methods can require several GB to store the

associated acceleration data structures, even for a relatively small

heightfield of size 4k×4k. Moreover, in scenes containing multiple

different glinty objects, the storage cost of previous methods quickly

becomes prohibitive, while with our method we can easily have

multiple networks for different materials.

8.3 Discussion and future work

Comparing specular microgeometry renderings to ground truth

is itself an open problem due to the stochastic nature of patterns,

dependence on texture sampling and filtering, etc. However, by

looking at GNDFs directly, we can see that our method can faithfully

reproduce the overall appearance of the GNDFs in the synthetic or

measured input data (Figure 3). In this sense, our BRDF evaluation

is close to ground truth.

Currently, our generator is trained at a single resolution (footprint

size). This works fine for rendering animations where objects are at

a largely fixed distance from the camera; we can support some level

of zoom-out but efficiency will eventually be lost. We are interested

in extending the framework to learn the right material appearance

across several different resolutions (footprint sizes).

The generativemodel could likely becomemore compact and even

faster, by further exploring how small a network can still learn visu-

ally plausible models. The appearance training data can be produced

from a broader range of microstructures, by ever more elaborate op-

tical simulations, or by further exploration of measurement setups.

Finally, it is possible that our approach could be extended beyond

heightfield and fabric microstructures, to materials such as snow,

foam, packed crystals, and more.

9 CONCLUSION

Rendering glinty highlights on stochastic surfaces provides an im-

portant improvement in the realism of images, especially when

surfaces are viewed up close. Previous work has shown how to

do this with reasonable efficiency, but improvements in the reflec-

tion model, progressing from flat mirror flakes through smooth

surfaces under geometric optics to diffraction models for arbitrary

heightfields, have come with progressively higher computational

requirements. At the same time, there is no obvious way to set these

methods up to match measurements of a specific real material. The
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b) Our conditional GAN c) Our conditional GAN with texture synthesisa) [Yan et al. 2016] geometric optics

Fig. 15. Plate. From left to right: Yan et al.’s [2016] geometric optics method, our method on the same microgeometry (using a corresponding small feature
texture), and our method using a much larger feature texture produced by texture synthesis. Note the repeating pattern due to small original microgeometry
(for example, within the red square, but not limited to it) is addressed by our texture synthesis.

Fig. 16. Result generated with our fabric GNDF dataset.

method we have presented here shows a path forward by taking

advantage of the stochastic nature of the surface. By using our GAN

to capture the statistical variation of the generalized NDFs that

determine surface appearance, we decouple the run-time computa-

tion from the source of the appearance data. This makes the cost

of the optical computations inconsequential, while also making it

equally easy to train the model on measured data. Finally, the stor-

age required by the trained generator network is small, turning the

network into a convenient material exchange format.
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Fig. 17. Our method can be used to generate a wide variety of materials, represented as different GNDFs and (optionally) feature textures. From left to right:
(a) A plate with a smoothed random box pattern as an underlying heightfield, causing the normals to be roughly axis-aligned. (b) A plate with 8-pointed stars
as an underlying heightfield. As a result, it has normals roughly aligned with the star edges, causing 8 glinty rays out of the center of the highlight. (c) A
phone with scratches with random directions limited to a 30◦ range. (d) Similar to (c), but scratch directions limited to a 10◦ range. (e) An alternative fabric
weave pattern (plaine weave instead of basket weave). (f) A phone with a synthetic GNDF made with randomly placed colored Gaussian flakes.
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