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Figure 1: We propose a deep learning approach for joint adaptive sampling and reconstruction of Monte Carlo (MC) rendered images. Using
a convolutional neural network (CNN), we first estimate a sampling map from a 1 sample per pixel (spp) MC rendered input (shown on the
left). In the sampling map, brighter areas indicate more adaptive samples. We then use the map to distribute three additional samples per
pixel on average and denoise the resulting 4 spp render using another CNN to obtain our final image. We train both networks in an end-to-end
fashion, and thus, our sampling map network distributes more samples to the areas that are challenging for the denoiser. For example, the
top (green) inset shows an area which is challenging for the denoiser. Our approach throws more samples in this region, and thus, we are
able to produce results with higher quality than uniform sampling. On the other hand, the denoiser can easily remove the noise from the
envelope in the bottom (red) inset using the provided auxiliary buffers, such as shading normals and textures. Therefore, our approach does
not waste the sampling budget for this area. The releative mean squared errors (rMSE), listed below the insets, are computed on the entire
images. See Fig. 7 for comparison against several other approaches on a variety of scenes.

Abstract

Recently, deep learning approaches have proven successful at removing noise from Monte Carlo (MC) rendered images at
extremely low sampling rates, e.g., 1-4 samples per pixel (spp). While these methods provide dramatic speedups, they operate
on uniformly sampled MC rendered images. However, the full promise of low sample counts requires both adaptive sampling
and reconstruction/denoising. Unfortunately, the traditional adaptive sampling techniques fail to handle the cases with low
sampling rates, since there is insufficient information to reliably calculate their required features, such as variance and contrast.
In this paper, we address this issue by proposing a deep learning approach for joint adaptive sampling and reconstruction of
MC rendered images with extremely low sample counts. Our system consists of two convolutional neural networks (CNN),
responsible for estimating the sampling map and denoising, separated by a renderer. Specifically, we first render a scene with
one spp and then use the first CNN to estimate a sampling map, which is used to distribute three additional samples per pixel
on average adaptively. We then filter the resulting render with the second CNN to produce the final denoised image. We train
both networks by minimizing the error between the denoised and ground truth images on a set of training scenes. To use
backpropagation for training both networks, we propose an approach to effectively compute the gradient of the renderer. We
demonstrate that our approach produces better results compared to other sampling techniques. On average, our 4 spp renders
are comparable to 6 spp from uniform sampling with deep learning-based denoising. Therefore, 50% more uniformly distributed
samples are required to achieve equal quality without adaptive sampling.

CCS Concepts
•Computing methodologies → Ray tracing; Neural networks; Image processing;
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1. Introduction

Monte Carlo (MC) path tracing [Kaj86] is a powerful and general

technique for physically-based rendering, but requires evaluating a

large number of samples to produce noise-free images, resulting in

lengthy render times. This problem has been the subject of exten-

sive study and many approaches have been developed to quickly

render a noisy image at reduced sampling rates and remove the

noise in a post-process [ZJL∗15]. As a result, MC rendering has

now become standard for offline rendering [KFF∗15].

However, with the rise of virtual and augmented reality sys-

tems and the recent interest of gaming companies in real-time

ray tracing, generating noise-free results from input images with

extremely low sampling rates (e.g., 4 samples per pixel) is be-

coming an important research topic. The most recent filtering ap-

proaches [CKS∗17, SKW∗17] have focused on this problem and

are able to generate high-quality results from input images with

1-4 samples per pixel (spp). These advances have led to dra-

matic speedups, bringing computation times from hours or days

to seconds or even real-time frame rates, often limited only by the

speed of the base path tracer. Indeed, deep-learning based denois-

ing [CKS∗17] is integrated into NVIDIA’s latest Optix5 GPU real-

time raytracer.

The major drawback of these approaches is that they only fo-

cus on the filtering problem and use uniformly sampled images

as the input. However, previous techniques [Mit87, Mit91, Guo98,

HJW∗08, ODR09, SSD∗09, ETH∗09, RKZ11, LWC12, RMZ13]

have demonstrated that the quality of the output images can be

significantly improved through adaptive sampling. These methods

dedicate a portion of the total sampling budget to render an ini-

tial image by uniformly distributing the samples. They then com-

pute the variance, coherence maps [Guo98], or frequency con-

tent [ETH∗09], to estimate a sampling map to adaptively dis-

tribute the rest of the samples. Unfortunately, these approaches

typically require the initial uniformly sampled image to be ren-

dered with a reasonably large number of samples. Therefore, they

fail to properly estimate a sampling map when the initial im-

age is rendered with extremely low sample counts (1 spp in our

case). This is the main reason that the most recent filtering tech-

niques [CKS∗17,SKW∗17] only use uniformly sampled images as

the input.

In this paper, we address this challenge by using deep learning

for both the adaptive sampling and filtering/reconstruction stages.

We first render a uniformly sampled image with 1 spp, which is

then used along with several auxiliary buffers, such as shading nor-

mals and texture, as the input to a convolutional neural network

(CNN) to estimate a sampling map (see Fig. 2). We then use the

map to adaptively distribute three additional samples and generate

an image with an average of 4 spp. Finally, the 4 spp image along

with other auxiliary buffers are passed to another CNN to produce

the final denoised image. We train both networks in an end-to-end

fashion by minimizing the error of the denoised and ground truth

images on a wide range of scenes with a variety of distributed ef-

fects, such as depth of field, global illumination, and motion blur.

Specifically, our work makes the following contributions:

• We propose the first learning-based approach for adaptive sam-

pling in MC rendering. We demonstrate better results than other

sampling techniques on general scenes with soft shadows, depth

of field, and global illumination (see Fig. 7). Overall, our 4 spp

results are comparable to 6 spp results with uniform sampling.

We thus take Monte Carlo rendering an important step closer to-

wards low spp for interactive and rapid preview applications.

• Since training is done iteratively, online rendering to adaptively

place the samples during training is impractical. We propose an

efficient approach for generating rendered images with arbitrary

number of samples to make the training practical (Sec. 4.1).

• We present a method for computing the gradient of the rendered

images with respect to the sample counts, which is required for

the end-to-end training (Sec. 4.2). As a result, our sampling map

network learns to throw more samples in the areas that are diffi-

cult for the denoiser to filter (Figs. 1, 8 and 9).

2. Previous Work

There has been extensive research to address the Monte Carlo (MC)

noise problem through adaptive sampling and reconstruction. A

thorough review of all these approaches is beyond the scope of this

paper. For brevity, here we only focus on the most relevant work

and refer the readers to the review by Zwicker et al. [ZJL∗15].

Shortly after the introduction of MC rendering [CPC84], several

approaches proposed to reduce the noise by distributing the sam-

ples adaptively. These approaches [LRU85, Mit87, Mit91, BM98]

use a specific metric (e.g., contrast or variance) to detect the prob-

lematic areas and assign more samples to them. Hachisuka et

al. [HJW∗08] propose to dedicate more samples to regions of high

contrast in a multidimensional space. Overbeck et al. [ODR09] use

a metric based on contrast and wavelet coefficients to estimate the

sampling map. Several approaches [SSD∗09, ETH∗09] propose to

adaptively place the samples based on the frequency content of the

image. Kalantari et al. [KS13] detect the noise at each pixel using

mean absolute deviation and throw more samples in the noisy re-

gions. However, these methods suffer from two main drawbacks.

First, they typically require the initial image to be sampled with a

reasonably large number of samples, and thus, produce unsatisfac-

tory results in our cases with extremely low sample counts. Second,

these approaches often have a reconstruction stage to remove noise

from the rendered images. However, the adaptive sampling stage

of these methods is independent of the reconstruction process, and

thus, is not optimal.

To address the second issue, several approaches have proposed

to perform joint adaptive sampling and reconstruction. These meth-

ods use no-reference error estimation metrics to select the best pa-

rameter for a filter and assign more samples to the regions with

large error. Several algorithms estimate the reconstruction error

by computing the bias and variance of a Gaussian [RKZ11], non-

local means [RKZ12], local linear regression [MCY14], and poly-

nomial [MMMG16] filters and use the error to adaptively sample

the image in multiple stages. A few approaches use Stein unbiased

risk estimator (SURE) as their no-reference error estimation met-

ric [LWC12,RMZ13]. Bauszat et al. [BEEM15] proposes to recon-

struct a dense error map from a set of sparse, but robust estimates.

Finally, Moon et al. [MGYM15] propose an iterative and recursive

error estimation technique to perform joint sampling and filtering.

The main drawback of these approaches is that they are not able to
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reliably estimate the reconstruction error on images with low sam-

pling rates.

Our method is inspired by the recent learning-based approaches

for filtering MC noise [KBS15, BVM∗17, CKS∗17]. Bauszat et

al. [BEM11] distributes the samples based on the summation of

filter weights. Kalantari et al. [KBS15] propose to use a neural net-

work to set the parameters of a cross-bilateral or cross non-local

means filter. Bako et al. [BVM∗17] extends this idea by replac-

ing the entire pipeline with a deep convolutional neural network

(CNN). Chaitanya et al. [CKS∗17] propose to remove MC noise

using an encoder-decoder network and demonstrate high-quality

results on rendered images with 1-4 samples per pixel. Within real-

time rendering, we also build on many recent frequency-based pa-

pers [MWR12, MYRD14], and particularly the approaches by Yan

et al. [YMRD15] and Wu et al. [WYKR17]), which introduce de-

noising for very low sampling rates (e.g., 4-9 spp). However, all

of these methods only work on uniformly sampled images. In con-

trast, we propose a deep learning approach to perform joint sam-

pling and reconstruction on images with extremely low adaptive

sampling rates.

Adaptive sampling at 4 spp, which requires estimating the sam-

pling map from 1 spp images, has to our knowledge never been

demonstrated previously. However, to make a fair comparison, we

implement and compare to a few simple alternative algorithms in-

cluding variance [LRU85] and SURE-based [LWC12] approaches.

As discussed in Sec. 6, since computing the statistics in each pixel

using only one sample is impossible, we compute them over a patch

of size 4×4. We also compare against uniform sampling with equal

rate (4 spp) and equal quality.

3. Method

Given a fixed budget of a small number of samples n (e.g., 4 sam-

ples per pixel), the goal of our approach is to generate an image

as close as possible to the ground truth image rendered with many

samples. We achieve this goal by first effectively distributing the

samples to render a noisy image and then removing the noise to pro-

duce a high-quality image. The overview of our approach is given

in Fig. 2. In the following sections, we describe our sampling map

estimator and denoiser.

3.1. Sampling Map Estimator

We propose to model the sampling map estimation process using a

convolutional neural network (CNN). In this case, the CNN takes

the 1 spp noisy image as well as several auxiliary features as the

input (11 channels) to produce a single channel output. Specifi-

cally, the CNN’s input consists of the noisy image in RGB format

(3 channels), textures in RGB format (3 channels), shading normals

(3 channels), depth (one channel), and direct illumination visibility

(one channel).

We use the output of the network to generate the final sampling

map, which is used for distributing the additional three samples

per pixel. Therefore, the average of the final sampling map for all

the pixels should be close to the remaining sampling budget, i.e., 3

spp. To enforce this, we compute the final sampling map, s from the

output of the network, x, using the following normalization process:

s(p) = round

(
M

∑M
j=1 ex( j)

× ex(p)×n

)
, (1)

where s(p) refers to the sampling map at pixel p, M is the number

of pixels in the image, and n is the remaining sampling budget (3

in our case). Note that, the exponential terms make the network’s

output, which is in the range (−∞,∞), positive. Here, the first two

terms basically normalize the network’s output to have an average

of one, and the last term enforces the sampling map to have an aver-

age of n spp. Finally, the round operator ensures that the sampling

map at each pixel has an integer value.

The sampling map, s is then used by the renderer to adaptively

distribute the three additional samples per pixel and produce an im-

age with an average of 4 spp (including the initial 1 spp). This im-

age is then used as the input to the next stage (denoiser) to produce

the final denoised image.

As shown in Fig. 3, we use an encoder-decoder architecture sim-

ilar to the one used by Chaitanya et al. [CKS∗17] for denoising.

Intuitively, the sampling map network needs to estimate the qual-

ity of the results after denoising and dedicate more samples to the

problematic areas. Therefore, we use the same network architecture

for the sampling map and denoiser networks.

The encoder and decoder in our network each have a total of 5

units, and we have a bottleneck unit in between them. Each encoder

unit consists of two convolutional layers with kernel size of 3× 3,

followed by a 2× 2 max pooling layer. The decoder units consist

of an upsampling layer, followed by 2 convolutional layers with

kernel size of 3× 3. Since our system works on single images, we

remove the recurrent connections from Chaitanya et al.’s network,

which were used to handle sequences of images. Therefore, each

unit in both the encoder and decoder contains two convolutional

layers instead of three. Moreover, following Chaitanya et al. we use

skip connections between the convolutional layers in the encoder

and decoder to help the network produce sharper sampling maps.

3.2. Denoiser

The goal of the denoiser is to take the adaptively rendered image

from the previous stage and produce a high-quality image compara-

ble to the ground truth. We propose to use a CNN, shown in Fig. 3,

to model the denoising process. Our CNN takes the noisy rendered

image with an average of 4 spp (3 channels) as well as the auxiliary

features (8 channels), and produces the output image (3 channels).

Note that, Chaitanya et al. [CKS∗17] separate the texture from

illumination and use a CNN to only denoise the illumination image.

Therefore, their system is not able to handle scenes with distributed

effects, like depth of field and motion blur, since they contaminate

the texture with noise. In our system, we use the CNN to directly

denoise the noisy rendered image, and thus, are able to handle gen-

eral distributed effects (see Fig. 7).

4. Training

As discussed, we propose to train both the sampling map estima-

tor and the denoiser networks by minimizing the error between the
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Figure 2: In our system, we first render a scene with one spp and use it to calculate the sampling map. Then, we use the sampling map to
render three additional samples. Finally, we denoise the resulting rendered image with an average of 4 spp to obtain the final denoised image.
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Figure 3: We use an encoder-decoder architecture for both the
sampling map and denoiser networks. Our network contains 5 en-
coder and decoder units, separated by a bottleneck unit. Each en-
coder consists of two convolutional layers followed by a max pool-
ing layer, while the decoder units consist of an upsampling layer
followed by two convolutional layers. All the convolutional lay-
ers have a kernel size of 3× 3. We use skip connections between
the convolutional layers in the encoder and decoder units. We use
ReLU activation function after all the convolutional layers except
the last one. Note that, the output of the sampling map network has
one channel, while the denoiser’s output has three channels.

denoised and ground truth images in an end-to-end fashion. In our

system, the renderer is in between the two CNNs, and thus, we need

to overcome two major challenges to effectively train the networks.

First, a large number of iterations are required for the system to

converge during training. At every iteration, we need to render ad-

ditional samples based on the estimated sampling map from the first

stage, which makes the training impractical as rendering is com-

putationally expensive. Second, to train the sampling map network

using backpropagation, we need to differentiate the renderer, which

is not straightforward. Next, we discuss our proposed approach for

addressing these two issues as well as the optimization process.

4.1. Render Simulator

A simple way to address the computational complexity of the ren-

dering process is to pre-render a set images at different sampling

rates, I1, · · · , IN , where N is a large number. We can then choose the

appropriate image for each pixel based on the estimated sampling

map during training. However, this approach requires a significant

amount of computational power and storage for rendering and sav-

ing the images as well as the auxiliary buffers at all the sampling

rates.

Our main observation is that we can combine two independently

rendered images to generate an image with higher sampling counts.

For example, we can combine two independently rendered images

with 3 and 4 spp to produce an image with 7 spp as:

I7 =
3 I3 +4 I4

7
,

where Is is the rendered image with s samples per pixel. Therefore,

we propose to pre-render a set of images with power of two sam-

pling rates, I20 , I21 , · · · , I2k , where 2k is a large number (1024 and

more). We then produce images with any number of samples by

combining the appropriate images in the set as follows:

Is =
∑k

i=0 2i I2i g(s,2i)

s
, (2)

where Is is the image with the desired sampling rate and I2i is the

pre-rendered image with 2i samples. Here, g(s,2i) is a binary value

of 0 or 1 according to whether the binary representation of s in-

cludes the term 2i. Note that, since the sampling map has different

values at each pixel, we evaluate this expression separately for each

pixel, but in this equation we omit the pixel notation for simplicity.

For each render at a given sampling rate, there is an infinite num-

ber of noise patterns. Therefore, to make our network more robust

to noise, we render multiple alternative images with different seeds

and pick one at runtime for each power of two sampling rate.

An alternative approach is to render a large number of 1 spp im-

ages and then generate an image with arbitrary number of samples,

n, by combining n 1 spp images. Although this approach is more

efficient than our proposed power of two pre-rendering method, it

requires a significant amount of storage to store the 1 spp rendered

images as well as the auxiliary buffers. Our method provides a rea-

sonable trade-off between storage and computational complexity.

4.2. Gradient of the Renderer

In order to train the networks in an end-to-end fashion, we need to

differentiate the renderer, i.e., compute the gradient of the rendered

image with respect to the sampling map at each pixel. Unfortu-

nately, the renderer is a complex system and there is not a straight-

forward way to calculate the gradient analytically. Therefore, we

propose to compute the gradient numerically as follows:

∂Is

∂s
=

Is+h − Is

h
, where Is+h =

s Is +h Ih
s+h

, (3)

where h is the additional samples (e.g., 1 or 2), used for the numeri-

cal differentiation. Here, Is+h is obtained using Eq. 2 from the orig-

inal image with s spp, Is, and the image rendered with additional
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h spp, Ih. Unfortunately, since the rendering process is stochastic,

this gradient is extremely noisy and makes the training unstable.

One way to address this problem is to compute the gradient over

a large number of independently rendered h spp images as follows:

∂Is

∂s
=

N

∑
i=1

Ii
s+h − Is

h N
, where Ii

s+h =
s Is +h Ii

h
s+h

, (4)

where N is a large number to ensure the gradients are noise-free.

However, this approach requires pre-rendering a large number of

images with h spp, which is computationally expensive and re-

quires significant amount of storage. To address this issue, we sim-

plify Eq. 4 as follows:

∂Is

∂s
=

N

∑
i=1

s Is +h Ii
h − (s+h) Is

h N (s+h)
. (5)

Here, we have replaced Ii
s+h with its definition in Eq. 4 and per-

formed basic simplifications. Next, we apply the summation to each

term in the numerator as follows:

∂Is

∂s
=

∑N
i=1 Ii

h/N −∑N
i=1 Is/N

s+h
. (6)

Here, the first term in the numerator is the average of a large

number of independently rendered images with h spp, and thus, in

the limit (N →∞), becomes the ground truth image I∞.† Since Is is

independent of i, the second term can be simplified to Is. Therefore,

we have:

∂Is

∂s
=

I∞− Is

s+h
. (7)

As is typical in numerical differentiation, we set h equal to zero

to obtain the final gradient:

∂Is

∂s
=

I∞− Is

s
. (8)

Note that, while setting h to zero is not physically possible (cor-

responds to no rendered image), we do this to ensure the gradient

is independent of this parameter. As can be seen, the gradient is di-

rectly proportional to the distance of the ground truth and current

image. Moreover, it is inversely proportional to the current sam-

pling rate s. This is intuitive, since as the sampling rate increases,

adding more samples does not significantly affect the pixel color.

The final gradient in Eq. 8 is smooth and we can use it to effectively

train both networks in an end-to-end fashion.

5. Implementation Details

In this section, we discuss the implementation details required for

reproducing our results. Our implementation is available at: http:
//cseweb.ucsd.edu/~viscomp/projects/dasr/.

Dataset – Our training data consists of a set of 700 input and

ground truth images from 50 scenes, where each scene is rendered

from 2 to 30 different viewpoints. As shown in Fig. 4, our training

† While the ground truth image is theoretically obtained by rendering the

scene with an infinite number of samples, in practice we consider the im-

ages rendered with a large but finite number of samples (e.g., 1024 spp) as

ground truth.

Figure 4: A subset of the scenes in our training set containing a
variety of distributed effects, such as global illumination, glossy
reflections, motion blur, and depth of field.

data contains a wide range of images with a variety of distributed

effects, such as depth of field, glossy reflections, motion blur, and

global illumination.

We render the ground truth images with at least 1024 spp to ob-

tain noise-free images. For inputs, we render a set of images with

power of two sampling counts to be able to efficiently produce im-

ages with arbitrary sampling rates during training (Sec. 4). More-

over, by rendering multiple alternative images for the same power

of two sampling count, we get more noise patterns.

Since the range of color and depth values are large, we compress

their range using a logarithmic function before using them as the

input to our system, i.e., log(1+z), where z is the pixel values of the

color or depth. For the other auxiliary buffers, we perform standard

normalization by computing the mean and standard deviation over

the entire training set.

Training Details – Since we have two networks in our system,

performing the training in a single stage is challenging. To reduce

the complexity of the training process, we propose to perform it in

three stages. In the first stage, we train the denoiser network on a

set of noisy inputs and their corresponding ground truth images. To

ensure the network is able to handle adaptively sampled images, we

use randomly generated sampling maps to produce adaptively sam-

pled input images with an average of 4 spp. Moreover, we generate

the sampling maps randomly at lower resolution and obtain the fi-

nal map using 8x upsampling to ensure smoothness. In the second

stage, we use the denoiser network from the previous stage and

only train our sampling map network until convergence. Finally, in

the third stage, we fine tune both networks by alternating between

training the sampling map and denoiser networks at every iteration.

As is common with the deep learning approaches, we break

down the images into patches of size 512× 512. For training, we

use Adam solver [KB14] with the default parameters and a learn-

ing rate of 0.0001. We train our system using mini-batches of size

6 as we found they provide the best trade-off between the speed

and convergence. In our system, the training in the first, second,

and third stages converge after 25000, 5000, and 40000 iterations,

respectively.

Loss – In order to measure the error between the denoised and

ground truth images during training, we use the following loss con-

sisting of spatial and gradient terms:
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Variance SURE Uniform Ours

rMSE 9.95 8.86 7.50 6.26

Table 1: Comparison of our approach against other methods in
terms of relative mean squared error (rMSE). We factor out 10−3

from all the reported values for clarity. The rMSE values are av-
eraged over 60 test images. For equal quality, we obtain an rMSE
of 5.92×10−3, which is slightly lower than ours since we are only
able to render images with an integer number of samples.

L= 0.5Ls +0.5Lg (9)

where Ls and Lg refer to the spatial and gradient terms, respec-

tively. For the spatial loss, we use relative �1 as it properly models

the human vision sensitivity to noise in the dark regions:

Ls(ĉ,c) =
‖ĉ− c‖1

|c|+ ε
(10)

where ε = 0.01 and ĉ and c are the denoised and ground truth im-

ages, respectively. For the gradient term, we use a slightly modified

version of the high frequency error norm (HFEN) [RB11] to ensure

the edges in the final image are sharp. Specifically, our gradient

term is defined as:

Lg(ĉ,c) =
‖g(ĉ)−g(c)‖1

|c|+ ε
(11)

where g(ĉ) is the Laplacian of Gaussian operator. Comparing to the

original HFEN, we introduce the division by |c|+ε to better model

the human vision system’s sensitivity to variations in the dark ar-

eas. Note that, since the range of color values can be significantly

large, we apply a logarithmic function to the ground truth image to

compress its range before computing the loss, i.e., c = log(1+ c̃),
where c̃ is the ground truth image in the linear domain.

6. Results

We implemented our approach in PyTorch [PGC∗17] and com-

pared against several other sampling techniques including adap-

tive sampling using variance [LRU85] and SURE [LWC12] met-

rics, as well as uniform sampling. Note that, adaptive sampling for

extremely low sampling rates has not been demonstrated before.

Since computing the variance of each pixel using one sample is im-

possible, we calculate it in a 4×4 patch to ensure we have sufficient

samples. We use the same strategy to compute the required variance

for the SURE-based sampling map. Moreover, we implemented the

SURE-based approach using both the cross-bilateral filter, as used

in the original paper, and our denoiser network. However, we only

show their results using the cross-bilateral filter as we found it pro-

duces better results. The SURE’s sampling map is noisy, so we ap-

ply another cross-bilateral filter to smooth it out. Note that, the

cross-bilateral filters are only used to generate the sampling map

to render the additional samples and they are not used for the final

denoising.

We also perform equal quality (EQ) uniform sampling compar-

ison. In all cases, we used our denoiser network to remove noise

from the rendered images with different approaches. We use each

approach to generate adaptively sampled input images on our train-

ing set and retrain the denoiser network to ensure the performance

SURE - 1 spp SURE - 2 spp SURE - 3 spp

rMSE 8.86 8.32 8.08

Table 2: Comparison of SURE method with different initial sam-
pling counts in terms of relative mean squared error (rMSE). We
factor out 10−3 from all the reported values for clarity. The rMSE
values are averaged over 60 test images.

of the denoiser is optimized for the particular sampling strategy.

Moreover, note that there is a long tail in the EQ distribution, which

indicates that our adaptive sampling strategy enables robustness

with large gains where possible, and more modest but still signifi-

cant benefits in the common case.

Error Comparison – We show the average relative mean squared

error (rMSE) of all the approaches on a set of 60 test scenes in Ta-

ble 1. Our test scenes contain a variety of effects such as global

illumination, motion blur, and glossy reflections and none of the

test scenes are included in our training set. Although we optimize

our approach using a different error function (Eq. 9), we still pro-

duce better results than other approaches in terms of rMSE, which

demonstrates the generality of our system. It is worth noting that

other adaptive sampling approaches perform poorly even compared

to uniform sampling. This is mainly because 1 spp input images do

not provide sufficient information for these approaches to reliably

estimate their required statistics, and thus, their estimated sampling

maps are usually noisy and inaccurate (see Figs. 8 and 9).

Note that, as discussed, we compute the variances for the SURE

method in a 4× 4 patch on the 1 spp input images. We also ex-

perimented with an alternative sampling strategy, where we use 2

or 3 spp input images to be able to directly compute the variances

in each pixel. As shown in Table 2, the results of the SURE ap-

proach improve as the initial sampling rate increases. This is ex-

pected, since by increasing the initial uniform sampling rate, we

decrease the budget for adaptive sampling. Therefore, SURE’s re-

sults converge to the result of uniform sampling. However, in our

main comparison, we start from 1 spp input images for all the ap-

proaches to have a fair comparison.

Moreover, we show the rMSE error of all the approaches, rela-

tive to ours, for our 60 test scenes in Fig. 5. Our approach produces

better results than all the other approaches on all but two scenes

where our error is slightly worse than uniform sampling. We also

show the histogram of required sampling rates for the equal qual-

ity comparison over all the 60 images in Fig. 6. To achieve similar

error to our method using uniform sampling (EQ), on average, we

need to increase the sampling rate to 6.12 spp. Therefore, with uni-

form sampling we require 50% more than our adaptive sampling

approach to achieve the same equality, which is a significant im-

provement.

Representative Scenes – We show the results of all the ap-

proaches for six representative scenes (see Fig. 5) from our test

dataset visually (Figs. 1 and 7) and numerically (Table 3). For each

scene, we show two insets with high and low sampling densities

to demonstrate the effectiveness of our approach. In general, our

method produces significantly better results in the top green insets

with high adaptive sampling rate, while performing as well as other

approaches in regions with low adaptive sampling rate shown in the
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Figure 5: We show the rMSE error of all the approaches relative to ours for the 60 test scenes. Our method produces better results than all
the other algorithms on almost all the scenes. The six scenes, shown in Fig. 7, are indicated on this plot.
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Figure 6: We show the histogram of required sampling rate to
achieve equal quality on all the 60 test scenes. The average of the
required sampling rates are 6.12.

red bottom insets. The DINING scene contains glasses with com-

plex reflections and refractions. As shown in the green top inset,

our approach correctly throws more samples in this area and is able

to produce high-quality results. However, other approaches under-

sample this difficult region, and thus, their results contain residual

noise. On the other hand, the noise on the cup in the red bottom

inset can be easily removed by our denoiser. Therefore, despite

having low sampling density in this area, we are able to produce

comparable results to other techniques.

Next, we examine the STAIRWAY scene with global illumination.

The highlights on the chandelier are difficult to capture, and thus,

our approach assigns more samples to this region. As a result, our

method produces an image with higher quality than the other ap-

proaches. However, the denoiser can effectively remove the noise in

the red bottom inset, while preserving the sharp features by utiliz-

ing the auxiliary buffers like textures. Therefore, all the approaches

produce high-quality results in this area.

The SPACESHIP scene is particularly challenging, since the aux-

iliary buffers do not contain any features for the visible objects be-

hind the transparent glass. Our sampling map network assigns a

significant number of samples to this challenging area, and thus,

our method produces a better result than the other approaches.

Note the missing sharp line in variance and uniform, as well as

the blotchiness in SURE’s results. The MONKEY HEAD is a scene

with global illumination and motion blur. Other approaches pro-

duce results with blotchiness in the motion blur area (green top

inset) because of lack of sufficient samples, while our method is

able to dedicate the majority of samples to this region and produce

a smooth result. On the other hand, the red bottom inset shows a re-

ID Name Var. SURE Unif. Ours

36 LIBRARY 9.73 7.99 9.06 6.74
29 DINING 4.16 4.32 3.34 2.21
21 STAIRWAY 8.70 7.94 7.39 6.95
15 SPACESHIP 2.13 1.55 1.94 1.19
48 MONKEY HEAD 0.37 0.37 0.31 0.17
58 PLANTS 0.75 1.44 0.47 0.44

Table 3: Quantitative comparison in terms of relative mean
squared error (rMSE) for the six images in Figs. 1 and 7. For clar-
ity, we factor out 10−3 from all the values.

gion with low sampling density where all the approaches produce

high-quality results.

The PLANTS scene demonstrates depth of field and soft shadow

effects. As a result, auxiliary buffers are also noisy, but the denoiser

is still able to handle this. In this case, a simple blurring of the scene

suffices, and uniform sampling is adequate; our method provides

only a moderate benefit.

Sampling Map – Figure 8 shows comparison of our sampling

map against other techniques on different scenes. The variance-

based method focuses on noisy regions, like the table cloth in the

DINING scene, despite it’s being very low frequency in the ground

truth image. The SURE-based method misses some areas which are

hard for the denoiser like the highlight on the lamp’s base in the LI-

BRARY scene. Our method on the other hand, throws more samples

in the areas which are hard for the denoiser like edges.

Figure 9 takes a closer look at the LIBRARY scene from Fig. 1.

Here, the denoiser network has difficulty removing the noise from

the green top inset, but can easily denoise the red bottom inset. The

approach based on variance incorrectly throws more samples in the

red inset, as it works independently of the denoiser. The SURE-

based approach estimates the the error after filtering, but the 1

spp input does not provide sufficient information for this approach.

Therefore, it is not able to properly sample the green inset, while

at the same time wastes the sampling budget in the red inset. Our

sampling map network produces a smooth map and is able to as-

sign more samples to the problematic areas in the green inset, while

dedicating fewer samples to the regions in the red inset. As shown,

our method produces high-quality results in both cases, while other

methods fail to handle the green inset.

Timing – Our method takes around 10 ms to evaluate the sam-

pling map (5 ms) and denoiser (5 ms) networks on a machine

with a GeForce GTX 1080 Ti GPU. This is a negligible overhead
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Figure 7: Comparison of our approach against several other sampling techniques. The number of uniformly distributed samples required
for obtaining the same quality as our approach with 4 spp is listed below the insets in the equal quality (EQ) column. For each scene, we
show two insets from the high and low sampling density areas. In general, our method produces significantly better results in the top green
insets with high adaptive sampling rate, while doing as well as other approaches in the red bottom insets with low adaptive sampling rate.
See numerical comparison on these images in Table 3.

compared to the time required for rendering the input images with

Blender’s Cycles raytracer (used in our implementation) or even

GPU raytracers like Optix. Therefore, our approach provides a sig-

nificant speedup (50%) compared to uniform sampling, as this ap-

proach requires rendering 6 spp to achieve the same quality as ours.

Note that, we report sampling counts rather than overall times to

avoid referring to a particular system and implementation.
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OursSUREVariance Our Filtered Result

Figure 8: Comparison of sampling map against other techniques
for different scenes.

OursSUREVariance
Ground Truth

1 spp Input

Ground Truth

1 spp Input

Figure 9: Comparison of sampling map against other techniques
on the insets from Fig. 1.

Convergence Analysis – For convergence analysis, we rendered

multiple batches of 1 spp images. Then we generated the sampling

map and rendered 3 additional adaptive samples as usual for each

batch. After combining the batches into a single image (the total

number of samples is four times the number of batches), we denoise

the resulting image. Figure 10 shows how the error continues to

decrease as we add more batches. Although our method continues

to have the lowest error, the rate of convergence is slightly slower

than one of the uniform method.

Limitations – In the cases where most regions are equally diffi-
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0.008
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0.01
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Average SPP

Variance
SURE
Uniform
Ours

Figure 10: Convergence analysis. The errors of Library scene with
respect to more samples for different methods after denoising.

1 spp Sampling Map Our Result Ground Truth

Figure 11: Our sampling map cannot capture very thin structures
such as some branches on this bush shown by the red arrow. How-
ever, it still able to capture a branch 2 pixel wide shown by the
green arrow.

cult for the denoiser, our approach does not produce significantly

better results than uniform sampling numerically, e.g., PLANTS

scene in Fig. 7 (see Table 3). However, as discussed, our approach

improves the visual quality of the results significantly in the vast

majority of examples.

Finally, our sampling map network is not able to properly sample

the thin structures in noisy areas, as shown in Fig. 11. This is indeed

a challenging case as the 1 spp input does not have sufficient infor-

mation for the sampling map network to detect the regions with

thin structures.

7. Conclusions and Future Work

We have presented a novel deep learning approach for joint adap-

tive sampling and reconstruction of MC rendered images with low

sampling counts. We use a convolutional neural network (CNN) to

estimate a sampling map from a uniformly sampled 1 spp image.

We then use the map to render three additional samples adaptively.

Finally, we denoise the rendered image using another CNN to pro-

duce the final image. We train both networks on a set of scenes with

different distributed effects in an end-to-end fashion. To the best of

our knowledge, there are no existing adaptive sampling techniques

for extremely low sample counts and the simple alternatives per-

form significantly worse than our approach and even uniform sam-

pling. Our method is the first learning-based approach that enables

adaptive sampling in extremely low sample count MC rendering.
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In the future, it would be interesting to use generative adversarial

networks to improve the perceptual quality of the results. Moreover,

we would like to investigate the possibility of performing joint sam-

pling and denoising at multiple scales to be able to generate high-

quality results at the rates lower than 1 sample per pixel. At the

other extreme, we would like to investigate learning-based adaptive

sampling for higher sample counts in production rendering. Even

though standard adaptive sampling approaches can be applied for

higher sample counts, there may still be advantages to a learning-

based approach.
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