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Figure 1: We introduce a lightweight material capture method based on a semi-procedural material prior. Constructing our prior only
requires choosing the initial patterns (left), which is a significantly easier task than designing a full procedural node graph for a material, as
required by existing work [SLH∗20]. These patterns are processed by a convolutional architecture inspired by procedural node graphs. We
can optimize these weights to match target photographs of material samples (e.g., taken by a cell phone with flash). Note the closely matching
appearance achieved for this wood example: our result even shows knots in the wood pattern, despite the initial grayscale maps having no
knot-like features. Our method produces high-quality tileable results, and does not require graph structures, expert artists, nor training on
large datasets of example materials.

Abstract
Lightweight material capture methods require a material prior, defining the subspace of plausible textures within the large
space of unconstrained texel grids. Previous work has either used deep neural networks (trained on large synthetic material
datasets) or procedural node graphs (constructed by expert artists) as such priors. In this paper, we propose a semi-procedural
differentiable material prior that represents materials as a set of (typically procedural) grayscale noises and patterns that are
processed by a sequence of lightweight learnable convolutional filter operations. We demonstrate that the restricted structure
of this architecture acts as an inductive bias on the space of material appearances, allowing us to optimize the weights of the
convolutions per-material, with no need for pretraining on a large dataset. Combined with a differentiable rendering step and
a perceptual loss, we enable single-image tileable material capture comparable with state of the art. Our approach does not
target the pixel-perfect recovery of the material, but rather uses noises and patterns as input to match the target appearance. To
achieve this, it does not require complex procedural graphs, and has a much lower complexity, computational cost and storage
cost. We also enable control over the results, through changing the provided patterns and using guide maps to push the material
properties towards a user-driven objective.

CCS Concepts
• Computing methodologies → Reflectance modeling; Texturing;

1. Introduction

Reconstructing spatially-varying surface reflectance from a single
image is an under-constrained problem that requires appropriate
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materials priors to be solved properly. Recent work on material cap-
ture has demonstrated the use of deep neural networks to learn such
priors by either directly training CNNs to regress material proper-
ties from images [DAD∗18, LSC18, ZK21] or by learning genera-
tive material models that can be used in an inverse rendering opti-
mization scheme, such as in the MaterialGAN approach [GSH∗20].
While these priors are quite useful, the reconstructed materials are
often limited in terms of their quality, resolution, and editability,
and they require training over large datasets of synthetic materials
(since real material datasets are not easily available).

In contrast to such image-based material priors, recent work has
demonstrated the use of procedural priors for materials [SLH∗20,
HDR19]. Procedural material graphs are composed of a set of gen-
erator nodes that produce initial grayscale noises and patterns, and
a set of filter nodes that process the noise/patterns to produce ma-
terial parameter textures. These graphs produces realistic results
and allow for interactive editing and control over the generated
material textures. Recent work has proposed methods to estimate
procedural graph parameters from photos either by direct neural
network-based parameter prediction [HDR19] or by mapping pro-
cedural graphs to differentiable programs that can be optimized to
match the input photos [SLH∗20]. These methods produce results
that are high-quality, resolution independent and editable (by edit-
ing the graph parameters). However, the requirement of complex
node graphs (which need to be manually designed by expert artists
using professional software) as priors to guide the optimization is
limiting.

We instead design a high-quality material prior which can be
used to optimize for high-quality, tileable, resolution-independent
and editable materials without the need for node graphs and/or large
material datasets.

We note a common workflow in procedural material model-
ing: initial noises and patterns are processed by image filtering
operations to synthesize the final texture maps. This inspires our
proposed approach: we take a set of initial noises (unstructured
grayscale maps) and patterns (structured grayscale maps), and pro-
cess them using a sequence of filters with learnable coefficients
to produce the output material textures. Our model is similar to
convolutional neural networks (CNNs) operating on a fixed resolu-
tion and with specific restrictions on the convolution shapes. Unlike
previous learning-based methods that train these networks on large
datasets [GSH∗20], and similar to procedural material estimation
methods that do test-time optimization of procedural graph param-
eters [SLH∗20], we optimize the filter/network parameters per ma-
terial. We call this approach “semi-procedural” since we start from
(typically procedural) initial noises and patterns, but do not require
the full topology of a procedural node graph.

We observe that many nodes used in typical procedural graphs
(low and high pass filters, color operations, etc.) can be exactly
or approximately expressed as one of two convolution operations
common in CNNs: first, a 1×1 convolution, which simply recom-
bines input into output channels using per-pixel linear combina-
tions (plus bias), and second, depth-wise (per-channel) k× k con-
volution, which applies a spatial filter to each input channel with no
cross-channel communication (we use k = 5). These special con-
volutions lead to comparable inverse rendering results as general

convolutional layers but with fewer optimizable weights, reducing
storage of the model and providing additional regularization.

We find that the inductive bias of a network composed of these
special types of layers, together with a set of initial noises, is a good
material prior that does not require training on a large dataset, nor
finding a suitable node graph for each material. The reason is that
the operations are largely local and their expressive power is cho-
sen to approximately capture the power of typical image processing
operations in procedural node graphs. Thus, the weights of our ar-
chitecture can be overfitted to specific samples; the prior is defined
by the choice of initial noises/patterns and the inductive bias of the
architecture, not by the weights.

Our design is related to previous work on deep image priors,
which has shown that the structure of CNNs alone is a viable im-
age prior [UVL18]. However, such a prior would be too weak for
our application, as it is not specific to material textures in any way.
In our inverse rendering framework, this results in basic stationary
textures with no features larger than a few pixels, and is not ca-
pable of producing more global features common in tiles, wood,
and many other examples; our initial patterns are critical in achiev-
ing such features. Our inductive prior limits the possible opera-
tions to a few limited convolution layers applied at fixed resolution
starting from a chosen set of patterns/noises. This is an intention-
ally restricted architecture, which may initially seem like a limita-
tion; however, this reduced generative power leads to a narrower
(stronger) prior on plausible material appearance, in contrast to the
broader MaterialGAN and even broader deep image prior.

Our semi-procedural prior reduces the complex task of con-
structing a full procedural node graph to a much easier task of
choosing a few initial noises and patterns (for stochastic materials,
the noises can even be chosen at random). Our approach retains
several of the advantages of procedural approaches, such as the ef-
fectiveness of inverse optimization and tileability. We also main-
tain a high degree of editablity with the possibility to vary the input
patterns. On the other hand, our method is specific to the inverse
setting (fitting target photographs) and it is not designed to be a
forward generative model for materials.

Our proposed material prior is combined with a differentiable
rendering layer and a perceptual loss to build an end-to-end in-
verse material rendering pipeline. Similar to many SVBRDFs es-
timation methods [DAD∗18, LSC18, DAD∗19, GLD∗19, GSH∗20,
GLT∗21, ZK21], our target image is a photo of a planar surface lit
by a collocated flash; however, this configuration is orthogonal to
our method, and other lighting and viewing conditions can be used,
simply by modifying the rendering layer.

We demonstrate that our inverse material estimation pipeline is
able to produce tileable, high-resolution and high-quality results
(see Fig. 1) comparable to the state-of-the-art approach [SLH∗20],
despite not requiring pre-existing node graphs nor training on large
material datasets. Moreover, we provide ways to edit the results.
We summarize our paper and its contributions as follows:

• We propose a semi-procedural material prior that maps procedu-
ral input patterns/noises to material maps using layers of learn-
able 1×1 and depth-wise convolutions.

• Using this prior, we demonstrate inverse material estimation re-

submitted to COMPUTER GRAPHICS Forum (4/2023).



X. Zhou, M. Hašan, V. Deschaintre, P. Guerrero, K. Sunkavalli and N. K. Kalantari / A Semi-procedural Convolutional Material Prior 3
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Figure 2: Examples of initial patterns (left) and noises (right). Pat-
terns are structured grayscale maps that are chosen by the user
based on the material category and content; noises are general
grayscale spatial variations that help adding detail to the mate-
rial, and can often be chosen at random.

sults comparable or better than state-of-the-art approaches with
significantly less data requirements, code complexity, computa-
tional cost, and memory requirements (under 1.5K parameters,
or under 6 kilobytes).

• We demonstrate additional editing capabilities by changing ini-
tial maps or providing guide maps.

2. Related Work

2.1. Material Representation

Spatially varying materials are traditionally represented as a set of
material parameter maps, where each pixel represents parameters
for analytical shading models such as GGX or Phong [WMLT07,
Pho75]. This representation is practical because it is compact, but
lacks editability as parameters are stored independently per pixel.
There is no simple way to create such material parameter maps
from scratch. To tackle this challenge, the graphics industry turned
to procedural representations of materials, enabling editable ma-
terial content creation. Different procedural models exist in the
industry [Ado22a] and research literature [GHYZ20, HHD∗22];
however, the creation of realistic editable procedural materials re-
mains a challenge and relies typically on node graphs with com-
plex topology. Recently, neural material representations were pro-
posed [KMX∗21, RJGW19, RGJW20, SRRW21], allowing to en-
code the shading model itself in neural networks and query a re-
flectance given a light and view direction; this is orthogonal to our
goal of representing and capturing the spatial variation of mate-
rial parameters. In this work we propose a material representation
which relies on the recombining initial noises and patterns (picked

Re-rendered Target

Rendering 

Material mapsInitial 
noises/patterns

Pix conv layers
Channel conv layers Backpropagation

Figure 3: Our architecture. Initial noise and pattern maps are pro-
cessed alternatingly by PIXCONV and CHANNELCONV layers, re-
sulting in material parameter maps (albedo, height, roughness)
that are turned by a differentiable rendering operator into a ma-
terial image lit by flash illumination. This rendered image is opti-
mized to match a target image using a perceptual loss. Backprop-
agation updates the parameters of the PIXCONV and CHANNEL-
CONV layers, minimizing the difference between the rendered im-
age and the target.

from a pool or procedurally generated) and a limited set of neu-
ral layers and operations, building a prior on the space of plausible
materials obtainable from the initial noises and patterns.

2.2. Material Acquisition

Material acquisition has been an active research area for
decades [GGG∗16], and recent work has been focusing on
lightweight acquisition, typically using deep learning for recon-
struction. Different approaches were proposed to capture material
from a single [DAD∗18,GLT∗21,LSC18,ZK21,MRR∗22,VPS21],
multiple [DAD∗19,GLD∗19,GSH∗20,HHG∗22] photographs or a
video [YDPG21]. These methods focus on the recovery of param-
eters maps per pixel and do not allow for much post-acquisition
control. With our method we propose to train a specialized mate-
rial prior, powered by a carefully chosen set of operations, allowing
to better constrain single image reconstruction and avoid typical
artifacts such as burned-in specular highlights. Recently Henzler
et al. [HDMR21] proposed to use a U-net like architecture to re-
shape noise into material parameters given a single flash picture. In
contrast to our work, their neural architecture is heavier and their
approach is limited to stationary materials as they rely on noise and
purely statistical metrics, losing any non-local spatial arrangement
of the original image, as they do not use input patterns.

2.3. Material control

Naive control over analytical SVBRDF maps requires an artist to
edit the parameters of each maps individually, using image editing
tools. To facilitate this process different methods were proposed to
decompose SVBRDF in different components, easier to individu-
ally edit [LBAD∗06, LL11]. More recently, learning-based meth-
ods were proposed to transfer material properties [DDB20,RPG21,
FR22] or interpolate and resample them [HDMR21]. Our method
allows to edit the input noises and patterns, as well as provide guide
maps to constrain the optimization result, providing control over
the generated material structure (see Fig. 10).

2.4. Procedural material modeling

As mentioned, procedural materials representations maintain con-
trollability for users; however, their creation requires significant ex-

submitted to COMPUTER GRAPHICS Forum (4/2023).



4 X. Zhou, M. Hašan, V. Deschaintre, P. Guerrero, K. Sunkavalli and N. K. Kalantari / A Semi-procedural Convolutional Material Prior

Initial 
noises/patterns OutputTarget photo Material mapsNovel Lighting Initial 

noises/patterns OutputTarget photo Material mapsNovel Lighting

Figure 4: Single-image material capture (inverse rendering) examples. For each triple, we demonstrate the input noises/patterns, our cor-
responding optimized result and relighting results given the target photo. Note the close match in appearance achieved by our method, even
given input patterns that are very simple and do not explicitly contain some of the appearance features found in the resulting materials.

pertise. To simplify their use, Hu et al. [HDR19] proposed to train a
neural network to map photos of material samples to parameter vec-
tors of a procedural node graph. Later, Guo et al. [GHYZ20], Shi
et al. [SLH∗20] and Hu et al. [HGH∗22] used differentiable pro-
cedural material definitions (in the form of hand-written programs
or node graphs, respectively) to optimize parameters to match a
user-provided photograph. To alleviate the need for a pre-existing
procedural material database, Hu et al. [HHD∗22] proposed a semi-
automatic pipeline which, given a set of material maps and their
segmentation, generates a simple material graph reproducing its
appearance. However, it requires already having a material (and
its segmentation) to proceduralize, and is not a material capture
method per se. As opposed to previous work, we do not require a
full procedural node graph; we instead use a compact convolutional
neural architecture which starts with a few chosen noises and pat-
terns, and combines and processes them to reproduce a target pho-
tograph.

3. Method

Our goal is to design a differentiable material prior defining a sub-
space of plausible material textures. Specifically, this prior takes the
form of a function Mθ that maps a set of initial patterns and noises
into material texture maps. The function is defined by a neural ar-
chitecture parameterized by weights θ, fitted per material. Thus,

Mθ functions as a deep texture prior, additionally limited to tex-
tures obtainable from the initial patterns/noises using a small num-
ber of restricted convolutions. Because Mθ is differentiable with
respect to its weights θ, we can use a differentiable renderer and
back-propagation to optimize the weights to match a given target
photo of a real-world material.

In practice, our pipeline takes a series of noises nnn and patterns ppp
as input and outputs material parameter maps (for example, but not
limited to, the albedo map aaa, height map hhh and roughness map rrr.
While we could also directly infer normals, inferring height instead
of normal leads to more plausible maps and optionally enables dis-
placement [SLH∗20, HHD∗22, HDMR21]):

(aaa,hhh,rrr) = Mθ(nnn, ppp). (1)

All initial noises and patterns are grayscale images of equal size
(typically but not necessarily square); see Fig. 2. The output maps
are of the same size, and are typically grayscale or RGB (albedo).

To design the architecture for Mθ, we first observe the node
types used in a typical procedural node graph, such as procedu-
ral graphs built using Adobe Substance Designer [Ado22a]. Gener-
ator nodes produce initial grayscale maps that are similar to our
noises and patterns. These are combined and adjusted by filter
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Figure 5: More material capture examples, including both stochastic and structured materials, also showing the resulting material maps.
Note that the maps are artifact-free, tileable and directly usable in 3D content creation pipelines. The corresponding initial noises/patterns
are in the supplementary materials.

nodes, which implement basic image processing operations: blend-
ing, blur, sharpen, channel shuffle, per-pixel curves, directional
blur, spatial offsets, rotations or warps, etc. Typically, all interme-
diate and final maps are of the same resolution. The common image
processing operations can be classified into three types.

• Per-pixel linear or non-linear operations on multiple channels.
• Spatial convolutions within each channel.
• Spatial transformations, such as translation, scaling, and rota-

tion, and warping.

Inspired by these operation types, our material prior is designed as
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Figure 6: Demonstration of tileability. We tile our resulting mate-
rial maps 2x2 to show our results are seamlessly tileable.

a special kind of convolutional neural network that uses two types
of intermediate layers:

• PIXCONV: 1 × 1 convolution layers, which compute per-pixel
linear combinations of channels plus bias, and

• CHANNELCONV: k× k per-channel convolution layers, with no
channel cross-talk.

All convolutional layers preserve the input size, so the entire archi-
tecture operates at a fixed resolution. All CHANNELCONV convolu-
tions use circular padding, so that tileable (periodic) inputs always
lead to tileable outputs. We have experimented with using spatial
transformation layers as well, but found that the above two convo-
lution types are already sufficient for a large number of materials.

Our architecture consists of three PIXCONV layers interleaved
with two CHANNELCONV layers (Fig. 3). The LeakyReLU function
is used in between all layers. The last layer uses a sigmoid function
to map the output values into a desired range. In our results, we
use 16 channels for all internal layers. The starting channel count is
given by the number of desired initial noises and patterns, and the
final channel count is 5 when using albedo, roughness and height as
the output maps. For CHANNELCONV layers, we use a kernel size
of 5×5.

These design decisions enable us to reproduce most of the im-
age processing power of typical procedural node graphs, but using
a compact differentiable neural architecture with a very small num-
ber of parameters and with lower risk of overfitting to a target image
than with more powerful networks.

3.1. Matching target images

Given a target image I∗ (not necessarily tileable), our goal is to
produce high-quality tileable SVBRDF maps, which can be re-
rendered into an image I with a similar style as I∗. This requires
combining our prior with a differentiable rendering layer and a per-
ceptual loss to capture the style of the target image. Therefore, we
use a differentiable direct illumination renderer to render an image
under flash lighting. More specifically, we convert the height map

into a normal map using central finite differences (where height
scaling is itself an optimizable parameter), use the albedo map as
a Lambertian term, and compute the specular component using the
roughness map and a standard microfacet BRDF with the GGX nor-
mal distribution [WMLT07]. We assume a dielectric Schlick Fres-
nel term with a typical index of refraction 1.5; other Fresnel terms
or specular/metallic maps could be added trivially. The rendered
image I is computed as:

I = Ren(aaa,hhh,rrr) = Ren(Mθ(ppp,nnn)), (2)

where Ren is the differentiable rendering operation, following
the BRDF model described earlier. To capture the style of target im-
age we use the style loss based on Gram matrices of VGG features
as proposed by Gatys et al. [GEB, GEB16] instead of a per-pixel
loss; this loss has been used for procedural material capture be-
fore [GHYZ20, SLH∗20]. Additionally, we use an L1 loss between
downsampled images to match color and highlight shape better. So
our full optimization loss is defined as:

Lfull = λ1∥TG(I)−TG(I
∗)∥1 +λ2∥Id − I∗d ∥1. (3)

We minimize Lfull over θ by gradient descent optimization. (In
practice, we also optimize height scaling and light intensity as ad-
ditional scalar parameters.) Here TG represents concatenated Gram
matrices of five deep feature layers (after each pooling operation) of
the pretrained VGG19 network [SZ15]. Id and I∗d represent down-
sampled d × d resolution images, where we set d to 16 or 32;
adding the donwsampled L1 difference to the loss helps match-
ing low-frequency features like color and highlight shape, while
avoiding matching high-frequency features like the exact locations
of scratches or bumps. The weights λ1 and λ2 are set to 1.0 and 0.1,
respectively.

3.2. Patterns and noises

As discussed, we classify the initial grayscale maps into patterns
ppp and noises nnn. Our noise pool contains around 200 noises that
are widely used in Substance Source [Ado22b] graphs across ma-
terial classes. The pattern pool contains more structured maps that
are widely used in specific material classes. Here we consider six
material classes: wood, leather, stone, metal, tiles and fabric. We
build this pattern pool using 88 Substance graphs from the above
material classes. In our results, we typically use 3 initial noises and
2 initial patterns for most classes; for tiles, we use 3 initial noises
and 1 initial tile pattern. The input noises are typically selected ran-
domly from our noise pool, while the patterns are chosen by the
user. Note that all the noises and patterns are tileable, and that our
architecture is designed to preserve this tileability in all generated
material maps. Moreover, all noises and patterns can be constructed
at arbitrary resolutions and can be described by a small number of
parameters and random seeds. We will release our pattern and noise
pool upon publication.

3.3. Implementation details and performance

We implement our approach in PyTorch, including the rendering
operator. To implement the CHANNELCONV operation, we use the
group convolution operation in PyTorch, setting the number of
groups to the number of channels (16).
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Figure 7: Comparison with other per-pixel single image SVBRDF estimation approaches. We compare our approach with [DAD∗18,ZK21,
GSH∗20]. Other single image SVBRDF estimation approaches have strong highlight burn-in onto material maps, but the estimated material
maps of our approach are consistent and do not show artifacts. Note that the albedo brightness can be inconsistent between methods because
albedo and light intensity have an inherent ambiguity. This issue could be easily resolved by calibration with a target of known reflectance,
and is orthogonal to all methods tested.

We use the Xavier approach [GB10] to initialize our network
and do not require any form of pre-training. For optimization, we
use the Adam optimizer [KB14] with an initial learning rate of
0.005. The internal hyper-parameters of Adam are kept at their de-
faults in PyTorch. For fine-tuning network during editing, we keep
the same optimizer settings. We typically perform 2000 iterations
for optimization and 50 iterations for editing. Optimization takes
around 2-3 minutes and editing takes less than 5 seconds on single
Nvidia 2080 Ti GPU. Our method requires 2GB of GPU memory
and takes around 2 minutes for 2k optimization steps; using Shi
et al. [SLH∗20]’s method, the memory and runtime depend on the
complexity of the input graphs. Our observation shows that on av-

erage Shi et al.’s method takes 4∼6GB and 10∼20 minutes for 1k
optimization steps. Both were tested on a single RTX2080 Ti.

3.4. Editing

Note that our goal is to propose a compact alternative to complex
procedural node graphs. Our proposed architecture achieves high
quality tileable SVBRDFs comparable to procedural graphs; how-
ever procedurals also enable the user to perform flexible and inter-
active editing. For example, in Substance graphs, artists can control
the appearance of the generated material maps either by changing
the input generators or tweaking the parameters of different graph
nodes. We propose similar editing operations for our framework:
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Figure 8: Comparison with MATch [SLH∗20] on real images with
ground truth pictures with a different lighting. We find that both
methods produce high-quality tileable material maps without over-
exposure artifacts. However, MATch requires a complete procedu-
ral node graph which can represent the material of interest, while
our approach requires only a few noises/patterns.

Table 1: Numerical Gram Matrix difference comparison with per-
pixel single image SVBRDF estimation approaches [DAD∗18,
ZK21, GSH∗20] on 53 synthetic images and 51 captured real
images (Real1) with ground truth; as well as comparison with
MATch [SLH∗20] on 11 captured real images with ground truth,
which we know can be reproduced by procedural materials (Real2).
On synthetic data the error is computed over comparable mate-
rial maps and on real data over rendered images. Our approach
reaches state of the art quality on synthetic data, without being
trained on it and exceeds it on real data while not requiring a pre-
designed procedural material graph. (The bold values represents
the lowest values under each category)

Synthetic Real1 Real2

albedo rendered rendered rendered

Des18 0.0133 0.0084 0.0108 -

Zhou21 0.0129 0.0056 0.0089 -

Guo20 0.0145 0.0078 0.0092 -

MATch - - - 0.0037

Ours 0.0137 0.0059 0.0055 0.0036

Optimized Direct UpsampleTarget Photo

Input noises/patterns

Figure 9: Demonstration of higher resolution. Optimize: optimized
512× 512 results given specific target image. Direct: directly ap-
plying the optimized network to high resolution 1024×1024 initial
maps. Upsample: we upsample the convolutional kernels of the op-
timized network and use these with 1024×1024 initial maps.

we would like to control the estimated material maps by changing
the initial maps or performing fine-tuning on the optimized network
given a guide map provided by the user.

Changing input noises. In procedural modeling, one common
way to control generated material maps is to control the initial
pattern generators. This approach maps directly into our pipeline.
The intuition is that after our convolutional architecture is opti-
mized to represent a target image, a user can simply edit the input
pattern/noises (by slightly adjusting them or completely changing
them), resulting in another plausible material.

However, our observation shows that only changing the initial
maps, with no change to the weights θ, can cause some artifacts.
Therefore, we propose to perform a small number of fine-tuning
steps on the optimized weights under the new noises and patterns.
Our experiments show that this fine-tune process usually takes less
than 50 gradient descent steps (compared to about 2000 when start-
ing from scratch), which enables users to edit the initial maps
quickly and conveniently.

Guide map. Apart from changing initial patterns and noises, in
the classic procedural graph pipeline, users can play with the pa-
rameters of graph nodes to adjust the different image processing
operations, which further control the resulting material maps. In
our pipeline, no precisely analogous operation exists, but we pro-
pose an operation with a similar editing power. Specifically, a user
can provide a guide map (for example, an albedo map or roughness
map), and these guide maps can be used as a constraint to guide
optimization to a different desired result. For example, given that
users provide a guided albedo map aaag, the loss used to fine-tune
the system can be written as:

Ledit = Lfull +λe∥TG(aaa)−TG(aaag)∥1, (4)
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Figure 10: Material Editing. We show two types of edits. In rows
1-3, we show editing the initial patterns and noises. In rows 4-6,
we show editing results by providing different guide albedo maps.
All examples are generated by re-optimizing network for 50 steps.
The corresponding edited patterns are demonstrated in the supple-
mentary material.

where λe represents the magnitude of the editing term. We use
λe = 100 to ensure the guide is closely followed. Similarly, we
can design losses for other material maps as well. Our experiments
show that this fine-tuning takes a small number of steps and lets a
user apply a wide range of edits to the resulting material maps.

4. Results

In this section, we first show a number of results of applying our
semi-procedural prior to inverse rendering (single-image material
capture). Next, we demonstrate editing capabilities, comparisons
with other material capture approaches, and demonstrate resolution
invariance. For all stochastic material results, we randomly select
the input noises. For more structured materials, we roughly pick a
matching pattern, but show in Fig. 12 that our approach can still
perform well with loosely corresponding patterns.

4.1. Inverse rendering

In Fig. 4, we show material capture results for a number of materi-
als across multiple categories, both stochastic and structured (pro-
vided a similar structure is provided in the input patterns): leather,
wood, brick, fabric, wall paint, concrete. In each example, we show
the initial noise/pattern images (left), the resulting re-rendered ma-
terial (middle) and the target photo (right). In Fig. 5, we show

L1 only Gram Loss only Full Loss Target Photo

Figure 11: Effect of different losses. In this figure, we compare our
full loss with L1 loss and Gram loss alone. As shown, the L1 loss
alone misses high frequency details, while the Gram loss alone fails
to capture the specular behaviour. By combining both losses, we
capture both specular behaviour and texture details.

further examples, including the resulting material maps (albedo,
roughness, and normal; we convert height to normal for visualiza-
tion, to facilitate comparison to most previous works which gen-
erate normal maps. These results show that our approach is capa-
ble of producing high-quality, visually plausible results covering
many different material classes. Note that the resulting material
maps are free of artifacts, and never burn in specular highlights
or light falloff. Our method always produces tileable results given
tileable initial patterns and noises, as is shown in Fig. 6.

4.2. Comparison with other approaches

We compare our approach with per-pixel single-image estimation
approaches [DAD∗18, ZK21, GSH∗20] as well as a previous pro-
cedural material capture approach [SLH∗20]. We use the code pro-
vided by authors to generate the results of [DAD∗18, ZK21]. For
MaterialGAN [GSH∗20], as discussed in the paper, we first opti-
mize the latent and noise space to embed the results of [DAD∗19]
for initialization, and then optimize further to match the input im-
age directly. As is shown in Fig. 7, our approach does not bake
highlights into material maps, which is a common problem with
other single-image SVBRDF approaches. Furthermore, our maps
are tileable and ready for use in a 3D content creation system.

To compare our results with MATch [SLH∗20], we directly
use the output material maps from their paper. Both our approach
and MATch produce high-quality results (Figure 8). However,
our method is more compact and computationally efficient than
MATch. We simply require the user to choose initial patterns and
noises from a pool, which is substantially easier than constructing
a complete procedural node graph. Additionally, node graphs may
not be available for all types of target photos, while our pool of
patterns and noises, together with our prior, can cover a potentially
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Target Photo Initial 
noises/patterns Optimized Target Photo Initial 

noises/patterns Optimized

Figure 12: Effect of input noises and patterns. We optimize our net-
work for a given target image with different input noises and pat-
terns. We see that even with different noises/patterns, our approach
is able to generate outputs that correctly match the target style. In
the highly structured tiles examples, we show input patterns which
significantly differ from the one in the target, yet our method still
matches the desired appearance.

much larger range of materials, and is easier to extend by simply
adding new patterns and noises.

We further analyze our results quantitatively in Tab. 1 and show
that despite not being trained on synthetic data to recover the mate-
rial per pixel, our results quality on synthetic data is on par with pre-
vious work trained on synthetic data, and does better on real data.
We also quantitatively compare to MATch [SLH∗20], confirm-
ing that we achieve similar quality, without requiring pre-designed
graphs. For real data we use 51 real photographs to compare with
most methods (Real1) and a subset of 11 that have matching pro-
cedural graphs, to compare to MATch (Real2).

4.3. Higher resolutions

We demonstrate that our results can be easily extended to higher
resolutions than the target resolution used for optimization. As
shown in Figure 9, the model optimized at a 512 × 512 resolu-
tion can be directly used with high resolution (1024× 1024) ini-
tial maps; however, the output lacks high frequency details (see
third column). This is because our 5× 5 CHANNELCONV opera-
tions are adapted to the original resolution. To adapt the model cor-
rectly to higher resolutions, we upsample the convolutional kernels
from 5× 5 to 9× 9 (or equivalently, double their radius from to 2
to 4) and then normalize the sum of the original kernel weights to
preserve energy. By using this technique, we are able to generate
high-resolution results from low-resolution targets without losing
high-frequency details.

4.4. Editing results

As discussed in Sec. 3, we perform editing by fine-tuning the net-
work given different input noises or guide maps. Our experiments
show that for most examples this re-optimization will converge
within 50 iterations (less that 5 seconds). Edits are illustrated in
Fig. 10. Given different input noises, we can quickly obtain the
different material maps with the same appearance and different ini-
tial patterns; given an albedo guide map, we can also change the
appearance of material maps to match the guide map. Our observa-
tion shows that this indirect editing strategy works for most scenes.
Limitations of this strategy are discussed in Sec. 5.2

5. Discussion

In this section, we add ablation studies, and discuss limitations and
future work of our approach. In the ablation studies, we analyze the
effects of different losses, network architectures and input noises.

5.1. Ablation Study

Effect of different losses. We first analyze the effect of different
losses on our approach. More specifically, we compare our full loss
results with L1 loss only and Gram matrix loss only, as shown in
Fig 11. With only L1 loss, results are overall blurry and lack fine
details; with only Gram loss, results are sharp but fail to reproduce
the specular reflection. With our full loss, combining the downsam-
pled L1 loss and Gram loss, our results capture the style correctly
as well as reproduce the specular reflection.

Effect of different initial noises and patterns. We also analyze
the effect of different input noises and patterns. Given the same
target image, our neural network is optimized using different in-
put combinations as well as different number of inputs. In Fig. 12,
we show all five input noises and their corresponding optimized
results. As shown, our approach is able to produce high quality re-
sults that matches the style of target images even though different
input noises are taken as input. In Fig. 13, we show the effect of
progressively adding inputs. In the first wood example (left-most
in the figure), when only a structured pattern is fed as input, the
optimized results only follows this structure, without any fine de-
tails, which appear as we add more inputs noises. Similarly, if only
input noises are fed as input, the results only simulate the style
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Target Target Target

Inputs Inputs InputsOutput Output OutputInputs Output

Target

Inputs Output

Figure 13: Effect of number of input on the optimized results. Given target photos, we increase the number of input noises and patterns
from 1 to 5 (4 for the tile example) and show the corresponding optimized results. As shown in the figure, as we add inputs signals, results
show finer details and become more visually pleasing. For a target with strong structured patterns (left-most example), we show the effect
of different input signals ordering. With only the structure input (top-left, first column), the optimized results are well-structured but lack
realistic fine details, and without only noise (top-left, third column), our approach focuses on the overall appearance, but cannot reproduce
structured patterns until a suitable signal is provided as input (5th row, 4th column).

of target, losing structured patterns, which is easily solved by pro-
viding a pattern (shown in the 3rd and 4th column). We empiri-
cally set the number of input as five to keep enough fine details
using small network. In practice, thanks to the flexibility of our ap-
proach, users can select patterns from our provided pattern pool
or create any preferred patterns as input, using any pattern genera-
tor [GAD∗20, Ado22a, HHD∗22].

Network architecture. We compare our proposed architecture
with PIXCONV layers only, as well as standard CNN convolution
layers (Fig. 14). With PIXCONV layer only, the output images are
the results of per-pixel operations only, without considering any
spatial coherence, leading to unrealistic re-rendered images follow-
ing the initial maps too closely and lacking details. Compared with
a standard CNN with full convolutions, our proposed approach pro-
duces comparable results with significantly fewer training param-
eters. With our current architecture, regular convolutions would
have 10,437 training parameters, while our proposed model con-
tains only 1,258 training parameters. Combined with the fact that
the initial input patterns and noises are typically themselves pro-
cedural (and thus described by at most tens of parameters), our

method also provides an extremely storage-efficient material rep-
resentation.

5.2. Limitations and future work

Even though our approach is lightweight and can produce high-
quality materials, some limitations remain. As shown in Fig. 15,
given strongly structured target photos, initial patterns that are not
chosen well for the target appearance will fail to capture its style.
Therefore, for these strongly structured target photos, users need to
manually provide initial patterns that are sufficiently close to the
target structure (even though pixel correspondence is not required).
Similarly, if multiple structured patterns are provided to represent
the same signal, the optimisation risks getting into a local minimum
that combines both patterns. Automatic initial pattern selection is
an interesting future direction.

Even though our method allows for several editing operations,
it still does not provide as direct control over some material prop-
erties as a native procedural model. Optimization with guide maps
may in some cases take longer to fine-tune or cause material map
entanglement issues as shown in Fig 16. An interesting future solu-
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PixConv Regular Conv Ours Target Photo

Figure 14: Effect of different network architectures. We compare
our architecture with using only PIXCONV layers and with stan-
dard CNN operations. Our results are much closer to target than
PIXCONV and comparable with standard convolution, while using
significantly fewer parameters.

Initial 
noises/patternsOutputTarget photo

Figure 15: In strongly structured target images, using initial pat-
terns that are too distant from the target structure results in outputs
that do not match the desired appearance (first two lines). Further,
if multiple patterns matching a signal are provided as input, our
optimisation may fail (third line). A better choice of initial patterns
is required to resolve this.

300 steps0 step 50 stepsGuided map

Normal Albedo

Roughness Height

Normal Albedo

Roughness Height

Albedo

Roughness Height

Normal

Figure 16: Limitation: Given this guide albedo map, our method
takes more than 50 steps to converge and shows some entanglement
with the roughness being modified too.

tion could rely on a hypernetwork, capable of directly editing our
network’s weights to achieve direct and more accurate editing.

Our prior is not a generative model and is designed to be used
through inverse rendering. It would be interesting to extend our ap-
proach to a generative model in the future.

6. Conclusion

We present a differentiable semi-procedural material prior, defin-
ing a set of plausible materials constructible from a set of ini-
tial patterns and noises. We rely on a set of restricted convolution
kernels to constrain the generative output space of our prior. We
demonstrate the use of this prior for single-image material cap-
ture, achieving state-of-the-art results previously achievable only
when using pre-existing procedural graphs as priors. The benefits
of our approach include tileability, resolution independence and ed-
itability. Our prior can handle non-stationary materials with larger
features, does not suffer from flash artifacts typical in per-pixel
methods, and does not require pre-existing complex procedural ma-
terials, artistic [KB14] expertise, nor training on [RPG21] large
datasets. [GSH∗20]
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