Time and location: MWF 11:30 - 12:20 pm in ZACH 350
Office hours: MW 2:00 - 3:00 pm
Office location: 406 PETR
Email: nimak@tamu.edu
Campuswire: link in the syllabus
TA: Pedro Figueiredo
Email: pedrofigueiredo@tamu.edu
Office hours: TF 2:00 - 4:00 pm
Location: Peterson 402
Computational photography is a collection of computational algorithms and system designs (e.g., sensors, optics) to avoid the limitations of standard cameras and enable novel applications. In recent years, there has been increasing interest in computational photography because of the widespread use of the cameras by the general public through smartphones and other cheap imaging devices. In this course, we first discuss the cameras and the image formation process. We then study basic image and video processing tools like sampling, filtering, and pyramids. Finally, we discuss several image-based algorithms, such as image retargeting, high dynamic range imaging, and texture synthesis.
Undergraduate: (CSCE 315 or CSCE 331) and (MATH 304 or MATH 311)
Graduate: Graduate students are expected to have similar background.
The primary reference of the course is the following book, which covers most of the topics related to computational photography:
Computer Vision: Algorithms and Applications, by Richard Szeliski, 2010
You will lose 20% from each assignment for each day that it is late. However, there will be 5 granted late days for the entire course. You are free to use it for any of the assignments (note that, you CANNOT use it for the final project!). You will not get any bonuses for any of the unused late days. All the assignments are due at 11:59 pm on Canvas unless otherwise stated. Note that, one minute over and 23 hours over both count as one full day.
The assignments in this class are individual unless otherwise stated. For the individual assignments, all the codes need to be written by the student. If indicated in the assignment’s instruction, the use of external libraries for performing basic operations is allowed. However, using an outside source code is NOT permitted. Moreover, collaborating with other students on assignments beyond general discussions is NOT allowed. In general, looking at other students’ code and/or written answers is NOT allowed. If the students have any questions regarding this issue, they should contact the instructor. The students should not post their code online even after the deadline for the assignment has passed.
Date | Topic | Slides | Reading | Assignments |
---|---|---|---|---|
Jan 18 | Introduction and Overview | pptx | Szeliski Ch. 1 | |
Jan 20 | Camera and Image Formation | pptx | Szeliski Ch. 2.2.3 | HW 1 Out |
Jan 23 | Camera and Image Formation | See Above | Szeliski Ch. 2.2.3< | |
Jan 25 | SIGGRAPH Deadline -- No Class | |||
Jan 27 | Camera and Image Formation | See Above | Szeliski Ch. 2.2.3< | |
Jan 30 | Camera and Image Formation | See Above | Szeliski Ch. 2.2.3< | HW 1 Due |
Feb 1 | Class Cancelled | |||
Feb 3 | Color | pptx | Szeliski Ch. 2.3.2 | |
Feb 6 | Color | See Above | Szeliski Ch. 2.3.2 | HW 2 Out |
Feb 8 | Sampling, Frequency, and Filtering | pptx | Szeliski Ch. 3.2 & 3.4 | |
Feb 10 | Sampling, Frequency, and Filtering | See Above | Szeliski Ch. 3.2 & 3.4 | |
Feb 13 | Sampling, Frequency, and Filtering | See Above | Szeliski Ch. 3.2 & 3.4 | |
Feb 15 | Sampling, Frequency, and Filtering | See Above | Szeliski Ch. 3.2 & 3.4 | HW 2 Due |
Feb 17 | Pyramids | pptx | Szeliski Ch. 3.5 | HW 3 Out |
Feb 20 | Image Blending | pptx | Szeliski Ch. 8.4.4 | |
Feb 22 | Image Blending | See Above | Szeliski Ch. 8.4.4 | |
Feb 24 | Image Blending | See Above | Szeliski Ch. 8.4.4 | HW 3 Due & HW 4 Out |
Feb 27 | Point processing and Image Warping | pptx | Szeliski Ch. 3.1 & 3.6 | |
Mar 1 | Point processing and Image Warping | See Above | Szeliski Ch. 3.1 & 3.6 | |
Mar 3 | Point processing and Image Warping | See Above | Szeliski Ch. 3.1 & 3.6 | |
Mar 6 | Point processing and Image Warping | See Above | Szeliski Ch. 3.1 & 3.6 | |
Mar 8 | Homographies and Mosaics | pptx | Szeliski Ch. 8.2 | |
Mar 10 | Automatic Image Alignment and RANSAC | pptx | Szeliski Ch. 7.1 & 8.1 | HW 4 Due |
Mar 13 | Spring Break -- No Class | |||
Mar 15 | Spring Break -- No Class | |||
Mar 17 | Spring Break -- No Class | |||
Mar 20 | Automatic Image Alignment and RANSAC | See Above | Szeliski Ch. 7.1 & 8.1 | Final Project Out |
Mar 22 | Stereo | See Above | ||
Mar 24 | Stereo | pptx | Szeliski Ch. 12.1 & 12.2 | |
Mar 27 | Midterm | |||
Mar 29 | Stereo | See Above | ||
Mar 31 | Modeling Light and Lightfields | pptx | Szeliski Ch. 14.3 | Proposal Due |
Apr 3 | Image Retargeting | pptx | Avidan | HW 5 Out |
Apr 5 | Image Retargeting | See Above | Avidan | |
Apr 7 | Reading Day -- No Classes | |||
Apr 10 | Image Morphing | pptx | Szeliski Ch. 3.6.2 & 3.6.3 | |
Apr 12 | HDR & Tonemapping | pptx | Szeliski Ch. 10.2 | |
Apr 14 | HDR & Tonemapping | See Above | Szeliski Ch. 10.2 | HW 5 Due & HW 6 Out |
Apr 17 | HDR & Tonemapping | See Above | Szeliski Ch. 10.2 | |
Apr 19 | Midterm Solution | |||
Apr 21 | HDR & Tonemapping | See Above | Szeliski Ch. 10.2 | |
Apr 24 | Video Textures | pptx | Schodl | HW 6 Due |
Apr 26 | Texture Synthesis and Filling | pptx | Szeliski Ch. 10.5 | |
Apr 28 | Image Analogies and Scene Completion | pptx | Szeliski Ch. 10.5.1 & 10.5.2 | |
May 1 | Image Analogies and Scene Completion | See Above | Szeliski Ch. 10.5.1 & 10.5.2 |
*Schedule might change during the semester.
The slides in this class are heavily based on the slides from other instructors. Specifically, many slides are the exact or modified version of the slides by Alexei A. Efros, James Hays, and Rob Fergus, who in turn have used materials from Steve Seitz, Rick Szeliski, Paul Debevec, Stephen Palmer, Paul Heckbert, David Forsyth, Steve Marschner, Fredo Durand, Bill Freeman, and others, as noted in the slides. The instructor gives full permission to use these slides for academic and research purposes, but please maintain all the acknowlegements.