
An Analytical Model for a QoS Capable

Cluster Interconnect�

Eun Jung Kim, Ki Hwan Yum, and Chita R. Das

Department of Computer Science and Engineering

The Pennsylvania State University, University Park, PA 16802 U.S.A.

fejkimjyumjdasg@cse.psu.edu

Abstract

The growing use of clusters in diverse applications, many of which have real-time

constraints, requires Quality-of-Service (QoS) support from the underlying cluster

interconnect. In this paper, we present an analytical model for a wormhole-switched

router with QoS provisioning. In particular, the model captures message blocking

due to wormhole switching and bandwidth sharing due to a rate-based scheduling
mechanism. Average message latency for di�erent tra�c classes is computed using

the model. We evaluate a 16-port router and hypercubes of di�erent dimensions

with a mixed workload of real-time and best-e�ort tra�c. Comparison with the

simulation results shows that the single router and the network models are quite

accurate in providing the performance estimates.

1 Introduction

Quality-of-Service (QoS) provisioning in clusters is becoming a critical issue with the

widespread use of clusters in diverse commercial applications. The traditional best-e�ort

service model that has been used for scienti�c computing is not adequate to support many

cluster applications with varying consumer expectations. As an example, many web servers

and database servers make e�cient use of clustering technology from cost, scalability, and

availability standpoints. However, the tremendous surge in dynamic web contents, multi-

media objects, e-commerce, and other web-enabled applications requires QoS guarantees in

di�erent connotations. This in turn mandates that the cluster system, and hence the cluster

interconnect, should be able to handle user speci�ed service demands instead of adopting

the same-service-to-all model. Hence, design and analysis of QoS capable routers1 and

cluster networks has become a current research focus.

High performance cluster networks, also known as system area networks (SANs), usually

use switch-based architectures. Most commercial routers (switches) such as Cray T3D/E,

�This research is supported in part by NSF grants MIPS-9634197, CCR-9900701, and equipment grants

from NSF and IBM.
1QoS capable routers for Internet have been designed with various
avors. ATM networks can provide

QoS guarantee, but incur high latency. We are specially interested in low-latency cluster networks based

on cut-through switching.

Tandem Servernet-II, Intel Cavallino, IBM SP2, and Myricom Myrinet [17, 8, 3, 20, 2]

use wormhole switching to provide high performance. In wormhole switching, a message

is broken into
its (a few bytes each) for transmission and
ow control. The header

it(containing router information) establishes the route and the remaining data and tail

its follow in a pipelined fashion. The tail
it restores the resources. If the header is

blocked, the remaining
its are blocked in their respective positions. These routers have

not been designed for QoS assurance except for the Servernet-II [8], which provides a link

arbitration policy (called ALU-biasing) for implementing limited bandwidth and delay

control.

Since wormhole switching has been adopted in most commercial routers, it would re-

ally be advantageous if we could make them QoS capable with minimal design changes.

Some recent modi�cations to wormhole routers have been considered for handling tra�c

priority [14, 18, 22, 21]. The most logical solution is to assign separate virtual channels to

di�erent tra�c classes and use a rate-based scheduling mechanism such as Fair Queueing [5]

or VirtualClock [23] to share the link bandwidth proportionately [14, 22]. Techniques such

as preemption of lower priority tra�c in favor of higher priority tra�c have also been

proposed [18]. Recently, we have proposed a QoS-aware pipelined router that supports

features such as rate-based scheduling, preemption, and
it accelation mechanism [21].

A limitation of all prior studies on routers/networks that support integrated tra�c

is that they use simulation to evaluate the performance of various design trade-o�s. In

addition, the evaluations are con�ned to a single router in many cases. For example, in

[7, 22, 21] where the router designs are evaluated with multimedia video streams, the

study is limited to a single (4-port/8-port) router or a small network. Detailed
it-level

simulation is quite expensive and prohibits full-blown analyses of various design trade-o�s.

On the other hand, an accurate analytical model can provide quick performance estimates

and will be a valuable design tool.

In this paper we present a mathematical model for analyzing QoS capable cluster

networks. We use a bottom-up approach �rst by developing the model for a single router

and then extending it to a network. Here we use a hypercube-style cluster network primarily

to keep the analysis tractable due to the symmetric nature of the network. Such a topology

has been used in the SGI Origin architecture [13]. However, our QoS-aware router model

can be extended to any regular topology such as k-ary n-cubes and meshes as long as

the topology and routing algorithm can be captured mathematically. In fact, it should

be possible to integrate our router model with the prior network models [1, 12, 4, 6, 9] to

analyze di�erent QoS-aware cluster networks.

Like many commercial designs, we use a pipelined wormhole router architecture. The

model considers an integrated workload consisting of C di�erent classes of tra�c. (C � 1)

classes represent real-time applications2 with distinct service requirements. The last class

is used for best-e�ort tra�c applications. As proposed in our MediaWorm design [22], each

class is statically assigned at least one virtual channel, and the virtual channels are sched-

2Here real-time application refers to any time-constrained application.

uled with a rate-based scheduling algorithm, VirtualClock [23], to regulate the bandwidth

requirements. Average message latency for di�erent tra�c classes can be computed using

this model.

The main contribution of this analytic model is that it captures the chained blocking

possible in pipelined wormhole-switched networks, and the bandwidth sharing mechanism

of the VirtualClock algorithm in �nding the average latency. Unlike the prior lumped delay

models [1, 12, 4], here we analyze contention at di�erent stages of the pipelined router.

Moreover, the average behavior analysis of the VirtualClock algorithm is applicable to other

work conserving techniques such as Fair Queueing and Weighted Round Robin. While prior

analyses of these scheduling algorithms provide only performance bounds [15, 19, 16], we

demonstrate in this paper that the average behavior of these schemes can be captured

analytically.

We validate the single router model (16-port) and the cluster network model (up to

7-cubes) through extensive simulation. We use a mixed workload of three tra�c classes

(C = 3, two real-time and one best-e�ort) in this study. It is shown that the models are

quite accurate in predicting the average message latency. Using the model, it is not only

possible to predict the per class delay behavior, but also the impact of application mix.

In addition, the model can quantify di�erent components of message latency (queueing

time, transfer time, blocking time), e�ect of bu�er length, and other design trade-o�s in

an e�ective manner. Thus, it can be used as an e�cient design tool to analyze network

and application centric performance parameters.

The rest of the paper is organized as follows. In Section 2, the router architecture and

the VirtualClock algorithm are discussed. In Section 3, we present the analytic models.

The performance results are analyzed in Section 4, followed by the concluding remarks in

Section 5.

2 A QoS-aware Router Architecture

Most routers now use a pipelined design to minimize the network cycle time. Accordingly,

we use a pipelined, wormhole-switched router in this paper. Fig. 1 shows the pipelined

router consisting of �ve stages. Stage 1 of the pipeline represents the functional units,

which synchronize the incoming
its, demultiplex a
it so that it can go to the appropriate

input virtual channel bu�er to be subsequently decoded. If the
it is a header
it, routing

decision and arbitration for the correct crossbar output is performed in the next two stages

(stage 2 and stage 3). On the other hand, middle
its and the tail
it of a message directly

move to stage 4. Flits get routed to the correct crossbar output port in stage 4. Finally, the

last stage of the router performs bu�ering for
its
owing out of the crossbar, multiplexes

the physical channel bandwidth amongst multiple virtual chnnels, and transmits one
it

at a time to the neighboring router or to the network interface of the node attached to this

router.

In this n-port router architecture, we provide one virtual channel for each of the C

tra�c classes (thus C input and output virtual channels). More virtual channels per class

should improve the performance. Note that the crossbar used in our router is called a

full crossbar since it has n � C inputs and n � C outputs. The model can be modi�ed

for a multiplexed crossbar, where the virtual channel multiplexing will be done before the

crossbar stage.

1VCs VCs1

C

C-1

n-1

0

Crossbar
Control

C

1

n-1

0

header flit

1

C-1

Scheduler

C-1

C

C-1

C

(C x n)

x

Crossbar

(C x n)

Stage 2 Stage 5Stage 4Stage 3Stage 1

Arbitration
Decision

Routing

Figure 1: The pipelined router architecture with a full crossbar.

Unlike the lumped router models analyzed before [1, 12, 4, 9], a message entering the

above pipelined router can experience delay at stages 1, 3 and 5 of the router. If the

corresponding input bu�er is full in stage 1, the message must wait outside the router

until adequate space is available. In stage 3, the message again may be delayed because

its destination crossbar output port could be busy. Crossbar output port arbitration is

performed at a message level granularity. So the message has to wait until the output

port is released by the message currently using it. Finally in stage 5, multiple virtual

channels compete for the physical channel bandwidth. Traditionally, a Round Robin or

FIFO scheduler is used to schedule the output channel in a time-division manner.

The above router design is modi�ed for QoS provisioning by simply incorporating a

rate-based scheduling algorithm to share the physical channel bandwidth. We use the

VirtualClock algorithm [23] in this paper although all the three rate-based scheduling

algorithms (VirtualClock, Fair Queueing and Weighted Round Robin) are shown to provide

similar performance.

In the VirtualClock algorithm, there are two variables, called auxVC and Vtick for each

connection. The values of these two variables are determined when a connection is set

up. The auxVC indicates the virtual clock value of the connection, while the Vtick is the

amount of time that should be incremented whenever a
it arrives at that connection. The

Vtick value speci�es the interarrival time of
its from the connection. Therefore, a smaller

Vtick value implies higher bandwidth. Once these two values are set, the VirtualClock

algorithm works as follows. For each connection i, when a
it arrives at the scheduler, the

following computation is done.

auxVCi max(real time; auxVCi);
auxVCi auxVCi + Vticki;

timestamp the
its with the auxVCi:

The
its are queued and serviced in increasing timestamp order. For the best-e�ort tra�c,

the timestamp is set as 1. So the best-e�ort
its are processed only if there are no other

its with lower timestamp values.

3 An Analytical Model

In this section, we develop a mathematical model for a single router and then extend it

to a hypercube network. The motivation for developing a single router model is two fold.

First, the model can be used for evaluating small, single node clusters. Second, it can

be extended to any other topology by capturing the impact of the network and routing

algorithm. The hypercube topology is used as an example in this paper to demonstrate

the applicability of the model.

As described in the previous section, the router model assumes a pipelined architecture

with P = 5 stages. The model is derived for C classes of tra�c consisting of (C�1) classes

real-time tra�c and one class of best-e�ort tra�c. Each class is assigned a dedicated

virtual channel. (This assumption can be relaxed to assign multiple virtual channels to

a class.) In addition, the model is based on the following assumptions typically used in

analytical models: (i) The arrival pattern of each class c follows the Poisson processes with

an average arrival rate of �gc . (ii) Message length is M
its long. (iii) Message destination

is uniformly distributed. (iv) The Vtickc value for real-time tra�c belonging to class c is

given by 1=(�gcM), and the Vtick value for best-e�ort tra�c is set to 1. (v) The input

and output bu�ers(virtual channels) in stages 1 and 5 can hold bs
its. Each class is

assigned a dedicated injection/ejection queue outside the router, and these queues have

in�nite capacity.

The average message latency of class c (1 � c � C) is composed of the average network

latency, Lc, which is the time to traverse the router (network), and the average waiting

time, Wc, at the injection channel. Thus,

Latencyc = Lc +Wc: (1)

3.1 Single Router Model

The average network latency(Lc) of a message of class c consists of two parts. The �rst

part is the actual message transfer time, T . The second part is due to blocking caused

by the wormhole switching scheme, and due to sharing of the physical channel bandwidth

by multiple virtual channels at stage 5 of Fig. 1. The actual transmission time with P

pipeline stages in a single router is (P � 1 +M) cycles for an M -
it message.

In order to compute the second part of the network latency, let us de�ne Bc as the

average blocking length (in number of
its) seen by the header
it at the input, output, and

arbitration stage in the router. Bc captures the message blocking in a pipelined wormhole

router. Then the e�ective length of the message becomes (M + Bc)
its. Let Sc be the

average number of cycles required to transfer one
it of a class c message. Sc represents the

e�ect of bandwidth sharing mechanism of the VirtualClock algorithm. Thus, the average

network latency(Lc) for 1 � c � C is

Lc = P � 1 + (M +Bc)Sc. (2)

Since blocking can occur in stages 1, 3, and 5 of the router as discussed in Section 2, the

average blocking length (Bc) can be separated into three parts as

I = P [input bu�er is not empty] � fmax(bs;M)=2g

O = P [output bu�er is not empty] � fmax(bs;M)=2g

A = P [arbiter is busy] �M=2

where I, O, and A represent the corresponding blocking lengths. In each of the above

expressions, the �rst term represents the probability that the corresponding bu�er is not

empty, and the second term is the average message length that will be a�ected due to

blocking. For example, if the input bu�er is not empty, the header
it will face an average

delay of max(bs;M)=2
its. In the steady state, since the input and output rates of the

router are the same, it is intuitively clear that the above three probabilities are equal, and

are denoted as Pb;c.

Since the input/output bu�er sizes are bs, the blocking probability, Pb;c for class c

(1 � c � C) can be expressed as

Pb;c = (Lc�
0
c)
1+2

max(bs;M)
M (3)

where �0
c is the steady state message arrival rate of class c tra�c. (Lc�

0
c) is the router

utilization (�c) for class c. Since �
0
c and Lc are considered at the message-level granularity,

the total bu�er size(2bs
its) of input and output queues becomes 2bs=M when converted

to message length. Including the currently serviced
it(message), the total number of

messages becomes 2bs=M + 1. Hence, the channel utilization (or blocking probability of

class c) is given by Eq. 3. The max(bs;M) term is used to capture the bu�er length bs < M

since a new message must wait until the service for the previous message is completed. The

steady state arrival rate �0
c in Eq. 3 is given by

�0
c = (1� Pb;c)�

g
c : (4)

Combining the three blocking lengths (I, O and A), Bc becomes

Bc = Pb;c(max(bs;M) +M=2): (5)

The next unknown term in Eq. 2 is Sc, for 1 � c � C. Since the scheduler treats a real-time

message and a best-e�ort message di�erently, we compute Sc separately for the two broad

classes of tra�c. First we compute Sc, 1 � c � C � 1, for all real-time tra�c based on a

Markov model, and then use a di�erent technique to compute SC for best-e�ort tra�c.

Average number of cycles to transfer a
it of Real-time tra�c (Sc): When

a real-time message of class c arrives at the output bu�er, if other bu�ers are empty,

it will take only one cycle to transfer a
it from that message. Otherwise, the output

channel bandwidth is shared among the virtual channels according to the corresponding

Vtick values. For example, when two output bu�ers are occupied by class i and j messages

whose Vtick values are Vticki and Vtickj respectively, the number of cycles to transfer a

it of class i (Si) is (
1

Vticki
+ 1

Vtickj
)=(1

Vticki
), and the number of cycles required for a
it

of class j (Sj) is (
1

Vticki
+ 1

Vtickj
)=(1

Vtickj
).

With (C�1) classes of real-time tra�c, for any tagged class i, there are 2C�2 combina-

tions of other real-time tra�c that denote whether they occupy the corresponding virtual

channels or not. All these combinations will a�ect the output channel bandwidth sharing.

To model this e�ect, we number the combinations serially so that for each combination k

we can compute the e�ective cycle time. We can express the average number of cycles per

it for real-time tra�c c as

Sc =
2(C�2)�1X

k=0

Sc(k)Pc(k); (6)

where Sc(k) is the number of cycles required for class c in the kth combination, and Pc(k)

is the probability of kth combination for tra�c c.

Let Z be the bu�er state of the (C � 1) output virtual channels assigned to real-time

tra�c. Then it can be expressed with a bit string Z = (d1; d2; : : : ; dC�1), where di = 1 if

the virtual channel i is occupied, and di = 0 otherwise. Let us de�ne jZjj = dj; for 1 �

j � (C � 1), where the state Z = (d1; d2; : : : ; dC�1). Then jZjj indicates the state of the

jth output virtual channel.

De�nition 1 Let Z be a given state where jZjc = 1. Z = (d1; d2; : : : ; dc�1; 1; dc+1; : : : ; dC�1).

The numbering function �, for a given Z and c, returns the serial number for each output

bu�er combination as

�(Z; c) =
C�2X
j=1

d0j2
j�1 where d0j =

(
dj 1 � j < c
dj+1 c � j � C � 2:

For a given real-time of class c that occupies virtual channel c, we can �nd all combina-

tions of the other (C� 2) virtual channels from the above expression. Given (C� 1) types

of real-time tra�c, and a state Z = (d1; d2; : : : ; dC�1), where jZjc = 1 and �(Z; c) = k,

Sc(k) = (
X

8j;dj=1

1

Vtickj
)=(

1

Vtickc
): (7)

This generalization is obtained from the two class example discussed earlier. Next, the

probability of kth combination for class c, Pc(k), can be determined using a Markov model.

Let Z1 be a state such that the cth output bu�er is empty (jZ1jc = 0) and Z2 be the state

such that the cth output bu�er is not empty(jZ2jc = 1). The status of the rest (C � 2)

bu�ers are all identical in the two states to make Z1 and Z2 adjacent. Using the de�nition

of �, we can �nd �(Z2; c) = k. Now, the transition rate from state Z1 to Z2 is �
0
c, where

�0
c is the tra�c rate of the cth virtual channel (Eq. 4), while the rate from Z2 to Z1 is

(1=Lc(k)��
0
c), where Lc(k) = P �1+(Bc+M)Sc(k) from Eq. 2. The transition rate from

Z2 is reduced by �0
c to account for the arrival of a message while channel c is busy. From

the Markov model, we get all the state probabilities, �Zi, 0 � i � 2C�1 � 1. Then

Pc(k) =
�ZuP

8j;jZjjc=1�Zj

; where �(Zu; c) = k: (8)

Average number of cycles to transfer a
it of Best-E�ort tra�c (SC): Note

that since the Vtick value for the best-e�ort tra�c is in�nite, the best-e�ort message only

uses the empty cycles when there is no real-time tra�c. Moreover, transfer of best-e�ort

its can be interrupted if a real-time message arrives at the output bu�er, and should

be resumed after the real-time tra�c transfer is complete. This can be modeled as a

preemptive resume priority queue [10].

We model this phenomenon by computing the overall time to transfer a best-e�ort

message of M
its long. This time, denoted as Sm, consists of three parts. The �rst part

is the actual service time, which is M cycles. The second part is the average waiting time

of the best-e�ort message or the residual service time of all real-time messages already

in the output bu�ers. Note that the situation here is slightly di�erent from the original

preemptive resume priority queue discipline model in that, in our case we have already

included the waiting time in the input and output bu�ers when we calculated the blocking

length in Eq. 5. Hence, we only need the waiting time when the best-e�ort message is

at the head of output bu�er. This is written as Rr

1�(�1+�2:::+�C�1)
, where Rr is the residual

time of all real-time messages in the output bu�ers, and is given by
PC�1

c=1
�0cM

2

2
[10]. The

last part of the delay is due to preemption of the best-e�ort tra�c to yield to any of the

(C � 1) classes of real-time tra�c. This in
ates the overall transfer time by the channel

utilization of (C � 1) classes. Sm now becomes

Sm =M +
Rr

1� (�1 + �2 + � � �+ �C�1)
+

C�1X
i=1

�iSm:

The average number of cycles to transfer a best-e�ort
it after simpli�cation becomes

SC = Sm=M =
(2� �r)

2(1� �r)2
. (9)

With �0 as the probability that there is no real-time tra�c, we can �nd �r = 1 � �0,

where �r =
PC�1

i=1 �i. We can get �0 from the previous Markov model, where state 0 is

(d1; d2; :::; dC�1); 8j; dj = 0. All the terms in Eq. 2 are now quanti�ed to compute Lc. Note

that due to the inter-dependencies between Pb;c and �0
c, the solution becomes iterative.

3.2 Modeling of a Cluster Interconnect

The single router model can be extended to most of the regular networks as long as the

topology and routing algorithm can be captured analytically. Here, we consider integrated

tra�c in the network, and use a hypercube topology to demonstrate this idea. We use the

deadlock-free e-cube routing algorithm for message transfer.

The wormhole-routed hypercube (n-cube) model proposed in [12] is combined with our

pipelined router model to compute the average message latency. The motivation for using

the model proposed in [12] is that it is not only quite accurate over the entire workload,

but also computes the message latency per link, which is required for accurate performance

estimates per connection.

In an n-cube network, each node has n input and n output links in addition to an

injection and an ejection channel for the local host. Messages generated by a node could

travel h-hops, where 1 � h � n. Thus, each physical channel is likely to experience a

di�erent load, and therefore, the single router model of the previous section should be

modi�ed to express tra�c analysis for each link s, where 0 � s � n� 1.

3.2.1 Average Network Latency (Lc)

The actual transmission time(T) with a P -stage router in an n-cube is (P � 1 + Ph +

M) cycles, where h is the average number of hops a message travels in the hypercube.

The average number of hops is given by h =
Pn

k=1 kPk, where Pk = nCk=(N � 1), and

nCk =

n
k

!
. N (= 2n) is the number of nodes in an n-cube. The average network

latency Lc of Eq. 2 needs to be modi�ed to consider the latency for each class c when it

starts with a speci�c physical channel. Let Lc;s be the latency of a class c message when

it uses a physical channel s as the �rst path to traverse towards its destination. Then

hs =
Pn�s�1

k=0 (k + 1) � n�s�1Ck=(2
n�s�1) denotes the average number of hops a message

travels starting with the physical channel s as the �rst path.

The network contention in the hypercube network is divided into three separate parts

| blocking at the input stage of the �rst router, blocking at the ejection channel of the

last router, and blocking in the middle routers. Let Ic;s be the blocking length of a class c

real-time message at stage 1 of the �rst router that uses channel s as the �rst route, and

let Oc;n be the blocking length at stages 3 and 5 in the ejection channel of the last router.

Also, let Bmiddle(c; s) be the blocking length between the source and the destination (i.

e. middle nodes) excluding the blocking length at stage 1 of the source and the blocking

length at stages 3 and 5 of the destination.

To compute the average number of cycles required to transfer a
it due to sharing of

real-time messages at the output virtual channels, we need to consider two separate cases

again | sharing at the ejection channel and in the rest of the channels. Consequently, let

Sc;s be the average number of cycles required to transfer a
it of class c message that uses

channel s for its �rst path, and Sc;n be the average number of cycles per
it in the ejection

channel. With these de�nitions, Lc;s can be expressed as

Lc;s = fP � 1 + Phsg+ f(Oc;n +M) � Sc;ng+ f(Ic;s +Bmiddle(c; s)) � Sc;sg: (10)

The �rst term in Eq. 10 indicates the number of cycles the header will take without

contention. The second term represents the transfer time at the ejection channel(n). The

total message length that includes the blocking length (Oc;n) at the ejection channel and

the message length (M) is multiplied by the average number of cycles required to transfer

a
it (Sc;n) at the ejection channel. Similarly, the total message length at the input bu�er

(Ic;s) and in the middle nodes is multiplied by the in
ated cycle time (Sc;s) to �nd the last

term of Eq. 10. The average network latency (Lc) becomes

Lc =
n�1X
s=0

Lc;s �
�0
c;s

�0
c

;

where �0
c is the steady state message generation rate of class c while �

0
c;s is the steady state

message generation rate of class c in channel s. We need three types of tra�c rates to

complete the delay analysis. The �rst one is �gc;s which represents the message generation

rate of class c for channel s, and the second is �0
c;s, and the third is �c;s, the total steady

state rate (including transit message). We have used the tra�c analysis equations given

in [12]. We defer the tra�c rate equations to [11] due to space limitation.

Now from Eq. 3, the probability of blocking for class c tra�c in channel s can be written

as

P s
b;c = (Lc;s�c;s)

1+2
max(bs;M)

M : (11)

Note that �c;s is the total rate here. Similarly Eq. 4 is modi�ed as

�0
c;s = (1� P s

b;c)�
g
c;s: (12)

The Ic;s and Oc;n terms in Eq. 10 are similar to the I term and Bc in the single router

and are given by Ic;s = (P s
b;c � max(bs;M)=2), and Oc;n = (P n

b;c � (max(bs;M)=2 +M=2)).

Finally the average number of cycles for transferring a
it at the ejection channel (Sc;n)

and at the other output bu�ers(Sc;s) can be obtained from equations 6, 7, and 8 after

modifying the terms for representing the starting channel s for class c tra�c. The only

unknown term in Eq. 10 is Bmiddle(c; s), and its detailed derivation can be found in [11].

Average number of cycles for transferring a
it of Best E�ort tra�c(SC;s):

Similar to the single router model, now we need to compute the in
ated number of cycles to

transfer best-e�ort tra�c. However, we cannot use the preemptive resume priority queue

model alone here due to the fact that the idle period between best-e�ort
its becomes

completely random while traversing through the network. Therefore, we use the Busy and

Idle period concepts from the M/G/1 queue to �nd SC;s and SC;n.

Let Busy be the average length of busy period for all real-time tra�c and Idle be the

average length of idle period for real-time tra�c. Given the total real-time tra�c rate

�gr =
PC�1

i=1 �gi , the Idle and Busy periods become Idle = 1=�gr and Busy = Idle(1��0)=�0,

where �0 is the probability that the server is idle (Idle=(Busy+ Idle) = �0).

A best-e�ort message could arrive during the idle period or busy period of real-time

tra�c 3. If the message arrives during the idle period, then the message completion time

is M cycles. If it arrives during the busy period, the completion time is (M + Busy). In

addition, a real-time tra�c could arrive during the transmission of a best-e�ort tra�c.

This increases the message completion time by (M � �r) or (M + Busy) � �r corresponding

3Actually there are three types of arrival epochs. Due to space limitation and simplicity, we handle

only two cases here.

to the above two cases, where �r is the channel utilization due to all real-time tra�c as

explained in Eq. 9. Hence, the total transfer time is given by

Sm(s) = (M +M � �r)�0 + (M + Busy + (M + Busy) � �r)(1� �0): (13)

Then SC;s can be obtained by dividing Sm(s) by the message length M .

To compute SC;n for best-e�ort tra�c in Eq. 10, we need to capture the delay between

successive
its of a best-e�ort message. Unlike most real-time transmissions, after the

header
it of a best-e�ort message arrives at the destination, the remaining
its will arrive

in random intervals due to delay at di�erent hops of the network. Let the e�ective length

of a best-e�ort message (Ms
its) be the di�erence between the arrival time of the header

it and that of the tail
it when a message uses channel s as the �rst path. Each one of the

(M�1)
its will need SC;s cycles to transfer. However, the overall time can be reduced due

to the blocking of the header
it in the middle routers, which is given by Bmiddle(c; s).

Thus, the e�ective length of a best-e�ort message becomesMs = max(M; (M�1)SC;s+1�

Bmiddle(C; s)). The extra one cycle in this expression represents the header
it transfer

time at the ejection channel.

Now using this e�ective message length, we compute the transfer time at the ejection

channel by considering the two cases used in deriving Eq. 13. While the best-e�ort message

yields to real-time tra�c during a busy period,
its of the best-e�ort message gets accu-

mulated in the bu�er. So the e�ective length of best-e�ort message decreases. To quantify

this phenomenon, the (M + Busy) term in Eq. 13 is replaced by (Ms=2 + Busy +M=2).

Thus, the ejection channel transfer time is

Sm(n) = (Ms +Ms � �r)�0 + (Ms=2 + Busy+M=2 + (Ms=2 + Busy+M=2) � �r)(1� �0):

Then, SC;n can be obtained by dividing Sm(n) by the message length M .

3.3 Average Waiting time at the Source Node

Finally, we need the average waiting time at the source node (Wc) to �nd the average

message latency in Eq. 1. Since the average waiting time accounts for the time consumed

outside the router, it can be seen as the delay in the Network Interface (NI). Typically

the delay is due to two data transfers involved in the NI. One is from the host to the NI

and the other is from the NI to the network. In this model we only consider the transfer

time from the NI to the network. To facilitate real-time scheduling in the NI, we assume

that the NI bu�er is divided into C classes and the VirtualClock algorithm is implemented

among the C bu�ers [21].

The average waiting time consists of two parts. The �rst part is the time spent in the

injection channel before arriving at the head of the respective queue. Since each class has

a dedicated injection bu�er, messages are transfered in FIFO manner within each class,

Thus, the waiting time can be obtained by the queueing time of an M=G=1 queue as
�gcLc

2
(1+�2=Lc

2
)

2(1��gcLc)
with an arrival rate �gc , mean service time Lc, and variance �2 � (Lc � T)2.

The second part is the delay due to the VirtualClock algorithm, and is given by the average

number of cycles required to transfer the header
it of a message to the network. This is

simply Sc in Eq.6 for the single router model. For modeling of a cluster interconnect, we

can get Sc by

Sc =
n�1X
s=0

Sc;s �
�0
c;s

�0
c

(14)

where Sc;s is the average number of cycles required to transfer a
it of class c message

which uses physical channel s for its �rst path, �0
c;s and �0

c have been de�ned before.

Summation of two parts yields the average waiting time as

Wc =
�gcLc

2
(1 + �2=Lc

2
)

2(1� �gcLc)
+ Sc: (15)

4 Performance Results

In this section, we analyze the performance results for a 16-port router and n-cubes of

various sizes. The performance parameter is average message/network latency in cycles.

(Although we have extended the model to compute deadline missing probability for real-

time tra�c, we don't include it due to space limitations.) To validate the analytical models,

we have developed a
it-level simulator using CSIM. The switch size is 16� 16 for a singel

router and (n+ 1)� (n + 1) for an n-cube. The Message size is 32
its and so also is the

Input/Output bu�er size.

The results are reported for a mixed workload of two real-time (R1, R2) and one best-

e�ort(BE) tra�c types. For a given real-time load in messages/cycle, we generate two

types of real-time tra�c such that the intergeneration time of the second type is twice that

of the �rst type. For example, if the load is 0.01, then the intergeneration time for the �rst

real-time tra�c (R1) is 100 cycles, and for the second real-time tra�c (R2) is 200 cycles.

If there are 3 types of real-time tra�c, the intergeneration time of R2 is given by 1:5 �

(intergeneration time of R1) and that of R3 is given by 2�(intergeneration time of R1). So

in the following �gures, real-time load implies the message generation rate of R1 only. The

actual link load should include R1, R2, and BE. Note that these intergeneration times are

used to represent the Vtick values (Vtickc = 1=(�gcM). Best-e�ort tra�c load is generated

independent of the real-time tra�c. After determining the intergeneration time for each

class, messages are generated using exponential distribution. In the following subsections,

we discuss only a selected set of results due to space limitation. The omitted results can

be found in [11].

4.1 Single Router Results

We �rst validate the analytical model with simulation results for the 16-port router. Fig. 2

(a) shows the variation of average network latency(Lc) for the three classes of tra�c. The

analytical and simulation result di�er by at most 5%. The graphs exhibit the QoS ability

of the router in that both classes of real-time tra�c incur smaller latency compare to the

best-e�ort tra�c, and also the R1 tra�c with a smaller Vtick value has better performance

0.000 0.002 0.004 0.006
Real−time Load (messages/cycle)

30.0

40.0

50.0

60.0

70.0

N
et

w
or

k
La

te
nc

y
(n

um
be

r
of

 c
yc

le
s)

Math, R1
Math, R2
Math, Best−effort
Sim, R1
Sim, R2
Sim, Best−effort

0.0000 0.0020 0.0040 0.0060 0.0080 0.0100
Best−effort Load (messages/cycle)

30.0

40.0

50.0

60.0

N
et

w
or

k
La

te
nc

y
(n

um
be

r
of

 c
yc

le
s)

Math, R1
Math, R2
Sim, R1
Sim, R2

(a) (b)

Figure 2: Network latency comparison of analytical model and simulation model in a 16-
port router with (a) varying real-time load and �xed best-e�ort load (0.01 msgs/cycle),
and (b) varying best-e�ort load and �xed real-time load (R1:0.002 msgs/cycle).

0.000 0.002 0.004 0.006
Real−time Load (messages/cycle)

30.0

40.0

50.0

60.0

70.0

N
et

w
or

k
La

te
nc

y
(n

um
be

r
of

 c
yc

le
s)

Virtual Clock, R1
Virtual Clock, R2
Virtual Clock, Best−effort
Fair Queueing, R1
Fair Queueing, R2
Fair Queueing, Best−effort
Weighted RR, R1
Weighted RR, R2
Weighted RR, Best−effort

Figure 3: Comparison of VirtualClock, Fair Queueing, and Weighted Round Robin in the
16-port router with varying real-time load and �xed best-e�ort load (0.01 msgs/cycle).

than the R2 class with a higher Vtick value. (Although not shown in the �gure, it was

observed that by replacing the VirtualClock algorithm with the Round Robin scheduling,

the performance di�erences were lost. Rather R1 latency was higher than R2 latency since

its input load was higher.)

Fig. 2 (b) also indicates the e�ect of VirtualClock scheduler. Since the best-e�ort

messages are serviced only when there are no real-time messages, and a separate virtual

channel is provided for each type of tra�c, the best-e�ort load variation does not a�ect

the real-time tra�c latencies of classes R1 and R2.

Fig. 3 shows the simulation results for Fair Queueing, VirtualClock and Weighted

Round Robin scheduling algorithms in order to recon�rm that these three algorithms have

the same performance [16]. The average network latency curves for each tra�c type (R1,

R2, BE) match over the entire workload. We also get similar performance from our analyt-

ical model for the VirtualClock algorithm, as depicted in Fig. 2 (a). Thus, we can restrict

our discussion to only the VirtualClock algorithm, although the results are applicable to

the other two scheduling schemes. Moreover, unlike the bounding analysis reported in

[15, 19, 16], here we can predict the average behavior of the work conserving scheduling

mechanisms.

4.2 n-cube Results

0.0000 0.0010 0.0020 0.0030 0.0040
Real−time Load (messages/cycle)

45.0

55.0

65.0

75.0

85.0

95.0

N
et

w
or

k
La

te
nc

y
(n

um
be

r
of

 c
yc

le
s)

Math, R1
Math, R2
Math, Best−effort
Sim, R1
Sim, R2
Sim, Best−effort

0.0000 0.0010 0.0020 0.0030 0.0040
Real−time Load (messages/cycle)

45.0

55.0

65.0

75.0

85.0

95.0

N
et

w
or

k
La

te
nc

y
(n

um
be

r
of

 c
yc

le
s)

Math, R1
Math, R2
Math, Best−effort
Sim, R1
Sim, R2
Sim, Best−effort

(a) 5-cube (b) 7-cube

Figure 4: Network latency comparison of analytical and simulation models in (a) a 5-cube
and (b) a 7-cube with varying real-time load and �xed best-e�ort load (0.002 msgs/cycle).

Fig. 4 (a) and 4 (b) depict the average network latency(Lc) results form the analytical

and simulation models in a 5-cube and a 7-cube, respectively. The �gures reveal that the

analytic results closely match with the simulation results. For the 7-cube, the error in the

best-e�ort results is relatively large for higher workload. This is due to the fact that with

the same total load, the best-e�ort tra�c enters the saturation region faster. With more

classes of real-time tra�c, the best-tra�c latency enters into saturation region even faster

compare to the results of Fig. 4. The graphs indicate that the rate-based scheduler favors

higher priority tra�c and thus, lower priority tra�c su�ers. Using the model as a design

tool, we examined the e�ect of input/output bu�er size. (Results are omitted due to space

limit.) The results concur with prior studies in that the network latency is marginally

a�ected by the bu�er size.

5 Concluding Remarks

Provisioning for QoS in cluster networks is becoming a pressing issue with the increas-

ing use of clusters in many commercial applications that need more sophisticated service

than the traditional best-e�ort service model. While a few design alternatives have been

proposed to support QoS in clusters, to our knowledge, there is no e�cient mathematical

technique to evaluate the design trade-o�s. The simulation or limited implementation ap-

proach used in prior studies is expensive and in
exible in providing fast-hand estimates to

the wealth of questions that arise in making QoS design decisions. This paper introduces

an analytic approach for evaluating a QoS-aware wormhole router and a hypercube-style

cluster network, designed using such routers. The model captures the pipelined design,

and analyzes the blocking delay at di�erent stages of the pipe. In addition, the e�ect of

VirtualClock scheduling algorithm is re
ected in the model. Comparison with the simula-

tion results indicates that the router as well as the hypercube models are quite accurate

in predicting average message latency.

The present model can be improved in a variety of ways. First, the exponential arrival

distribution for real-time tra�c may not be quite practical to apply to media streams. We

need to develop the model with a CBR/VBR source to capture inputs like media streams.

Second, QoS comes with di�erent connotations, and extension of the model to predict

other performance parameters such as bandwidth assurance and jitter should be useful.

Third, the model can be extended to other topologies. Finally, co-evaluation of the cluster

network with a detailed network interface model should answer many questions regarding

the QoS ability of the entire communication system.

References

[1] V. S. Adve and M. K. Vernon. Performance Analysis of Mesh Interconnection Net-
works with Deterministic Routing. IEEE Trans. on Parallel and Distributed Sys.,
5(3):225{246, March 1994.

[2] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
and W.-K. Su. Myrinet: A Gigabit-per-second Local Area Network. IEEE Micro,
15(1):29{36, February 1995.

[3] J. Carbonaro and F. Verhoorn. Cavallino: The Tera
ops Router and NIC. In Proc.
of Hot Interconnects, pages 157{160, August 1996.

[4] W. J. Dally. Performance Analysis of k-ary n-cube Interconnection Networks. IEEE
Trans. on Comp., 39(6):775{785, June 1990.

[5] A. Demars and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm.
In Proc. of the ACM SIGCOMM, pages 1{12, 1989.

[6] J. T. Draper and J. Ghosh. A Comprehensive Analysis Model for Wormhole Routing
in Multicomputer Systems. Journal of Parallel and Distributed Computing, 32:202{
214, 1994.

[7] J. Duato, S. Yalamanchili, M. B. Caminero, D. Love, and F. J. Quiles. MMR: A
High-Performance Multimedia Router-Architecture and Design-Tradeo�s. In Proc. of
Intl. Symp. on High-Perf. Comp. Arch., pages 300{309, January 1999.

[8] D. Garcia and W. Watson. Servernet II. In Proc. of 1997 Parallel Computing, Routing,
and Communication Workshop (PCRCW'97), June 1997.

[9] P. T. Gaughan and S. Yalamanchili. A Performance Model of Pipelined k-ary n-cubes.
IEEE Trans. on Comp., 44(8):1059{1063, Auguest 1995.

[10] N. K. Jaiswal. Priority Queues. Academic Press, 1968.

[11] E. J. Kim, K. H. Yum, and C. R. Das. Performance Analysis of a QoS Capable Cluster
Interconnect. Technical Report CSE-01-001, Pennsylvania State Univ., University
Park, PA, January 2001.

[12] J. Kim and C. R. Das. Hypercube Communication Delay with Wormhole Routing.
IEEE Trans. on Comp., 43(7):806{814, July 1994.

[13] J. Laudon and D. Lenoski. The SGI Origin 2000: A CC-NUMA Highly Scalable
Server. In Proc. of Intl. Symp. on Comp. Arch., pages 241{251, June 1997.

[14] J.-P. Li and M. Mutka. Priority Based Real-Time Communication for Large Scale
Wormhole Networks. In Proc. of Intl. Parallel Processing Symp., pages 433{438, May
1994.

[15] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single-Node Case. IEEE/ACM Trans.
on Networking, 1(4):344{357, June 1993.

[16] N. Pekergin. Stochastic Bounds on Delays of Fair Queueing Algorithms. In Proc. of
INFOCOM, pages 1212{1219, March 1999.

[17] S. L. Scott and G. M. Thorson. The Cray T3E Network: Adaptive Routing in a High
Performance 3D Torus. In Proc. of Hot Interconnects, pages 147{156, August 1996.

[18] H. Song, B. Kwon, and H. Yoon. Throttle and Preempt: A New Flow Control for
Real-Time Communications in Wormhole Networks. In Proc. of Intl. Conf. on Paralle
Processing, pages 198{202, August 1997.

[19] D. Stiliadis and A. Varma. Rate-Proportional Servers: A Design Methodology for Fair
Queueing Algorithms. IEEE/ACM Trans. on Networking, 6(2):164{174, April 1998.

[20] C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D. G. Grice,
P. Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao,
and P. R. Varker. The SP2 High-Performance Switch. IBM Sys. Journal, 34(2):185{
204, 1995.

[21] K. H. Yum, E. J. Kim, and C. R. Das. QoS Provisioning in Clusters: An Investigation
of Router and NIC Design. To be presented at the Intl. Symp. on Comp. Arch. (ISCA
2001), June 2001.

[22] K. H. Yum, A. S. Vaidya, C. R. Das, and A. Sivasubramaniam. Investigating QoS
Support for Tra�c Mixes with the MediaWorm Router. In Proc. of Intl. Symp. on
High-Perf. Comp. Arch., pages 97{106, January 2000.

[23] L. Zhang. VirtualClock: A New Tra�c Control Algorithm for Packet-Switched Net-
works. ACM Trans. on Comp. Sys., 9(2):101{124, May 1991.

