
QoS Provisioning in Clusters: An Investigation of Router and NIC Design�

Ki Hwan Yum Eun Jung Kim Chita R. Das
Department of Computer Science and Engineering

The Pennsylvania State University
University Park, PA 16802

E-mail: fyum,ejkim,dasg@cse.psu.edu

Abstract
Design of high performance cluster networks (routers)

with Quality-of-Service (QoS) guarantees is becoming in-
creasingly important to support a variety of multimedia ap-
plications, many of which have real-time constraints. Most
commercial routers, which are based on the wormhole-
switching paradigm, can deliver high performance, but lack
QoS provisioning. In this paper, we present a pipelined
wormhole router architecture that can provide high and pre-
dictable performance for integrated traffic in clusters. We
consider two different implementations—a non-preemptive
model and a more aggressive preemptive model. We also
present the design of a network interface card (NIC) based
on the Virtual Interface Architecture (VIA) design paradigm
to support QoS in the NIC. The QoS capable router and NIC
designs are evaluated with a mixed workload consisting of
best-effort traffic, multimedia streams, and control traffic.

Simulation results of an 8-port router and a (2�2) mesh
network indicate that the preemptive router can provide bet-
ter performance than the non-preemptive router for dynami-
cally changing workloads. Co-evaluation of the QoS-aware
NIC with the proposed router models shows significant per-
formance improvement compared to that with a traditional
NIC without any QoS support.

Index Terms: Cluster Network, Network Interface, Pre-
emption Mechanism, Quality-of-Service, Router Architec-
ture, VirtualClock, Wormhole Router.

1 Introduction

Cluster systems are becoming increasingly more attrac-
tive for designing scalable servers with switched network
architectures that offer much higher bandwidth than the
broadcast-based networks. Quality-of-Service (QoS) pro-
visioning in such clusters is becoming a critical issue with
the widespread use of these systems in diverse commercial
applications [5]. The traditional best-effort service model
is not adequate to support many cluster applications with
varying consumer expectations. For example, many web

�This research was supported in part by NSF grants MIPS-9634197,
CCR-9900701, and equipment grants from NSF and IBM.

servers and database servers make efficient use of cluster-
ing technology from cost, scalability, and availability stand-
points. However, the tremendous surge in dynamic web
contents, multimedia objects, e-commerce, and other web-
enabled applications requires QoS guarantees in different
connotations. The guaranteed communication delay and
bandwidth requirements of the applications mandate that
the cluster interconnect should be able to handle these traf-
fic demands. These demands in turn are passed on to the
building blocks of the interconnects, the switching fabrics
or routers. Hence, it has become crucial to revisit the de-
sign of router architectures to provide high and predictable
performance.

Typically two classes of traffic are generated with mixed
or integrated workloads. These are best-effort traffic and
real-time traffic. While best-effort traffic usually does not
have any stringent performance requirements (hence known
as available bit rate (ABR)), real-time traffic are further
classified as constant bit rate (CBR) and variable bit rate
(VBR) workloads. A cluster network should therefore sup-
port ABR, CBR and VBR traffic effectively.

A cluster interconnect designed using currently available
commercial routers such as Myricom Myrinet [2], SGI SPI-
DER [13], IBM SP2 [25], and Tandem Servernet [14] can
efficiently handle best-effort traffic, but not real-time traffic.
On the other hand, a cluster system designed with packet-
switched ATM routers can support real-time traffic, but in-
curs high latency for best-effort traffic. Since none of the
existing routers can efficiently support both traffic classes
in clusters, the primary motivation of this work is to design
such a router and explore various design trade-offs in the
context of wormhole switching paradigm.

QoS provisioning in networks can be achieved by pru-
dent management of network resources — mainly the link
bandwidth and buffers. In order to share the link bandwidth
among different applications, a scheduler should be able to
recognize the bandwidth requirements of the competing re-
quests and allocate the bandwidth accordingly. Scheduling
techniques such as Fair Queueing [9] and VirtualClock [31]
have been proposed for such proportional bandwidth allo-
cation in packet-switched networks. The first attempt to use
such a rate-based scheduling mechanism was proposed in



the MediaWorm router design [30]. The MediaWorm uses
the VirtualClock algorithm for scheduling of virtual chan-
nels (VCs)1 to share the link bandwidth. The VCs are di-
vided statically into two groups, one for best-effort traffic
and the other for real-time traffic. It was shown that by using
a rate-based scheduling mechanism, it is possible to provide
soft guarantee for media streams in wormhole routers.

The MediaWorm router design has several limitations.
First, fixed allocation of VCs to best-effort and real-time
traffic may not be the best choice for changing workloads.
Second, it does not have any preemption capability that is
necessary to transfer a higher priority message without be-
ing blocked by a lower priority message. Third, the router
has not been tested exhaustively with realistic and dynam-
ically changing workloads. Next, the performance evalua-
tion was limited to only the router design. It is known that
the network interface (NI) plays a crucial role in reducing
the communication overhead. The role of the NI may be-
come even more important to satisfy the QoS requirements.
Several user-level communication mechanisms have been
proposed recently, where an application can directly com-
municate with an intelligent NI with minimal kernel sup-
port [1]. The virtual interface architecture (VIA) [11, 28]
framework is becoming a standard to design user-level com-
munication protocols in NICs. However, it is not clear
how QoS provisioning should be provided in the context
of a VIA design. In addition, co-evaluation of the clus-
ter router/interconnect with a VIA-style NIC is essential to
understand the interplay of different designs on the overall
performance of the communication architecture.

To our knowledge, none of the prior work has consid-
ered the above research issues in the design and evalua-
tion of QoS capable cluster interconnects. In particular, co-
evaluation of the interconnect and the NI to handle QoS sen-
sitive traffic has not been undertaken. This paper presents
the design and evaluation of a QoS-aware wormhole router
and a compatible VIA-style NIC to handle mixed traffic in
clusters. The main contributions of the paper are the fol-
lowing:

� We analyze two design alternatives for a pipelined,
wormhole-switched router. These are called the non-
preemptive and the preemptive models. Unlike the
non-preemptive model, the preemptive model can dy-
namically allocate any virtual channel to any traffic
class. This brings in the necessity that a higher prior-
ity message should be able to preempt a lower priority
message. Hence, the router core includes a flit-level (or
block-level) preemption mechanism. In addition, we
propose an acceleration mechanism for faster preemp-
tion of lower class traffic to boost performance further.

� We consider two types of rate-based scheduling
schemes, known as Fair Queuing [9] and Virtual-
Clock [31], to schedule the VCs for satisfying QoS re-
quirements. Design and performance implications of

1The VC concept was proposed by Dally to enhance network perfor-
mance [8].

the two schemes are considered prior to selecting the
VirtualClock algorithm for the rest of the design.

� We present a modified VIA design to handle real-time
traffic in the NIC. Three design modifications in the
VIA implementation are proposed. These include a
prioritized doorbell structure in the NIC to support dif-
ferent traffic classes, a VC-aware buffer management
in the NIC, and the VirtualClock algorithm to imple-
ment rate-based scheduling.

� The QoS-aware NIC and the router designs are inte-
grated to evaluate the entire communication substrate
for an end-to-end performance analysis.

We use a mixed workload consisting of three types of traffic
— short control messages, best-effort traffic, and MPEG-
2 video streams. We conduct an in-depth analysis of the
cluster interconnect design using average message latency,
deadline missing probability and average deadline missing
time of MPEG-2 frames as the performance metrics. The
first parameter quantifies performance implications for the
best-effort traffic and control traffic, while the other two pa-
rameters are indicators of real-time traffic behavior. First,
we compare two design alternatives for the router; the non-
preemptive model with static allocation of VCs, and the pre-
emptive model with dynamic allocation of VCs. We also ex-
amine the traditional router that has no QoS support. Next,
two NI designs are considered. One is a VIA-based NI with-
out any QoS provisioning (called the traditional NIC in our
study), and the second is a QoS-aware NIC. Then the router
is evaluated in conjunction with the two NIC designs to es-
timate the overall performance.

The simulation results indicate that although the preemp-
tive model increases the design complexity, it can provide
better performance than that of the non-preemptive router
for dynamic workloads since the number of VCs allocated
to different traffic classes can be controlled on the fly. These
improvements become more pronounced with higher net-
work load in the case of a single router as well as in a 2-D
mesh network. With the suggested modifications to the VIA
design, the modified NIC shows significantly better perfor-
mance compared to the traditional NIC. Co-evaluation of
the proposed routers with the QoS-aware NIC reveals the
significance of performance predictability in the NIC for
transferring the performance benefits of the router to the ap-
plication level.

The rest of the paper is organized as follows. Section 2
summarizes related work. In Section 3, the router archi-
tecture, the rate-based scheduling schemes, and the VIA
design are discussed. In Section 4, we discuss the exper-
imental platform. The performance results are presented in
Section 5, followed by the concluding remarks in Section 6.

2 Related Work
Recently, a few researchers have explored the possibil-

ity of providing QoS support in multiprocessor/cluster in-
terconnects. The need for such services, existing methods to
support QoS specifically in WAN/long-haul networks, and



their limitations are summarized in [5]. ServerNet II [14] is
the only commercial router that uses a link arbitration pol-
icy (called ALU-biasing) for implementing bandwidth and
delay control. But this simple mechanism is not sufficient to
support media streams. The InfiniBand Architecture (IBA)
initiative, aimed at SAN/cluster systems, is currently ex-
ploring QoS provisioning issues [21]. Kim and Chien [16]
proposed a scheduling discipline, called rotating and com-
bined queue (RCQ), to handle integrated traffic in a packet-
switched network. The Switcherland router [12], designed
for multimedia applications on a network of workstations,
uses a packet-switched mechanism similar to ATM, while
avoiding some of the overheads associated with the ATM.
The router architecture proposed in [22] uses a hybrid ap-
proach, wherein wormhole switching is used for best-effort
traffic and packet switching is used for time-constrained
traffic.

The multimedia router architecture, proposed in [10, 4],
also uses a hybrid approach. It uses pipelined circuit switch-
ing (PCS) for multimedia traffic and virtual-cut-through
(VCT) for best-effort traffic. The authors have designed
a (4 � 4) router to support both PCS and VCT schemes.
A connection-oriented scheme like PCS needs one VC per
connection, and therefore, may not be practical to provide a
large number of VCs per physical channel(PC).

A handful of research efforts have examined the possibil-
ity of using wormhole-switched routers/networks for real-
time traffic [18, 7, 15]. While [18, 15] investigated hardware
support required in a router to facilitate real-time message
transfer, the work in [7] considered a software oriented syn-
chronization mechanism in the Myrinet switch. The hard-
ware mechanisms are not sufficient (and may not even be
necessary) for providing required performance support for
integrated traffic. The software approach in [7] may not
be scalable. As stated in the introduction, the MediaWorm
router [30] proposed recently uses a rate-based scheduling
algorithm, known as VirtualClock [31], to assign propor-
tionate bandwidth based on the application demands.

Message preemption in wormhole routers have been ad-
dressed in [23, 17]. In [17], lower priority messages that
block higher priority messages are discarded to allow faster
delivery of higher priority messages. This approach has the
advantage that it does not require extra resources to store
routing information of the preempted messages. But pre-
empted messages are lost and thus may not be a viable op-
tion for many applications. With additional hardware and
flow control, it is possible to recover the lower priority mes-
sages. Songet al. [23], on the other hand, preempt a lower
priority message in favor of a higher priority messages us-
ing additional buffers. In their scheme, the router has(s�1)
extra input buffers, wheres is the number of priority levels
it supports. By providing these additional input buffers, the
router can always establish a free path for higher priority
messages. This scheme requires a history stack for stor-
ing the header information of the preempted messages in
ascending order of their priorities for each output channel.
Unlike our pipelined router model, the authors use a lumped
router design. Hence, many architectural details that are re-

quired to support flit-level preemption are not addressed in
their work. Provisioning for preemption in different stages
of the pipeline is much more complex than a single stage
(lumped) router model.

Also, to our knowledge, there is no related work on QoS
capable NICs and on co-evaluation of QoS-aware routers
and NICs. In particular, our design includes a VIA-style
NIC that is QoS capable.

3 Router Architecture

Most routers now use a pipelined design to minimize
the network cycle time. Accordingly, we use a pipelined,
wormhole-switched router similar to the SGI SPIDER and
MediaWorm [30] in this paper. Figure 1 shows the five-
stage pipelined router withn ports. The first stage of the
pipeline represents the functional units which synchronize
the incoming flits, demultiplex a flit so that it can go to one
of theC virtual channels (VCs) to be subsequently decoded.
If the flit is a header flit, routing decision and arbitration
for the correct crossbar output is performed in the next two
stages (stage 2 and stage 3), while middle flits and the tail
flit of a message bypass stages 2 and 3, and directly move
to stage 4. Flits get routed to the correct crossbar output
ports in stage 4. As shown in the figure, the router has
a scheduler (multiplexer), residing at the input port of the
crossbar. In the best-effort router model, the scheduler can
select one of theC VCs using the FCFS or round robin (RR)
principle. For QoS provisioning, we replace this scheduler
with a rate-based scheme as described next. Finally, the last
stage of the router performs buffering of flits flowing out
of the crossbar, multiplexes the physical channel bandwidth
amongst theC VCs, and carries out synchronization with
input buffers of other routers or the network interface for
the subsequent transfer of flits.

1

C-1

C

C-1

1

C

scheduler

middle/tail flit

Crossbar 
Control

1

C-1

Switch Core

C
rossbar

n x n

1

C-1

C

VCs

C

header flit

0

n-1

0

n-1

VCs

Routing

Stage 2 Stage 5Stage 3 Stage 4Stage 1

Arbitration
Decision

Figure 1. A five-stage pipelined router model

3.1 Rate-based Scheduling for QoS Support

For this study we consider two different work conserv-
ing, rate-based schedulers: Fair Queueing [9], and Virtu-
alClock [31]. (Many variations of these two schemes and
other rate-based algorithms like the Weighted Round Robin
have been proposed for QoS support in packet-switched net-
works. All these schemes provide almost similar perfor-
mance. The motivation of this paper is to show that QoS



in clusters can be provided by using a simple rate-based
scheduling algorithm.) It has been shown that the Virtu-
alClock algorithm cannot handle bursty traffic effectively
without any input regulation [24]. In this study, although
real-time traffic can exhibit burstiness, the NI regulates it by
injecting one frame every 33.3 msec into the router. There-
fore, traffic burstiness is avoided to affect the VirtualClock
performance.

We have implemented both these schemes at the crossbar
input of stage 4. In order to select one scheme for the rest
of the design, we simulated both these schemes in a router
and injected media traffic and best-effort traffic. We mea-
sured the inter-frame delivery time and standard deviation
(SD) of delivery time for the media streams. The results
with different input loads are quite similar in both cases as
depicted in Table 1. However, since implementation of the
Fair Queueing is more complex for maintaining the round
robin number, we use the VirtualClock algorithm in the rest
of our design.

Load Inter-frame time(msec)/SD

VirtualClock Fair Queueing
60% 33.12/0.63 33.14/0.58
70% 32.74/1.25 32.74/1.22
80% 32.28/1.38 32.33/1.31

Table 1. Comparison of VirtualClock and Fair
Queueing algorithms (Ratio of real-time to best-effort
traffic is 80:20.)

In the Virtual Clock algorithm, there are two variables,
calledauxVCandVtick for each connection. The values of
these two variables are determined when a connection is set
up. TheauxVCindicates the virtual clock value of the con-
nection, while theVtick is the amount of time that should
be incremented whenever a flit arrives at that connection. It
is important to estimate the counter size required to store
theVtick andauxVCvalues. We have developed a VHDL
simulator to implement the VirtualClock algorithm in hard-
ware using finite size counters. If theauxVCi for some VC
i overflows during computation, then thatauxVCi is set to 0
and theauxVCj becomes (auxVCj � auxVCi) for all j 6= i.
If the newauxVCj becomes less than 0, then it is set to 0.
The only limitation is that the counter size should be large
enough to store the largest possibleVtick value. From our
simulator and VHDL implementation, we observed that 16-
bit counters are adequate to store theauxVCand theVtick
values.

3.2 Router Design Alternatives

We consider two router models to facilitate QoS support.
In the first design, like the MediaWorm Router [30], we
statically divide the input and output VCs among the traffic
classes. A traffic of classc can only use the VCs assigned
to it. We call it as the non-preemptive model since there
is no sharing of VCs, and hence, no preemption mecha-
nism is necessary. The VC assignment is done at the system

configuration time and cannot be changed during execution.
Therefore, the non-preemptive model is not flexible.

A solution to this problem is to develop a preemptive
model, where several classes of traffic with different pri-
orities can share the same VC, with the provision that a
higher priority message can preempt a lower priority mes-
sage. The preemptive model can dynamically allocate any
VC to any traffic class. Hence, it is more suitable to handle
dynamically varying workloads. Preemption occurs when
the header flit of a higher priority message arrives at a re-
source, which is being held by a lower priority message.
Specifically, we examine blocking and preemption at the
input buffer (VC) of the router.

3.2.1 Preemption in the Input Buffer
The additional hardware required for preemption at any in-
put buffer (VC) include an extra buffer of size(s�1) where
s is the total number of priority levels, and a history stack
of the same size. The extra input buffer is used for diverting
higher priority messages when the regular VC is occupied
by a lower priority message. If the input buffer is occupied
by a higher priority message, a lower priority message is
not allowed to use the extra buffer, and it is blocked behind
the higher priority message. On the other hand, if the input
buffer is used by a lower priority message, a higher priority
message is sent to the extra buffer so that it can subsequently
preempt the lower priority message in stage 1 of the router.
Similar to [23], the routing information of a lower priority
message is stored in the history stack for forwarding it later.

In stage 1, when the extra buffer has a header flit from
a higher priority message, the input buffer preemption pro-
cess begins. The router first checks whether the tail flit of
the lower priority message has passed through the stage 1
decoder. If not, a dummy tail flit is created for the pre-
empted message. A dummy tail flit does not carry any pay-
load, but behaves as a regular tail flit to release all the re-
sources held by the message. Otherwise, the resources are
reserved and cannot be used by any other message. For ex-
ample, in Figure 2 (a), when the higher priority message
m3 interrupts the lower priority message m1, the dummy
tail of m1 is generated. Then the routing information of
m1 is stored in the history stack to be used later for making
a dummy header for the retransmission of m1. Note that
no dummy header is required if no dummy tail was sent.
During preemption, the remaining flits of m1 and any other
lower priority messages are blocked in the input buffer.

Next, all the flits of m3 in the extra buffer are sent
through the router. After that, if the extra buffer is empty,
transmission of remaining flits of m1 resumes from the reg-
ular input buffer.

3.2.2 A Flit Acceleration Mechanism
When the input buffer preemption starts, there could be re-
maining flits of m1 between the flit decoder buffer and the
input port of the crossbar as shown in Figure 2 (a)2. In ad-
dition, when the header flit of m3 tries to reserve the output

2At best there could be 3 flits. A header flit and a middle flit of m1 at
two different stages and a tail flit of another message at the crossbar input.



������

������

Flit Buffer
Input Decoder

Flit

Flit Buffer

Output

Routing Table
Lookup

Arbitration

Switch Core

X Barm1

m1
m3

m1

0
Accelerate flag j

Accelerate flag i

History stack

1

routing info for m1
������

������

Flit Buffer
Input Decoder

Flit

Flit Buffer

Output

Routing Table
Lookup

Arbitration

Switch Core

X Barm1

m1m2

m2

m2

m3

m3

m3

Accelerate flag i

Accelerate flag jHistory stack

0

1

routing info for m1

(a) (b)

Figure 2. Preemption and acceleration mechanisms in the router. (a) A higher priority message (m3) is blocked and
needs to preempt a lower priority message (m1) in the input buffer using extra buffer. (b) When the header flit of m3
tries to reserve the output VC in the arbitration stage, the output VC is already occupied by another lower priority
message (m2). Acceleration flag for m2 is set so that the remaining flits of m2 are sent faster to the output VC before
m3 can start. This is required to avoid interleaving of m2 and m3 flits in the output buffer.

VC, it could be already occupied by another lower prior-
ity message like m2 in Figure 2 (b). In both cases, the flits
of lower priority messages (m1, m2) will slow down the
progress of m3, until these flits are pushed to the output
buffer.

Therefore, we use a flit acceleration mechanism that
helps expedite the delivery of flits of such lower priority
messages (like m1 and m2) by assigning a specific low vir-
tual clock value to them. This value guarantees that these
messages will be selected first at the next cycle of the sched-
uler unless there are other preempted messages at other
VCs. (Then we can select them in a RR fashion.) For this
purpose, a flag, calledAccelerate, is associated with each
input VC. TheAccelerateflag is set until the tail flit of the
preempted message (m1) or expedited message (m2) passes
through the crossbar.

The other option to handle blocking at other stages is to
use the preemption mechanism. The acceleration mecha-
nism is much simpler and easier to control than providing a
separate preemptive path at such stages.

3.3 NIC Architecture

The network interface (NI) has a crucial role in the over-
all communication performance since it is responsible for
initiating and responding to communications, for handling
data movement, and for providing application isolation.
Since improving the performance of the router/interconnect
alone will shift the communication bottleneck to the NI, de-
sign of faster NIs has become a major research thrust re-
cently. Consequently, a few user-level messaging layers
such as Active Messages [27], U-Net [26] and FM [20] have
been proposed to minimize the role of the operating system
involvement in communication. A generic communication
layer, called Virtual Interface Architecture (VIA), has been
introduced as a standard communication paradigm for Sys-
tem Area Networks (or SANs) or clusters [3, 6]. The design

focus of the VIA is to provide an efficient communication
protocol between a user process and the network interface
(NI).

VIA is a connection oriented paradigm consisting of Vir-
tual Interfaces (VIs). A VI is the mechanism by which ap-
plications talk to the NIC hardware, and establish a con-
nection between the two processes. A VI consists of two
queues: asend queueand areceive queue. For sending
a message, an application posts a descriptor in the send
queue, and informs the NI of the pending request by ring-
ing asend doorbell, which is a memory mapped region on
the NI. On receiving the doorbell, the NI transfers the de-
scriptor and the data from the user memory to the NI buffers
using two DMAs. The NI transfers the message to the wire
using another DMA, and updates the status field of the send
descriptor or that of acompletion queue. The actions on
the receive are very similar to that of a send. The appli-
cation creates an empty buffer, posts a descriptor in the re-
ceive queue and rings thereceive doorbellin the NIC buffer.
When a message arrives for a VI, the NI transfers the mes-
sage to the buffer allocated by the application and updates
the status field of the receive descriptor. The message is
subsequently consumed by the receiving process.

However, the original VIA framework does not have any
QoS design specification. Here, we propose an extension of
the VIA design to support different priority classes in the
NIC.

3.3.1 A QoS-aware NIC Design
We propose three design modifications in the original VIA
framework as described below. These are a prioritized door-
bell structure to support different traffic classes, a virtual
channel aware buffer management in the NIC, and a hard-
ware supported VirtualClock scheduler to transfer flits to
the router. Figure 3 shows the different stages in the flow
of data from an applications to the NIC. Each application



such as a video source or a a best-effort process has a VI
with the corresponding send and receive queues. The send
and receive queues reside in the user memory. To support
integrated traffic, we implemented prioritized doorbells in
the NIC, where there is a doorbell queue for each class.
The NIC firmware picks up the doorbells in FCFS order
based on their priority and programs the host DMA engine
to transfer the descriptor followed by the message. Head of
blocking in the doorbell queues can be avoided by several
methods. As an example, if the NIC buffer (virtual chan-
nel) corresponding to a doorbell is full, the scheduler can
pick up the next doorbell in the queue.

flits

VI

VI

User Memory

NICmessages

Physical Channel

Send Q

Recv Q

Send Q

Recv Q Doorbell Q for priority 0

Doorbell Q for priority s

Clock
Virtual

Prioritized

FIFO
Scheduling algorithm

Flow of Data

Traffic source

Traffic source

VC 1 buffer

VC 2 buffer

VC C buffer

Figure 3. A VIA-style NIC with QoS support

To make the NIC design compatible to the QoS-aware
router of the previous section, we implemented an equal
number of VCs (C) to enable virtual channel flow control
in the NIC. Note that this is a logical separation of the NIC
local memory. As messages are transferred into the NIC by
the host DMA, they are broken intoflits by the NIC proces-
sor. The NIC buffer behaves as FCFS queues for the dif-
ferent VCs. In the original VIA implementation, the send
DMA engine of the NI (for example in the Myrinet network
card) is used to transfer a complete message into the net-
work at the rate of one flit per cycle. On the other hand, the
router model discussed in this paper (and also in most prior
designs) employs a flit-level multiplexing. (We will see in
the performance section that flit-level multiplexing is a bet-
ter choice for QoS support.) Thus, we experimented with
two design alternatives for transferring data from the NIC
to the wire.

In the first case, in accordance with the router design,
we considered a flit-level multiplexing and data transfer to
the network. This design will considerably slow down the
rate at which the NIC can push data to the network when
the DMA overhead is taken into consideration. To avoid the
DMA overhead, transfer of the flits to the network needs
to be implemented in hardware. We, therefore, considered
a hardware-implemented VirtualClock algorithm for trans-
ferring flits from different VCs in the NIC buffer. Thus, the
flit-level multiplexing has no DMA overhead. In the second
case, we adhered to the traditional message-level granular-
ity. However, the messages are selected using the Virtual-
Clock algorithm. This implementation includes the DMA
overhead for each message transfer. These two design al-
ternatives were used in analyzing the overall performance
implications.

4 Experimental Platform
4.1 Simulation Testbed

For evaluating the architectural concepts, we have devel-
oped flit-level simulation models for the traditional router
(TR) with FCFS scheduling, the non-preemptive router
(NP), the preemptive router (P), and the VIA-style NIC us-
ing CSIM. The simulation models are flexible in that one
can specify the number of physical channels (PCs), number
of VCs per PC, link bandwidth, VBR rates and variation of
VBR rate, flit size, message size, and many other architec-
tural and workload parameters. It is also possible to con-
figure any network topology using these routers. The NIC
simulator and the router simulator are written with common
interface for ease of integration.

For our experiment, we have simulated an 8-port router
and a 2-D mesh network using 5-port routers. We used 16
VCs per PC. (It is possible to use less number of VCs per
PC, but the performance of real-time traffic degrades if the
number of VCs is very small.) The flit size is 128 bits, and
each message consists of 40 flits except for the control mes-
sages, which are 20-flit long. Physical link bandwidth is
1.6Gbps, and flit buffers are 40-flit deep.

The simulation of the NIC is based on aBaselineNI
that is similar to Myricom’s M3M-PCI64B 64bit, 66MHz
SAN/PCI Interface Myrinet network card [19]. The pro-
grammable nature of the Lanai-based network card facili-
tated to emulate the VIA features.

4.2 Workload

Our workload includes messages from real-time VBR
traffic, best-effort traffic, and control traffic. The VBR traf-
fic is generated as a stream of messages between a pair of
communicating (source-destination) processors. The traf-
fic in each stream is generated from seven real MPEG-2
video traces with different bandwidth requirements [4, 29].
Each stream generates 30 frames/sec, and each frame is
fragmented into 40-flit size messages (except possibly the
last message of a frame), with each message carrying the
bandwidth requirements (Vtick information for the Virtual-
Clock algorithm), and the routing information in its header
flit.

Once the input VC for a connection is determined, the
destination processor is picked randomly using a uniform
distribution of all nodes, and the destination VC is also as-
signed from among the available VCs using a uniform dis-
tribution.

The best-effort traffic is generated with a given injection
rate�, and follows the Poisson distribution3. Best-effort
messages are assumed 40-flit long, and a message destina-
tion is assumed to follow a uniform distribution. The input
and output VCs for a message are assigning using a uniform
distribution of the available VCs for this traffic class.

Control traffic is typically used for network configura-
tion, congestion control, and transfer of other control infor-
mation. This traffic has the highest priority in our model.

3We have also simulated self-similar traffic to capture traffic bursti-
ness [29]. The results are not included here due to lack of space.



Therefore, control traffic can preempt both best-effort traf-
fic and real-time traffic. The generation rate of control traf-
fic is assumed to be low (one message per 33.3 msec), and
only one virtual channel is assigned for this kind of traf-
fic. For the non-preemptive router, this VC should be deter-
mined when the router is configured, while the preemptive
router can use any one of its VC for this traffic, and can
even change to another VC later. In our study, we assigned
VC 0 for both the models for simplicity. We also assume a
uniform destination distribution for the control traffic.

An important parameter that is varied in our experiments
is the input load. This is expressed as a fraction of the phys-
ical link bandwidth. For a specified input load, we vary
the ratio of the two classes (x : y, wherex=(x + y) is the
fraction of the load for the VBR component andy=(x+ y)
is the fraction of the load for the best-effort component) to
generate mixed-mode traffic.

For the traditional (TR) and the non-preemptive (NP)
routers, we divide the VCs into two disjoint groups. (The
traditional router uses the same number of VCs as the non-
preemptive router for each class, but uses the FCFS sched-
uler.) When the simulation starts, the ratio (x : y) de-
termines the number of VCs assigned to each class. We
changed the load in 5 different phases during a simula-
tion run to simulate dynamic workload. In the beginning
of the simulation, the real-time to best-effort traffic ratio is
20:80. The VCs are assigned using this ratio. Later the ratio
changes to 30:70, 50:50, 70:30, and finally 80:20. The VC
configuration for the TR and NP routers does not change
during all these phases.

For the preemptive router, any type of traffic can use any
VC due to the preemption capability. In the beginning of the
simulation, the configuration is the same as the NP router.
But as the ratiox : y changes, the real-time traffic can use
more VCs by preempting the best-effort messages.

It should be noted that we are considering a flit-level sim-
ulation in each stage of the router pipeline, and simulating
several simultaneous streams per node. We gather simula-
tion results over a few million messages for avoiding tran-
sient behavior. In addition, the integration of the NIC makes
the entire simulation quite complex and resource intensive.
Therefore, we were able to collect results for single routers
and a small 2-D mesh network.

The important output parameters measured in our exper-
iment are deadline missing probability of delivered MPEG-
2 frames, average missing time of deadline missing frames,
and average network latency for best-effort traffic and con-
trol traffic. Deadline missing probability is the ratio of the
number of frames that missed their deadlines to the total
number of delivered frames. The deadline for each frame is
determined by adding 33.3 msec to the previous deadline,
since the frame rate is 30 frames/sec for MPEG-2 video
streams. However, if a previous frame missed its deadline,
a new deadline is set by adding 33.3 msec to the arrival
time of the previous frame. Whenever a frame misses its
deadline, we measure the deadline missing time and then
calculate the average deadline missing time. Average net-
work latency is the averaged time between the injection of

the first flit (header flit) of a messages into the network (or
a router) and the ejection of the last flit (tail flit) from the
network. By including the queueing time with the network
latency, we measure the average message latency.

5 Performance Results

In this section, we analyze the performance results for
an 8-port router and a (2� 2) mesh network with integrated
traffic. Then, we present co-evaluation of a single router
and the NIC designs.

Our design spectrum consists of three types of stand
alone routers (TR, NP and P models) and two types of NIC
architecture (traditional NIC without the VirtualClock algo-
rithm and the QoS-aware NIC with the VirtualClock algo-
rithm). Integration of the NIC and router designs gives 6
combinations. In addition, we also consider the impact of
block or message level multiplexing in the router and NIC.
Hence, it is impossible to discuss all the results in this paper
due to space limitation. We present a subset of the results
to highlight the main results. All the results are reported
for flit-level multiplexing, unless block/message-level mul-
tiplexing is specified.

5.1 Comparison of the Three Router Models

20:80 30:70 50:50 70:30 80:20
Proportion of Real−time to Best−effort Traffic(x:y)

0.00

0.20

0.40

0.60

0.80

D
ea

dl
in

e 
M

is
si

ng
 P

ro
ba

bi
lit

y

TR, load=0.80
TR, load=0.85
NP, load=0.80
NP, load=0.85
P, load=0.80
P, load=0.85

20:80 30:70 50:50 70:30 80:20
Proportion of Real−time to Best−effort Traffic(x:y)

0.0

5000.0

10000.0

D
ea

dl
in

e 
M

is
si

ng
 T

im
e(

m
ic

ro
se

c)

TR, load=0.80
TR, load=0.85
NP, load=0.80
NP, load=0.85
P, load=0.80
P, load=0.85

(a) (b)

Figure 4. Deadline missing probability and deadline
missing time in a single router under dynamic load
variation. The input load is specified in the graphs.

T
R

, 2
0:

80

N
P

, 2
0:

80

P
, 2

0:
80

T
R

, 3
0:

70

N
P

, 3
0:

70

P
, 3

0:
70

T
R

, 5
0:

50

N
P

, 5
0:

50

P
, 5

0:
50

0.0

5.0

10.0

15.0

20.0

C
on

tr
ol

 T
ra

ffi
c 

La
te

nc
y 

(m
ic

ro
se

c)

Queueing Time
Network Latency

T
R

, 2
0:

80

N
P

, 2
0:

80

P
, 2

0:
80

T
R

, 3
0:

70

N
P

, 3
0:

70

P
, 3

0:
70

T
R

, 5
0:

50

N
P

, 5
0:

50

P
, 5

0:
50

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

B
es

t−
ef

fo
rt

 T
ra

ffi
c 

La
te

nc
y 

(m
ic

ro
se

c) Queueing Time
Network Latency

(a) Control traffic (b) Best-effort traffic

Figure 5. Components of message latency of control
traffic and best-effort traffic in a single router under
dynamic load variation. The input load is 0.80.

We begin by examining the performance results of a tra-
ditional router, a non-preemptive router, and a preemptive



20:80 30:70 50:50 70:30 80:20
Proportion of Real−time to Best−effort Traffic(x:y)

0.00

0.20

0.40

0.60

0.80

1.00

D
ea

dl
in

e 
M

is
si

ng
 P

ro
ba

bi
lit

y

Block size=1, load=0.80
Block size=1, load=0.85
Block size=5, load=0.80
Block size=5, load=0.85
Block size=10, load=0.80
Block size=10, load=0.85

20:80 30:70 50:50 70:30 80:20
Proportion of Real−time to Best−effort Traffic(x:y)

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

B
es

t−
ef

fo
rt

 T
ra

ffi
c 

La
te

nc
y(

m
ic

ro
se

c)

Block size=1, load=0.80
Block size=1, load=0.85
Block size=5, load=0.80
Block size=5, load=0.85
Block size=10, load=0.80
Block size=10, load=0.85

Figure 6. Effect of block-level multiplexing in a sin-
gle preemptive router under dynamic load variation.

20:80 30:70 50:50 70:30 80:20
Proportion of Real−time to Best−effort Traffic(x:y)

0.0

0.1

0.2

0.3

0.4

0.5

D
ea

dl
in

e 
M

is
si

ng
 P

ro
ba

bi
lit

y

Preemption+Acceleration, load=0.80
Preemption+Acceleration, load=0.85
Preemption only, load=0.80
Preemption only, load=0.85

20:80 30:70 50:50 70:30 80:20
Proportion of Real−time to Best−effort Traffic(x:y)

0.0

200.0

400.0

600.0

800.0

B
es

t−
ef

fo
rt

 T
ra

ffi
c 

La
te

nc
y(

m
ic

ro
se

c)

Preemption+Acceleration, load=0.80
Preemption+Acceleration, load=0.85
Preemption only, load=0.80
Preemption only, load=0.85

Figure 7. Comparison of (preemption+acceleration)
and only preemption in a single router under dynamic
load variation. (Some results for the best-effort traffic
at higher load are not included due to saturation.)

router under dynamic workloads. Figure 4 shows the dead-
line missing probability and the average deadline missing
time for each model. Some of the data points of the tra-
ditional router were dropped due to saturation. It is seen
that the preemptive router can service real-time traffic with
almost constant deadline missing probability (0.02˜ 0.03),
while for the non-preemptive router, the number of frames
missing their deadlines increases as the ratio of real-time
traffic increases. The deadline missing time in Figure 4
(b) is the minimum for the preemptive router. The tradi-
tional router, without a rate-based scheduler, experiences
saturation even under light load, and is the worst performer.
Since the preemptive router can assign VCs dynamically ac-
cording to the real-time traffic load, it can provide the best
performance among the three architectures. (Moreover, al-
though not shown in the graphs due to space limitations, the
advantage of the preemptive model becomes more striking
for small number of VCs.)

Another important performance parameter is the average
latency. Figure 5 (a) shows the control traffic latency in each
router. Here, queueing time represents the time spent out-
side the router before the message is injected into the router.
In the traditional router, control traffic is treated as any other
types of traffic, and hence its latency is much higher than
those of the other two routers. The preemptive router pro-
vides the best performance with almost zero queueing time
followed by the non-preemptive router. Figure 5 (b) com-
pares the best-effort traffic latency in the three routers. The
non-preemptive and the preemptive routers can provide bet-
ter service for real-time traffic at the expense of best-effort

traffic. Therefore, as expected, the TR provides the best
performance for best-effort traffic.

Next, we examined the impact of block-level multiplex-
ing in a single preemptive router. Figure 6 depicts the re-
sults for block size of 1, 5, and 10 flits, respectively. As
the block size increases, the performance degrades signif-
icantly. Thus, flit-level multiplexing seems to be the most
ideal choice for QoS assurance. However, in an actual im-
plementation, we may have to use block-level multiplexing
to amortize the scheduling overhead.

In order to estimate the contribution of the acceleration
scheme explained in Section 3 for the preemptive router, we
tested the router without the acceleration scheme and with
the acceleration scheme. Figure 7 demonstrates the role of
the acceleration scheme in the preemptive router. The re-
sults indicate that by accelerating the flits of the lower prior-
ity messages, performance of both real-time and best-effort
traffic improves considerably.

5.2 A (2� 2) Mesh Network Results

In this subsection, we examine the performance implica-
tions of using the preemptive and non-preemptive routers in
a (2 � 2) mesh network. Figure 8 (a) shows the deadline
missing probability for real-time traffic and Figure 8 (b) de-
picts the average network latency for best-effort traffic. Like
the single router results, the preemptive model again ex-
hibits better performance compared to the non-preemptive
model. The deadline missing probability increases with an
increase of the real-time load. Also as expected, the aver-
age network latency of the best-effort traffic in Figure 8 (b)
gradually increases with the real-time traffic.

20:80 30:70 50:50 70:30 80:20
Proportion of Real−time to Best−effort Traffic(x:y)

0.010

0.020

0.030

0.040

D
ea

dl
in

e 
M

is
si

ng
 P

ro
ba

bi
lit

y

NP, load=0.70
NP, load=0.80
P, load=0.70
P, load=0.80

20:80 30:70 50:50 70:30 80:20
Proportion of Real−time to Best−effort Traffic(x:y)

0.0

100.0

200.0

300.0

400.0

B
es

t−
ef

fo
rt

 T
ra

ffi
c 

La
te

nc
y(

m
ic

ro
se

c)
NP, load=0.70
NP, load=0.80
P, load=0.70
P, load=0.80

(a) (b)

Figure 8. Deadline missing probability and average
latency of best-effort traffic in a (2�2) mesh network
under dynamic load variation.

5.3 Router and NIC Co-evaluation

Next, we present the co-evaluation of the NIC and a sin-
gle router. An (8� 8) router is integrated with the NICs at
both ends. The three different router models (TR, NP, and
P) and the two NIC models (traditional and QoS-aware) are
combined to examine six possible designs. Figure 9 shows
the comparison of the six combinations in terms of the dead-
line missing probability. Figure 9 (a) is plotted for a fixed
input load of 60% since the traditional NIC cannot support
higher load. In this figure, all the three routers with the



QoS-aware NIC outperform the traditional NIC combina-
tions (The dip for the 70:30 ratio is a suspect.) suggesting
that QoS provisioning in the NIC is rather more important to
see any performance benefits in the router design. Not only
that a traditional NIC cannot support higher input load, but
even with 40-60% input load, the deadline missing proba-
bility is quite high. In Figure 9 (b), we compare the pre-
emptive and non-preemptive router models along with the
QoS-aware NIC for higher load. The results are again in
favor of the preemptive router. In both these graphs, the
preemptive router and the QoS-aware NIC combination has
the best results.

Finally, we conducted an experiment by using message-
level multiplexing in the QoS-aware NIC. In this case, un-
like the flit-level multiplexing, the VirtualClock scheduler
selects and injects one message at a time to the QoS-aware
router. We increased the input buffer of the router to avoid
buffer overflow. The simulation model includes the DMA
overhead for injecting the messages. The (QoS NIC +
P/msg) graph in Figure 9 (b) shows that message-level mul-
tiplexing in the NIC results in worse performance compared
to the flit-level multiplexing. This trend is similar to the
block-level multiplexing results in the router as shown in
Figure 6. Moreover, with message-level multiplexing, the
system cannot handle higher load (0.6 in the graph). Over-
all, these results suggest that not only QoS provisioning
in the NIC is critical, but also we need hardware mech-
anism for flit-level multiplexing to maximize the perfor-
mance benefits.

20:80 30:70 50:50 70:30 80:20
Real−time to Best Effort Traffic (x:y)

0.00

0.10

0.20

0.30

0.40

D
ea

dl
in

e 
M

is
si

ng
 P

ro
ba

bi
lit

y

QoS NIC+P, load=0.60
Qos NIC+NP,load=0.60
QoS NIC+TR,load=0.60
Trad NIC+P, load=0.60
Trad NIC+NP,load=0.60
Trad NIC+TR,load=0.60

20:80 30:70 50:50 70:30 80:20
Real−time to Best Effort Traffic (x:y)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
ea

dl
in

e 
M

is
si

ng
 P

ro
ba

bi
lit

y

QoS NIC+P , Input Load = 0.60
Qos NIC+P , Input Load = 0.90
QoS NIC+NP, Input Load = 0.60
QoS NIC+NP, Input Load = 0.90
QOS NIC+P/msg , Load = 0.60

(a) (b)

Figure 9. Co-evaluation of a single router and NICs.
The deadline missing probability is shown for dynam-
ically changing workload.

6 Concluding Remarks

This paper addresses QoS support mechanisms in clus-
ter interconnects. We propose a pipelined wormhole router
architecture that can handle multiple traffic types effec-
tively. Two different router implementations, known as
non-preemptive and preemptive models, are studied with
a mixed workload of best-effort and real-time traffic. An-
other uniqueness of this work is that it integrates the NIC
with the router design to examine the end-to-end QoS issue.
We have developed a VIA-style NIC to support integrated
traffic in clusters. The important conclusions of this work
are the following.

First, it is possible to support integrated traffic in clus-
ters by augmenting the conventional wormhole routers with
a rate-based scheduling mechanism. The preemptive and
non-preemptive models are feasible choices, and can be im-
plemented in the realm of current VLSI technology. While
both the implementations provide similar performance for
static workloads, the preemptive model turns out to be a
better choice for dynamic workloads, and for routers with
small number of VCs. Second, preemption in a pipelined
model is more complex than in a non-pipelined (lumped)
model since a lower priority message can block a higher
priority message at several stages of the pipeline. Instead of
providing preemption at these stages, preemption in the in-
put buffers followed by an acceleration mechanism at other
stages seems a viable design. Next, it is shown that a
QoS capable router alone is not adequate to provide end-
to-end QoS support. A NIC with QoS provisioning that
uses schemes like prioritized doorbells and a rate-based al-
gorithm is necessary to ensure deadline oriented delivery of
real-time traffic. Finally, in all prior studies, the focus was
only on the design of routers to provide QoS guarantees.
Our study reveals that performance predictability in the NIC
is rather more important to translate the performance ben-
efits to the application level. Thus, design of QoS-aware
NICs should be undertaken seriously. In this context, design
compatibility between the router and the NIC offers several
design trade-offs. For example, routers have usually used
flit-level multiplexing, while the NIC to network transfer is
at a message-level granularity. Therefore, proper hardware
support for flit-level multiplexing in the NIC, as used in this
paper, is ideal for maximizing the performance. Otherwise,
a detailed analysis of block/message-level multiplexing in
the router as well as in the NIC is required to arrive at an
optimal design.

We are currently examining a number of possible exten-
sions to this work. First, we are exploring other design al-
ternatives in the VIA paradigm to improve the QoS support
in the NIC. Second, we were unable to analyze the designs
using larger networks primarily due to high time complex-
ity of the simulations. Thus, optimization of the simulation
model and possible parallelization should reduce the execu-
tion time. Finally, we would like to implement the router as
well as the NIC in hardware (prototyping in FPGA followed
by the VLSI implementation) to examine the practicality of
our models. We have already written a VHDL simulator of
the router for this purpose.

7 Acknowledgments
Many thanks to Vithal Shirodkar, Srinivas Hanabe,

Giridhar Viswanathan, and Nishant Choudhary for devel-
oping and testing the NIC simulators. We also would like to
thank the anonymous referees for their comments and sug-
gestions that improved the quality of the paper.

References

[1] S. Araki, A. Bilas, C. Dubnicki, J. Edler, K. Konishi, and
J. Philbin. User-Space Communication: A Quantitative



Study. InProc. of Supercomputing Conf. (SC’98), Novem-
ber 1998.

[2] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-second Local Area Network.IEEE Micro,
15(1):29–36, February 1995.

[3] P. Buonadonna, A. Geweke, and D. E. Culler. An Implemen-
tation and Analysis of the Virtual Interface Architecture. In
Proc. of Supercomputing Conf. (SC’98), November 1998.

[4] M. B. Caminero, J. J. Quiles, J. Duato, D. S. Love, and
S. Yalamanchili. Performance Evaluation of the Multimedia
Router with MPEG-2 Video Traffic. InProc. of Intl. Work-
shop on Communication, Architecture and Applications on
Network Based Parallel Computing (CANPC’99), pages 62–
76, January 1999.

[5] A. A. Chien and J. H. Kim. Approaches to Quality of Ser-
vice in High-Performance Networks. InProc. of Parallel
Computer Routing and Communications Workshop. Lecture
Notes in Computer Science, Springer-Verlag, July 1997.

[6] Compaq Corp., Intel Corp., and Microsoft Corp.Virtual In-
terface Architecture Specification, Version 1.0, 1997. Avail-
able athttp://www.viarch.org .

[7] K. Connelly and A. A. Chien. FM-QoS: Real-Time Com-
munication Using Self-Synchronizing Schedules. InProc.
of Supercomputing Conf. (SC’97), November 1997.

[8] W. J. Dally. Virtual-Channel Flow Control.IEEE Trans.
on Parallel and Distributed Systems, 3(2):194–205, March
1992.

[9] A. Demers, S. Keshav, and S. Shenker. Analysis and Simula-
tion of a Fair Queueing Algorithm.Journal of Internetwork-
ing Research and Experience, pages 3–26, October 1990.

[10] J. Duato, S. Yalamanchili, M. B. Caminero, D. Love, and
F. J. Quiles. MMR: A High-Performance Multimedia
Router-Architecture and Design-Tradeoffs. InProc. of Intl.
Symp. High Perf. Comp. Arch. (HPCA-5), pages 300–309,
January 1999.

[11] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shu-
bert, F. Berry, A. M. Merritt, E. Gronke, and C. Dodd. The
Virtual Interface Architecture. IEEE Micro, 18(2):66–76,
March/April 1998.

[12] H. Eberle and E. Oertli. Switcherland: A QoS Communica-
tion Architecture for Workstation Clusters. InProc. of Intl.
Symp. Comp. Arch., pages 98–108, June 1998.

[13] M. Galles. Scalable Pipelined Interconnect for Distributed
Endpoint Routing : The SGI SPIDER Chip. InProc. of
Symp. High Perf. Interconnects (Hot Interconnects 4), pages
141–146, August 1996.

[14] D. Garcia and W. Watson. Servernet II. InProc. of Par-
allel Computing, Routing, and Communication Workshop
(PCRCW’97), June 1997.

[15] M. Gerla, B. Kannan, B. Kwan, P. Palnati, S. Walton,
E. Leonardi, and F. Neri. Quality of Service Support in
High-Speed Wormhole Routing Networks. InProc. of Intl.
Conf. Network Protocols, pages 40–47, October 1996.

[16] J. H. Kim and A. A. Chien. Rotating Combined Queue-
ing (RCQ): Bandwidth and Latency Gurantees in Low-Cost,
High-Performance Networks. InProc. of Intl. Symp. Comp.
Arch., pages 226–236, May 1996.

[17] K. Knauber and B. Chen. Supporting Preemption in Worm-
hole Networks. InProc. of Intl. Comp. Software and Ap-
plications Conf. (COMPSAC’99), pages 232–238, October
1999.

[18] J.-P. Li and M. Mutka. Priority Based Real-Time Communi-
cation for Large Scale Wormhole Networks. InProc. of Intl.
Parallel Processing Symp., pages 433–438, May 1994.

[19] Myricom Inc. M3M-PCI64B Network Interface Card.
Available at http://www.myri.com/myrinet/
PCI64/m3m-pci64b.html .

[20] S. Pakin, M. Lauria, and A. A. Chien. High Performance
Messaging on Workstations: Illinois Fast Messages (FM)
for Myrinet. In Proc. of Supercomputing Conf. (SC’95), De-
cember 1995.

[21] J. Pelissier. Providing Quality of Service over InfiniBand
Architecture Fabric. InProc. of Symp. High Perf. Intercon-
nects (Hot Interconnects 8), August 2000.

[22] J. Rexford, J. Hall, and K. G. Shin. A Router Architec-
ture for Real-Time Point-toPoint Networks. InProc. of Intl.
Symp. Comp. Arch., pages 237–246, May 1996.

[23] H. Song, B. Kwon, and H. Yoon. Throttle and Preempt:
A New Flow Control for Real-Time Communications in
Wormhole Networks. InProc. of Intl. Conf. Parallel Pro-
cessing, pages 198–202, August 1997.

[24] D. Stiliadis and A. Varma. Latency-Rate Servers: A
General Model for Analysis of Traffic Scheduling Algo-
rithms. IEEE/ACM Trans. on Networking, 6(2):611–623,
April 1998.

[25] C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A.
Bender, D. G. Grice, P. Hochschild, D. J. Joseph, B. J.
Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and P. R.
Varker. The SP2 High-Performance Switch.IBM Systems
Journal, 34(2):185–204, 1995.

[26] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net:
A User-Level Network Interface for Parallel and Distributed
Computing. InProc. of ACM Symp. Operating Systems Prin-
ciples, pages 40–53, December 1995.

[27] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: A Mechanism for Integrated
Commnication and Computation. InProc. of Intl. Symp.
Comp. Arch., pages 256–266, May 1992.

[28] T. von Eicken and W. Vogels. Evolution of the Virtual Inter-
face Architecture.IEEE Computer, 31(11):61–68, Novem-
ber 1998.

[29] K. H. Yum, E. J. Kim, V. Shirodkar, S. Hanabe, and C. R.
Das. Design and Analysis of a Versatile Router for Support-
ing Integrated Traffic in Clusters. Technical Report CSE-
00-021, Pennsylvania State University, University Park, PA,
October 2000.

[30] K. H. Yum, A. S. Vaidya, C. R. Das, and A. Sivasubra-
maniam. Investigating QoS Support for Traffic Mixes with
the MediaWorm Router. InProc. of Intl. Symp. High-Perf.
Comp. Arch. (HPCA-6), pages 97–106, January 2000.

[31] L. Zhang. VirtualClock: A New Traffic Control Algorithm
for Packet-Switched Networks.ACM Trans. on Computer
Systems, 9(2):101–124, May 1991.


