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File Structures

A file is a collection of data stored on mass storage
(e.g., disk or tape)
Why on mass storage?

� too big to fit in main memory
� share data between programs
� backup (disks and tapes are less volatile than main

memory)

The data is subdivided into records (e.g., student in-
formation).

Each record contains a number of fields (e.g., name,
GPA).

One (or more) field is the key field (e.g., name).

Issue: how to organize the records on the mass storage
to provide convenient access for the user?

We will discuss sequential files, indexed files, and hashed
files.
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Sequential Files

Records are conceptually organized in a sequential list
and can only be accessed sequentially.

The actual storage might or might not be sequential:
� On a tape, it usually is.
� On a disk, it might be distributed across sectors and

the operating system would use a linked list of sec-
tors to provide the illusion of sequentiality.

Convenient way to batch (group together) a number of
updates:

� Store the file in sorted order of key field.
� Sort the updates in increasing order of key field.
� Scan through the file once, doing each update in

order as the matching record is reached.

Not a convenient organization for accessing a particu-
lar record quickly.
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Indexed Files

Sequential search is even slower on disk/tape than in
main memory. Try to improve performance using more
sophisticated data structures.

An index for a file is a list of key field values occurring
in the file along with the address of the corresponding
record in the mass storage.

Typically the key field is much smaller than the entire
record, so the index will fit in main memory.

The index can be organized as a list, a search tree, a
hash table, etc. To find a particular record:

� Search the index for the desired key.
� When the search returns the index entry, extract the

record’s address on mass storage.
� Access the mass storage at the given address to get

the desired record.

Multiple indexes, one per key field, allow searches based
on different fields.
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Hashed Files

An alternative to storing the index as a hash table is to
not have an index at all.

Instead, hash on the key to find the address of the de-
sired record and use open addressing to resolve colli-
sions.

The usual hashing considerations arise.
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Databases

A database is a collection of data in mass storage that
can

� take on a variety of appearances and
� can be used by a variety of applications.

Example: Collection of student records can be viewed
as a database to be used by:

� payroll
� mailing out report cards
� preparing tuition bills
� etc.

The advantages of consolidating the data:
� saves space
� saves duplication of effort to enter, update or correct

information
� centralized control within the organization
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Database System Organization

The “software architecture” of a database system is
usually layered:

� End user calls application software to access the
data. End user thinks of data in terms of the ap-
plication

� Application software calls database management sys-
tem (DBMS) software. The applications software
has a conceptual view of the data.

� DBMS deals with the nitty gritty details of data stor-
age (indexing, sectors, etc.).

As usual, the advantages of layering are that changes
can be made to lower level implementations without
affecting higher levels.
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Communication with a Database

Databases usually provide a useful and powerful in-
terface for obtaining information from them. So far,
we’ve just seen requests of the form:

� add/delete/search for a record with a given key
� find min/max/pred/succ
� print out all the keys

But suppose you’d like to print out the names of all
students that are freshman and either have a 4.0 GPA
or whose names start with X.

There are ways to conceptually organize the data to
allow such queries to be answered efficiently, using
what are called tables or relations.

� The application software communicates with the DBMS
in terms of this “relational model”.

� The DBMS must translate from the relational model
into the actual storage data structures.
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Database Integrity

Data in a database is typically
� long-lived and
� of crucial importance to the organization.

Thus it must not get corrupted.

Data can be corrupted if several different programs (or
transactions) accessing the database at the same time.

Example of corrupted data:
� T1 transfers $100 from account � to account � .
� T2 inventories how much money the bank has.

Suppose this sequence of events occurs:
� T1 subtracts $100 from account � .
� T2 gets the balance from account � .
� T2 gets the balance from account � .
� T1 adds $100 to account � .

T2’s total balance is $100 too small.
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DB Serializability

To prevent transactions from interfering with each other,
the DBMS should provide the illusion that each trans-
action runs in isolation.

This property is called serializability.

The DMBS does not have to (and should not) actually
make the transactions run serially, but if there is a po-
tential conflict, the DBMS must take steps.

One solution is two-phase locking:
� Before accessing any data item, the transaction must

obtain a lock for every data item it plans to access.
� Only one transaction at a time can have a lock on

the same data item.
� If another transaction already has the lock, then the

first one must wait.
� After accessing all the data items, transaction re-

leases all its locks.
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Committing and Aborting a Transaction

Two-phase locking can lead to deadlock, e.g.:
� T1 locks data item A
� T2 locks data item B
� T1 waits for data item B
� T2 waits for data item

The DBMS must periodically check for deadlock, and
if one is discovered, it must choose a transaction to be
aborted to break the deadlock.

If the aborted transaction has already made changes to
the database, the DBMS must roll back those changes:

� either keep a log of the changes made (the before
and after values) or

� don’t actually make the changes in the log until the
transaction has completed.

Once the transaction has successfully completed, then
it is committed, and the changes are installed in the
database.
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Artificial Intelligence

Goal: Develop machines that communicate with their
environment through traditionally human sensory means,
such as

� vision
� speech recognition

and proceed ”intelligently” without human interven-
tion, e.g.,

� planning
� expert systems
� reasoning

Distinct but related goals:

1. trying to make machines actually ”intelligent” (what-
ever that would mean),

2. improving technology,

3. understanding how the human mind works by trying
to model it
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8-Puzzle Example

Given a 3-by-3 box that holds 8 tiles, numbered 1 through
8. One tile is missing. The goal is to start with the tiles
scrambled and move them around so that they are in
order:

1 2 3

4 5 6

7 8

We will try to solve this problem by a machine that has
� a gripper, to hold the box
� a video camera, to see where the tiles are
� a computer, to decide how to move the tiles
� a “finger”, to move the tiles.

Ideas from mechanical engineering can be used to im-
plement the gripper and the finger. We will talk about
how to “see” where the tiles are, and how to decide
how to move the tiles.
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Computer Vision

It is not enough to simply store the image obtained
from the camera. The program must be able to un-
derstand the image:

� figure out which parts of the image are the salient
objects, called feature extraction

� and then recognize the objects by comparing them
to known symbols, called feature evaluation.

For the 8-puzzle, this problem can be highly simplified:
� always expect the digits to be the same size (by

holding the box at a constant distance from the cam-
era)

� same perspective
� small set of different images to be handled (8 num-

bers and blank)
� no obstruction (one object overlapping another)

But in general this is a very difficult problem and one
where there has been extensive research.
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Reasoning

How can the program solve the puzzle?

One solution is to preprogram solutions, i.e., look up
the solution in a table. For example, if the input is

1 2 3

4 5 6

7 8

then the solution is to move the bottom right tile to the
left.

But in this case there are approximately 9! = 362,880
different inputs, some of which require a long sequence
of moves to solve, and it would require a lot of space.

Plus, someone would have to figure out all the answers
in advance.
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Production Systems

Instead, have the program figure out the solution. One
approach is the production system model.

First, consider the state graph of the problem:
� Every possible state of the system is a node.
� Draw an arrow from one node to another if a single

move (or production, or rule) takes you from one
state to the other.

Here is a tiny piece of the state graph for the 8-puzzle:

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

Identify the start and goal states of the state graph.

The control system figures out how to get from the
start state to the goal state, by following arrows in the
state graph.
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Solving a Production System

We must find a path through the state graph from the
start state to the goal state.

Luckily, finding paths in graphs is a very general prob-
lem that has been much studied.

One way is to build a search tree (not to be confused
with a binary search tree), which indicates the part of
the state graph that has been explored so far.

Two solutions are breadth-first search and depth-first
search.
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Breadth-First Search

Build the search tree in a breadth-first manner:
� The root is the start state.
� The next level is all states reachable from the start

state with a single production.
� The next level is all states reachable from states in

the first level with a single production. Etc.

For example:
1 2 3

6

7

2 3

6

7

1 2 3

4 6

7

1 2 3

6

3

6

7

1 3

4 6

7

1 2 3

4

7

1 2 3

4 5 6

7

1 2 3

6

85

4

85

41

85

85

41

2

85

2

85

6

8

85

47

8

47

5

But the search tree grows exponentially.
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Depth-First Search

Another approach is to search the state space depth
first, instead of breadth first.

Pursue more promising paths to greater depths and
consider other options only if the original choices turn
out to be false leads.

To implement this idea, we need some criterion to de-
cide which paths are promising, or appear to be promis-
ing.

Such criteria are called heuristics. A heuristic is a rule
of thumb for the program.

We need something quantitative so we can compare
different choices and choose the best.
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Heuristic for 8-Puzzle

For the 8-puzzle example, our intuitive rule of thumb
is to try to move pieces toward their final destination.

A quantitative heuristic measure is: take the sum, over
all the tiles, of the minimum number of moves needed
to get that tile to its final position (ignoring the pres-
ence of other tiles).

For instance, if the input is

4

5

6

3

8 7

21

then the heuristic measure is
0 + 0 + 1 + 3 + 1 + 1 + 1 + 1 = 8.

This heuristic has two desirable properties:

1. it is a reasonable estimate of the remaining work

2. it is easy to calculate
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Using a Heuristic in Depth-First Search

� Repeatedly check all leaves in the search tree,
� Choose the leaf with the smallest heuristic measure.
� Generate all children of that leaf.
� Continue until goal state is found.

In the 8-puzzle example above:
� Generate the root. Its heuristic measure is 3.
� Generate all children of the root. They have mea-

sures 4, 2, and 4.
� Choose the leaf with measure 2 and generate all its

children. They have measures 3, 3, 1.
� Choose the leaf with measure 1 and generate all its

children. They have measures 2 and 0. Goal state is
found.

In this depth-first search, we only had to generate 9
states, instead of approximately 17 in the breadth-first
case.
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Other Applications of Production Systems

Many problems can be formulated as production sys-
tems. In addition to the 8-puzzle, chess can be also.

You can even model the process of drawing logical
conclusions from a set of given facts as a production
system. In this case,

� each state is a collection of facts that are known to
be true.

� a production/rule/move corresponds to a rule of logic
that allows an additional fact to be deduced.

For instance, part of the state graph might be:

Socrates is a man.
All men are mortal.

Socrates is a man.
All men are mortal.
Socrates is mortal.

since there is a rule of logic that says: Given the facts

1. X is a Y

2. All Y are Z

then you can deduce that “X is Z” is also a fact.
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Some Other Areas of AI

Neural Networks: Try to take advantage of the power
of parallelism (multiprocessor computer architectures)
using a paradigm that (roughly) follows the model of
neurons in biological systems.

Robotics: Hardware and software working together,
e.g., automated manufacturing. Great interest in hav-
ing machines explore and function in uncontrolled and
unpredictable environments, such as

� outer space
� underwater
� inside a nuclear waste dump

Expert Systems: Combine domain specific knowledge
from human experts with some kind of deduction sys-
tem. For example:

� medical
� seismic exploration for oil and gas



CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 335]

Time Complexity of an Algorithm

Time complexity of an algorithm: the function
� �����

that describes the (worst-case) running time as input
size,

�
, increases.

Given a particular algorithm, discover this function by
attacking the problem from two directions:

� find an upper bound � �����
on the function

� �����
,

i.e., convince ourselves that the algorithm will never
take more than � �����

time on any input of size
�

.
� find a lower bound � �����

on the function
� �����

, i.e.,
convince ourselves that, for each

�
, there is at least

one input of size
�

on which the algorithm takes at
least time � �����

.

Try to find smallest � and largest � , so that
�

is squeezed
in between and has no room to hide.
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Time Complexity of an Algorithm (cont’d)

n

U(n)

T(n)

L(u)

n’

(a)

(b)

(c)

(a) No execution on an input of size
� �

takes more time
than this.
(b) The slowest execution on all inputs of size

� �

takes
exactly this much time.
(c) At least one execution on an input of size

� �

takes
at least this much time.
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Time Complexity of Heapsort

Let
� �����

be the time complexity of heapsort.

First cut at upper bound: each heap operation never
takes more than

� �����
time. Thus

� �����
is at most

� ��� � �
.

First cut at lower bound: each heap operation always
takes at least

� ��� �
time. Thus

� �����
is at least

� �����
.

Refined argument for upper bound: each heap opera-
tion never takes more than

� �����	� ���
time. Thus

� �����
is

at most
� ��� ���	� ���

.

Refined argument for lower bound: Describe a particu-
lar input that causes running time of at least

� ��� ���	� ���
.

On input
� 
 � � ��
 � � �
������	
���
��
��

, running time is at
least

� �����	� � � �����  � ������� ���	� ��� � � ��� ���	� ���
.

Thus
� �����

now precisely identified as
� ��� ���	� ���

(to
within constant factors).
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Time Complexity of a Problem

Time complexity of a problem: the time complexity
for the fastest possible algorithm for the problem.

To show that a problem has time complexity
� �����

:
� Identify a specific algorithm for the problem with

time complexity
� �����

.
� Then prove that any algorithm for the problem has

time complexity at least
� �����

.

Example: Sorting problem has time complexity
� ��� ����� ���

.
� Heapsort has time complexity

� ��� ���	� ���
.

� It can be proved that no (comparison-based) sorting
algorithm can have better time complexity.

Problems can be classified by their time complexity.
Harder problems are considered to be those with larger
time complexity.
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The Class P

All problems (not algorithms) whose time complexity
is at most some polynomial are said to be in the class
P (P for polynomial).

Example: Sorting is in P, since
� ��� ���	� ���

is less than� ��� � �
.

Not all problems are in P.

Example: Consider the problem of listing all permuta-
tions of the integers 1 through

�
.

� Output size is
� �

.
� Thus running time is at least

� ��� � �
.

�
� �

is larger than
��

, thus larger than any polynomial.
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NP-Complete Problems

There is an important class of problems that might or
might not be in P — nobody knows!

These problems are called NP-complete.

These problems have the following characteristic:
� A candidate solution can be verified in polynomial

time as being a real solution or not.
� However, there are an exponential number of can-

didate solutions.

Many real-world problems in science, math, engineer-
ing, operations research, etc. are NP-complete.
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Traveling Salesman Problem

An example NP-complete problem is the traveling sales-
man problem:

Given a set of cities and the distances between them,
determine an order in which to visit all the cities that
does not exceed the salesman’s allowed mileage.

A candidate solution for TSP is a particular listing of
the cities.

To check whether the allowed mileage is exceeded, add
up the distances between adjacent cities in the listing,
which will take time linear in the number of cities.

But the total number of different candidate solutions is� �
, so it’s not feasible to check them all.
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P vs. NP

Imagine an (unrealistically) powerful model of compu-
tation in which the computer first makes a lucky guess
(a nondeterministic choice) as to a candidate solution
in constant time, and then behaves as an ordinary com-
puter and verifies the solution.

Problems solvable on this computer in polynomial time
are in the class NP (nondeterministic polynomial).

NP includes all the NP-complete problems.

Having polynomial running time on this funny com-
puter would not seem to ensure polynomial running
time on a real computer.

That is, it seems likely that NP is a strictly larger class
of problems than P, and that the NP-complete problems
cannot be solved in polynomial time.

But no one has yet been able to prove
� �� � �

. Out-
standing open question in CS since the 1970’s.
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Computability Theory

Complexity theory focuses on how expensive it is to
solve various problems.

Computability theory focuses on which problems are
solvable at all by a computer (i.e., with an algorithm),
regardless of how expensive a solution might be.

We will focus on computing (mathematical) functions,
with inputs and outputs.

We would like to know if there exist functions that are
so complicated that no algorithm can compute them.
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Church-Turing Thesis

First, we have to decide what constitutes an algorithm.
� Assembly languages have restricted sets of primi-

tives.
� High-level languages have a wider choice of primi-

tives.
� What’s to say you couldn’t have some language with

very powerful primitives?

Church-Turing thesis: (“thesis” means “conjecture”)
Anything that can reasonably be considered an algo-
rithm can be represented as a Turing machine.

A Turing machine is a very abstract, yet low-level, model
of computation.

Every actual programming language is equivalent, in
computational power, to the Turing machine model.

Thus, for theoretical purposes, the choice of program-
ming language is irrelevant.
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Computing Functions

Some sample functions:
�

� ����� � �
: very easy to compute, always return 3,

no matter what the input is
�

� ����� �  �
: easy to compute, since multiplication

can be done with an algorithm
�

� ����� � ����� �
: getting more complicated, especially

with issues of precision

There exist non-computable functions, functions whose
input/output relationships are so complicated that there
is no well-defined, step-by-step process for determin-
ing the function’s output based on its input value.

We will assume
� your favorite programming language � ,
� with a very powerful implementation, in which in-

tegers can be any length, and
� only consider programs in � that take a single inte-

ger input and produce a single integer output.
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Goedel Number of a Program

Here is a way to convert a program into an integer.
� Convert all the characters in the program to their

ASCII codes.
� Interpret the result as a (big) integer. Call this inte-

ger the Goedel number of the program.

Conversely, any integer can be converted into a series
of characters:

� Most of the time, the result is garbage.
� Sometimes it isn’t garbage, but it isn’t a legal pro-

gram in language L.
� Rarely, it is a legal program in L.
� More rarely, the resulting program has a single inte-

ger input and single integer output.

Use this numbering scheme to list all the programs in
language L. The list is infinite.
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An Uncomputable Function

Define a function
�

called the halting problem:
� If the program with Goedel number

�
halts when its

input is
�

, then
� ����� � �

.
� If the program with Goedel number

�
does not halt

when its input is
�

, then
� ����� � �

.

Theorem:
�

is uncomputable (has no program in the
Goedel listing).

Proof: Assume in contradiction that
�

is computable.
Then some program � (in the Goedel listing) com-
putes the function

�
.

Define another program � (which will be in the listing):

1.
�

is the input

2. run program � as a subroutine on input
�

3. let � be the output returned by �
4. if � � �

then return 0

5. else go into an infinite loop
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An Uncomputable Function (cont’d)

Let
�

� be the Goedel number of � . What does � do on
input

�
� ?

Case 1: � halts on input
�

� . Then in Line 4, � � �
,

i.e., the subroutine � returned 0, meaning that � does
not halt on

�
� . Contradiction.

Case 2: � does not halt on input
�

� . Then in Line 4,
� � �

, i.e., the subroutine � returned 1, meaning that
� does halt on

�
� . Contradiction.

Thus the hypothetical program � cannot exist.
�

Another way to view this result is that there is only
a countably infinite number of programs (algorithms),
but there are uncountably many functions.


