
CPSC 211 Data Structures & Implementations (c) Texas A&M University [1]

What are Data Structures?

Data structures are ways to organize data (informa-
tion). Examples:

� simple variables — primitive types
� objects — collection of data items of various types
� arrays — collection of data items of the same type,

stored contiguously
� linked lists — sequence of data items, each one

points to the next one

Typically, algorithms go with the data structures to
manipulate the data (e.g., the methods of a class).

This course will cover some more complicated data
structures:

� how to implement them efficiently
� what they are good for

CPSC 211 Data Structures & Implementations (c) Texas A&M University [2]

Abstract Data Types

An abstract data type (ADT) defines
� a state of an object and
� operations that act on the object, possibly changing

the state.

Similar to a Java class.

This course will cover
� specifications of several common ADTs
� pros and cons of different implementations of the

ADTs (e.g., array or linked list? sorted or unsorted?)
� how the ADT can be used to solve other problems

CPSC 211 Data Structures & Implementations (c) Texas A&M University [3]

Specific ADTs

The ADTs to be studied (and some sample applica-
tions) are:

� stack

evaluate arithmetic expressions
� queue

simulate complex systems, such as traffic
� general list

AI systems, including the LISP language
� tree

simple and fast sorting
� table

database applications, with quick look-up

CPSC 211 Data Structures & Implementations (c) Texas A&M University [4]

How Does C Fit In?

Although data structures are universal (can be imple-
mented in any programming language), this course will
use Java and C:

� non-object-oriented parts of Java are based on C
� C is not object-oriented

We will learn how to gain the advantages of data ab-
straction and modularity in C, by using self-discipline
to achieve what Java forces you to do.

Reasons to learn C:
� learn proficiency with pointers and garbage collec-

tion
� useful in later courses and the real world
� ubiquitous and often free C software
� Unix is written in C
� C code can be very concise
� very efficient compilers, so resulting code can be

very fast

CPSC 211 Data Structures & Implementations (c) Texas A&M University [5]

Other Topics

Course will emphasize good software development
practice:

� requirements analysis
� focus on design
� good documentation and self-documenting code
� testing

Course will touch on several more advanced computer
science topics that appear later in the curriculum, and
fit in with our topics this semester:

� file systems and databases
� artificial intelligence
� computability and complexity

CPSC 211 Data Structures & Implementations (c) Texas A&M University [6]

Principles of Computer Science

Computer Science is like:
� engineering: build artifacts to work well
� science: search for fundamental laws and princi-

ples
� math: use formalisms to express fundamental laws.

However, CS studies artificial phenomena, computers
and programs.

Recurring concepts in computer science are:
� layers, hierarchies, information-hiding, abstraction,

interfaces (organizational principles to aid in the
construction of large systems)

� efficiency, tradeoffs, resource usage (properties of
algorithms and problems)

� reliability, affordability, correctness (acknowledg-
ing imperfectness and economic considerations)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [7]

Introduction to Data Structures

Data structures are one of the enduring principles
in computer science. Why?

1. Data structures are based on the notion of informa-
tion hiding:

application

data structures

machine hardware

Changes in hardware require changes in data struc-
ture implementation but not in the application.

2. A number of data structures are useful in a wide
range of applications.
Promotes code reuse.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [8]

Efficiency Considerations

Since these data structures are so widespread, it’s im-
portant to implement them efficiently. Measures of
efficiency:

� running time
� space

in
� worst case
� average case

We will study tradeoffs, such as
� time vs. space
� the speed of one operation vs. the speed of another

Efficiency will be measured using
� asymptotic analysis and
� big-oh notation

CPSC 211 Data Structures & Implementations (c) Texas A&M University [9]

Asymptotic Analysis

Actual (wall-clock) time of a program is affected by:
� size of the input
� programming language
� programming tricks
� compiler
� CPU speed
� multiprogramming level (other users)

Instead of wall-clock time, look at the pattern of the
program’s behavior as the problem size increases. This
is called asymptotic analysis.

That is, look at the shape of the function
� �����

that
gives the running time on inputs of size

�
, with more

emphasis on what happens as
�

gets big.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [10]

Big-Oh Notation

Big-oh notation is used to capture the generic shape
of the curve.

From a practical point of view, you can get the big-oh
notation for a function by

1. ignoring multiplicative constants (these are due to
pesky differences in compiler, CPU, etc.) and

2. discarding the lower order terms (as
�

gets larger,
the largest term has the biggest impact)

Which terms are lower order than others? In increas-
ing order: constant,

����� �
,
�

,
� � ����� �

,
���

,
�
	

, ����� , �� .

Examples:
� ����� � � ��� �
�
� 	 � � ����� � � ��� � � � � � ��� �

� ��� � 	 � � ����� � � � ������� ��� � � �� � � � ����� � �
See Appendix B, Section 4 of Standish, or CPSC 311,
for mathematical definitions and justifications.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [11]

Why Multiplicative Constants are Unimportant

An example showing how multiplicative constants be-
come unimportant as

�
gets very large:

� � ����� ����� � � ����� � � � �
2 1000 .0004
256 8000 6.5
4096 12,000 1677.7
8192 13,000 6710.9
16,384 14,000 26,843.6
32,768 15,000 107,374.2
1,048,576 20,000 109,951,162.8

Big-oh notation is not always appropriate! If your
program is working on small input sizes, the better
algorithm may be one that has a worse big-oh analysis.
Notice in the table above that below

� � � � ��� , the
� � ����� ���

function is LARGER than the � ��� � �
func-

tion.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [12]

Generic Steps

How can you figure out the running time of an algo-
rithm without implementing it, running it on various
inputs, plotting the results, and fitting a curve to the
data? And even if you did that, how would you know
you fit the right curve?

We count generic steps of the algorithm. Each generic
step that we count should be an operation that can be
performed in constant time in an actual implementa-
tion on a real computer.

Classifying an assignment statement as a generic step
is reasonable.

Classifying a statement “sort the entire array” as a generic
step is unreasonable, since the time to sort the array
will depend on the size of the array and will not be
constant.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [13]

Stack vs. Heap

Memory used by an executing program is partitioned:
� the stack:

– When a method begins executing, a piece of the
stack (stack frame) is devoted to it.

– There is an entry in the stack frame for
� each formal parameter
� the return value
� every variable declared in the method

– For variables of primitive type, the data itself is
stored on the stack
For variables of object type, only a pointer to the
data is stored on the stack.

– When the method finishes, the method’s stack frame
is discarded: its formal parameters and local vari-
ables are no longer accessible.

� the heap: Dynamically allocated memory goes here,
including the actual data for objects. Lifetime is
independent of method lifetimes.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [14]

Stack Frames Example

main calls p p calls q

q returns p calls r r calls s

s returns r returns p returns

main main main

main main main

main main main

p p

p p p

p p

r r

r

q

s

CPSC 211 Data Structures & Implementations (c) Texas A&M University [15]

Objects

An object is an entity (e.g., a ball) that has
� state — variables
� behavior — methods

A class is the model, or pattern, from which objects
are created.

Analogy: a class is like an architectural blueprint
for a house;

an object is like an actual house.

� class defines important characteristics of the object
� construction is required to translate class into ob-

ject
� many objects/houses can be created from the same

class

CPSC 211 Data Structures & Implementations (c) Texas A&M University [16]

Data Abstraction

The class concept supports data abstraction.

Similar principles apply as for procedural abstraction:
� group data that belongs together (Java’s version of

a record or struct)
� group data together with accompanying behavior
� separate the issue of how the data is implemented

from the issue of how the data is used
� separate the issue of how the behavior is imple-

mented from the issue of how the behavior is used.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [17]

References

The class of an object is its data type.

Objects are declared differently than are variables of
primitive types.

Suppose there is a class called Person.

int total;
Person neighbor;

� Declaration of total allocates storage on the stack
to hold an int and associates the name total
with the address of that space.

� Declaration of neighbor allocates storage on the
stack to hold a reference (or pointer) to an object of
type Person, but does not allocate any space for
the Person object itself.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [18]

Creating Objects

A constructor is a special method of the class that
actually creates an object.

When a constructor is called,
� storage space is allocated on the heap for the object
� each object gets its own space (own copy of the

instance variables)
� the object’s state is initialized according to the (user-

defined) code for that class

The name of the constructor for class X is X(). Ex:

neighbor = new Person();

The operator new must be put in front of the call to the
constructor.

Summary: Declaring a variable of an object type pro-
duces a reference to the object, but not the object itself.
To get the object itself, use new and the constructor for
the class.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [19]

Creating Objects (cont’d)

You can combine the declaration and initialization:
Person neighbor = new Person();
just as you can for primitive types:
int total = 25;

stack heap

total

neighbor

25

(Person)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [20]

Object Assignment & Aliases

The meaning of assignment is different for objects than
it is for primitive types.
int num1 = 5;
int num2 = 12;
num2 = num1;

At the end, num2 holds 5.
Person neighbor = new Person(); // creates object 1
Person friend = new Person(); // creates object 2
friend = neighbor;

At the end, friend and neighbor both refer to ob-
ject 1 (they are aliases of each other) and nothing refers
to object 2 (it is inaccessible).

stack heap

friend

neighbor

(1)

(2)

object 2)
(Person

object 1)
(Person

Java will automatically garbage collect object 2.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [21]

Data Abstraction Revisited

As a rule of thumb, referring to instance variables out-
side the class is NOT a good idea: it breaks the abstrac-
tion by exposing the internal workings of the class.

For instance, the implementor of the Person class
might decide to store the age in months, instead of
years.

In this case, getAgeInYears must change:

int getAgeInYears() {
return age/12;

}

Code that got the age using this method need not change,
but code that got the age using .age directly must be
modified.

Moral: Separate specification (what a class does)
from implementation (how a class does it)!

CPSC 211 Data Structures & Implementations (c) Texas A&M University [22]

Public vs. Private

You can tailor the ability to access methods and vari-
ables from outside the class, using visibility modifiers.

� public: the variable or method can be referenced
by any method

� private: the variable or method can only be refer-
enced by methods belonging to the class

Visibility modifiers go at the beginning of the line that
declares the variable or method. Ex:
public static void main(...
private int age;
Rules of thumb:

� make instance variables private
� make instance methods that are part of the public

interface of the class public
� make instance methods that help with internal work

of a class private

CPSC 211 Data Structures & Implementations (c) Texas A&M University [23]

Public vs. Private (cont’d)

Instance variables should be accessible only indirectly
via public ”get” and ”set” methods. Ex:

getAgeInYears()

Visibility modifiers are a very powerful feature which
enforces data encapsulation with the compiler, and thus
helps with modularity and abstraction.

Group together all the private variables/methods, and
all the public ones when you format your program.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [24]

Specification vs. Implementation

Users of a class should rely only on the specification of
the class. They are allowed to

� declare variables of the class type
� create instances of the class using constructors
� invoke public methods

Implementors of a class should
� define public interface for the class (names of the

methods, their return types, and their parameter lists,
and what do they do, but not how they do it)

� hide all details of the implementation from users
� protect internal data from access by users
� feel free to change implementation at any time, as

long as public interface is unchanged

CPSC 211 Data Structures & Implementations (c) Texas A&M University [25]

Inheritance

Inheritance lets a programmer derive a new class from
an existing class. New class can

� use the variables and methods of the existing class
� modify the variables and methods of the existing

class (called overriding)
� have additional variables and methods

Thus inheritance promotes software reuse. It is a defin-
ing characteristic of object-oriented programming.

Terminology:
� Class A is derived from (or, inherits from) another

class B
� A is called subclass or child class.
� B is called superclass or parent class.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [26]

Benefits of Inheritance

Inheritance is particularly useful in large software projects:
� software reusability across programs:

– saves time for development and maintenance

– provides more reliable code

– supports rapid prototyping

� code sharing within a program (like procedural ab-
straction); write code only once and decrease size
of program

� consistent interfaces can be enforced — every class
that inherits from the same parent class must con-
form to that interface

� information hiding / modularity

CPSC 211 Data Structures & Implementations (c) Texas A&M University [27]

Costs of Inheritance

� Execution speed is decreased, to handle the gener-
ality of dealing with arbitrary subclasses.

– Usually this disadvantage is outweighed by in-
creased development speed.

– Once system is working, then find bottlenecks
and work to reduce them.

� Program size is larger if you use large libraries —
not a problem these days for most applications.

� Program complexity can increase – understanding
control flow requires studying the inheritance graph.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [28]

Inheritance in Java

To declare that a class is a subclass of another class:

class <child-class> extends <parent-class> {
... // define the child-class

}

� child class inherits all public variables of the parent
class

� child class inherits all public methods of the parent
class, except constructors

� child class does NOT inherit any private variables
of the parent class

� child class does NOT inherit any private methods
of the parent class

Inherited variables and methods can be used in the
child class as if they had been declared in the child
class.
Inheritance is one-way street!! An object of the parent
class cannot access variables or methods of the child
class.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [29]

Protected Visibility

� private: entity cannot be inherited but is not
visible outside the class

� public: entity can be inherited but is visible
outside the class

This makes it dangerous to inherit variables, since nor-
mally instance variables should not be made accessible
outside the class.

The solution is an intermediate level of visibility:

� protected: entity can be inherited and is not
visible outside the class (and its descendants)

CPSC 211 Data Structures & Implementations (c) Texas A&M University [30]

Overriding Methods

When a child class defines a method with the same
name and signature (sequence of parameters) as the
parent, the child’s version overrides the parent’s ver-
sion. Useful when the child class needs a different
version than the parent.

Polymorphism means that the type of the object, not
the type of the variable, decides which version of an
overridden variable is executed.

These are not necessarily the same, since a variable can
refer to any object whose class is a descendant of the
variable’s class.

When in doubt, draw a memory diagram!

CPSC 211 Data Structures & Implementations (c) Texas A&M University [31]

Abstract Classes — Motivation

Consider a database for a veterinarian to keep track of
medical and billing information for each patient.

� Each patient is someone’s pet (e.g., dog, bird).
� Some aspects of the vet’s business are independent

of the particular species (e.g., billing, owner info).
� Some aspects depend critically on the species (e.g.,

the vaccination schedule, diet recommendations).

An obvious organization is to have a Pet superclass,
and to have Dog, Bird, etc. subclasses.

Note that it does not make sense to create a Pet object
— every pet is actually some particular species, that
is, an instance of one of the subclasses.

The Pet class is used to group together common code,
but is not complete by itself.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [32]

Rules for Abstract Classes and Methods

� Only instance methods can be declared abstract (not
static methods).

� Any class with an abstract method must be declared
as abstract.

� A class may be declared abstract even if it has no
abstract methods.

� An abstract class cannot be instantiated (no objects
created of that class).

� A non-abstract subclass of an abstract class must
override each abstract method of the superclass and
provide an implementation (method body) for it.

� If a subclass of an abstract class does not implement
all of the abstract methods that it inherits, then it
must also be an abstract class.

Since an abstract class cannot be instantiated, its vari-
ables and methods are not directly used. But they can
be indirectly used via a (non-abstract) subclass.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [33]

Declaring an Interface

An interface is an abstract class taken to the extreme.
It is like an abstract class in which everything is ab-
stract — no methods have implementations.

interface <interface name> {
<constant declarations> // public final
<abstract method declarations> // public abstract

}

An interface provides
� a collection of related constants, and
� a collection of method signatures

For example:

interface InterestBearing {
double annualRate = .06;
double calculateInterest(int period);

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [34]

Implementing an Interface

The syntax for “inheriting from” (called implement-
ing) an interface I is:

class B implements I { ... }

For example:

class Account implements InterestBearing {
protected double balance;
public double calculateInterest(int period) {
// argument period is assumed to be in months
return balance * annualRate * period/12;

}
}

The class Account
� can access the constant annualRate in the inter-

face InterestBearing, and
� must provide an implementation of the abstract method
calculateInterest in the interface
InterestBearing

CPSC 211 Data Structures & Implementations (c) Texas A&M University [35]

Abstract Classes vs. Interfaces

� An abstract class can be used as a repository of com-
mon code that is shared among its subclasses, but
an interface contains no code.

� A class can implement many interfaces, but can
only inherit from one class (in Java).

� Both abstract classes and interfaces can be used to
group together a collection of related constants.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [36]

Object-Oriented Design

The design of a software system is an iterative process.
� choose initial set of objects based on requirements
� develop behaviors and scenarios for the objects
� previous step may indicate that additional objects

are needed
� develop behaviors and scenarios involving the ad-

ditional objects
� etc.

As the design matures, objects are abstracted into classes:
� group common functionality into parent classes
� put unique functions into child classes
� determine what functionality will be public

Initial design effort focuses on the overall structure of
the program. The algorithms for the methods are spec-
ified using pseudocode. Actual coding begins after
most of the design structure and algorithm pseudocode
are completed.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [37]

Deciding on Objects and Classes

Make some guesses about what the objects in the sys-
tem are and try to arrange them into groups (which
will be the classes). Although you should put serious
thought into this, don’t try to do this perfectly on the
first pass.

Rule of Thumb: associate objects and classes with
the physical entities they model.

Later you may need more intangible kinds of objects,
such as an error message.

As you come up with the objects, some details (vari-
ables and methods) will be obvious. Document these
and test them out with scenarios —

A scenario is a little sample execution of a piece of
code. You walk through what you envision happening
for a particular input, in terms of the order in which
methods are invoked and what gets returned.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [38]

Linked List

Linked lists are useful when size and shape of data
structure cannot be predicted in advance.

Linked lists are an example of dynamic data struc-
tures — their size, and even shape, can change during
execution.

Separate blocks of storage are linked together using
pointers. Blocks are not necessarily contiguous.

Linked representations are an important alternative to
sequential representations (arrays).

Many key abstract data types (lists, stacks, queues, sets,
trees, tables) can be represented with either linked
structures or with arrays.

Important to understand the performance tradeoffs in
the choice of representation.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [39]

Pointers

Pointers in Java are called references.

References to objects are essentially pointers.

However, you cannot do arithmetic on pointers in Java
(unlike C, for instance).

stack heap

friend

neighbor

(1)

(2)

object 2)
(Person

object 1)
(Person

CPSC 211 Data Structures & Implementations (c) Texas A&M University [40]

Linear Linked Lists

The list consists of a series of nodes, or storage blocks.

Each node contains
� link component, which points to next node in list
� other data components

To realize this idea in Java:
� each node is an object of some class N
� class N contains instance variables

– link, whose type is N (reference to an object of
type N)

– other data components
� another class L contains a pointer to N object at the

front of the list and other bookkeeping info about
the entire list

CPSC 211 Data Structures & Implementations (c) Texas A&M University [41]

Linear Linked Lists (cont’d)

Here is a diagram of the heap:

...

(L)

(N) (N) (N)

Space complexity: � ��� �
�
�
for a linked list of

�
nodes,

each of size � .

CPSC 211 Data Structures & Implementations (c) Texas A&M University [42]

Linked List Example — Node Class

For a linked list of books, first define a class that rep-
resents individual list elements (nodes).

class BookNode {
String title;
int numPages;
BookNode link; // ptr to next book

// in linked list
BookNode(String name, int pages) {
title = name;
numPages = pages;
link = null; // points to nothing

}
...

}

The type of the link variable is the same as the class
being defined — recursive data type.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [43]

Linked List Example — List Class

Then define a class that represents the list itself. What
should it contain?

� a pointer to the first node in the list
� length of the list
� other bookkeeping info...

It does NOT explicitly contain all the nodes of the list
— they are part of this class indirectly, due to pointers.

class BookList {
BookNode first; // pointer to first

// elt. of list
int size; // # elts. in list

BookList() { // initially empty
first = null;
size = 0;

}
...

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [44]

Linked List Operations

What should be the operations on a linked list?
� insert another node — where?

– front

– end

– before or after a specified node
� delete a node — which one?

– first one

– last one

– the one containing certain data
� scan the whole list, doing something (like printing)

Add some instance methods to the BookList class:

void insertAtFront(BookNode node) ...
void insertAtEnd(BookNode node) ...
BookNode deleteFirst() ...
void printList() ...
...

CPSC 211 Data Structures & Implementations (c) Texas A&M University [45]

Using a Linked List

Example:

...
BookList myBooks = new BookList();
for (int i = 0; i < numBooks; i++) {
BookNode bk = getBook();
myBooks.insertAtEnd(bk);

}
myBooks.printList();
...

CPSC 211 Data Structures & Implementations (c) Texas A&M University [46]

Inserting at the Front of a Linked List

Pseudocode:

1. make new node’s link point to front of list

2. indicate that new node is first node in list

...

(1)
(2)

In Java (assuming the parameter is not null):

void insertAtFront(BookNode newNode) {
newNode.link = first; // step 1
first = newNode; // step 2
size++;

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [47]

Inserting at the Front of a Linked List (cont’d)

What happens if we do step 1 and step 2 in the opposite
order?

...

(1) (2)

We get a cycle, and the old list is LOST! Be sure you
don’t lose access to your data!

Time Complexity: � � � �
, because we do a constant

amount of work, no matter how many nodes are in the
list.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [48]

Inserting at the End of a Linked List

First, assume the list is empty (i.e., first equalsnull).

1. set the new node’s link to null

2. set first to the new node.

Now, assume the list is not empty (i.e., first does
not equal null).

1. find the last node, node, of the list.

2. set node.link to the new node.

...

How do we do step 1? Search through the list,
starting with first, and following link pointers,
until reaching the last node (i.e., the node whose link
is null).

CPSC 211 Data Structures & Implementations (c) Texas A&M University [49]

Inserting at the End of a Linked List (cont’d)

void insertAtEnd(BookNode newNode) {
if (first == null) {
first = newNode;
newNode.link = null;

}
else {
BookNode cur = first;
while (cur.link != null)
cur = cur.link;

// cur is last in list
cur.link = newNode;
newNode.link = null;

}
size++;

}

Time Complexity: Everything except the while loop
takes constant time. Each iteration of the while loop
takes constant time. There are

�
iterations of the while

loop. So � ��� � � � ��� � � �����
.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [50]

Using a Last Pointer

To improve running time, keep a pointer to the last
node in the list class, as well as the first node.

(1) (2)

Time Complexity: O(1), independent of size of list.

class BookList {
BookNode first; // pointer to first
BookNode last; // pointer to last
int size; // # elts. in list
// continued on next slide

CPSC 211 Data Structures & Implementations (c) Texas A&M University [51]

Using a Last Pointer (cont’d)

// continued from previous slide
BookList() { // initially empty
first = null;
last = null;
size = 0;

}
void insertAtEnd(BookNode newNode) {
if (first == null) {
first = newNode;
last = newNode;
newNode.link = null;

}
else {
last.link = newNode;
last = newNode;
newNode.link = null;

}
size++;

}
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [52]

Deleting Last Node from Linked List

Suppose we want to delete the node at the end of the
list and return the deleted node.

First, let’s handle the boundary conditions:
� If the list is empty, then nothing needs to be changed

— just return null.
� If the list has only one element (i.e., if first.link

is tt null), then set first to null and return the
node that first used to point to (use a temp).

... ...

return this

CPSC 211 Data Structures & Implementations (c) Texas A&M University [53]

Deleting Last Node from Linked List (cont’d)

Suppose the list has at least two elements.
First attempt:

1. find the last element, z, of the list

2. change link of previous node to null

3. return z

...

return this
Step 1 can be done as before.

What about step 2? How do we know which node is
the preceding one? The links are one-directional.
While traversing list, keep track of next node as well as
current:

1. march down the list with two pointers, cur and
next, until next is the last node in the list.

2. set cur.link to null

CPSC 211 Data Structures & Implementations (c) Texas A&M University [54]

Deleting Last Node from Linked List (cont’d)

public BookNode deleteLast() {

if (first == null) return null; // empty list

if (first.link == null) { // list w/ 1 elt.
BookNode temp = first;
first = null;
size--;
return temp;

}

BookNode cur = first; // list w/ > 1 elt
BookNode next = cur.link;

while (next.link != null) {
cur = next;
next = cur.link;

}

cur.link = null; // truncate list at 2nd-to-last
size--;
return next;

}

Time Complexity: The running time here, like the
last example, is � �����

, proportional to size of list.

Would it help to keep a last pointer? No! We still can’t
follow the pointer backward.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [55]

Linked Lists Pitfalls

� Check that a link is not null before following it!
Example:

node.link = null;
node = node.link; // node is null
node.link = null; // ERROR!

� Mark end of list by setting the link field of the
last node to null.

� Be careful with boundary cases! Examples of
boundary cases are the empty list, the list with one
element (in some cases), the first node, the last node,
etc. (depending on what you are doing).

� Draw memory diagrams! These can usually make
it clear what you need to do, and in what order.

� Don’t lose access to needed objects! Make sure
you change pointers in a safe order.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [56]

Linked Lists vs. Arrays

Space complexity: Linked list has overhead of one
pointer per data item. Array has overhead of over-
estimating required space, since size is not dynamic.

Time Complexity (
�

data items):

singly singly doubly doubly array
linked linked, linked linked,

last ptr last ptr
insert front � ��� � � ��� � � � � � � ��� � � �����

insert end � ����� � � � � � ����� � � � � � ��� �

delete first � ��� � � ��� � � ��� � � ��� � � �����

delete last � � ��� � ����� � ����� � ��� � � ��� �

search � ����� � ����� � � ��� � ����� � �����

CPSC 211 Data Structures & Implementations (c) Texas A&M University [57]

Linked Lists vs. Arrays (cont’d)

Suppose the items in the sequence are in sorted order.
Then data items must be inserted in the correct place.
But perhaps this will make searching for an item easier.
Break the insertion process into two parts:

1. search for correct place to insert, call the resulting
place

�

2. insert at current place

singly singly doubly doubly array
linked linked, linked linked,

last ptr last ptr
search � � � � � � � � � � � � � � � � � � ����� ���

insert � ��� � � ��� � � ��� � � ��� � � ��� � � �

CPSC 211 Data Structures & Implementations (c) Texas A&M University [58]

Linked Lists vs. Arrays (cont’d)

Tradeoff:
� linked list:

– insert is fast

– search is slow

because nodes are not contiguous in memory

� arrays:

– insert is slow

– search is fast (binary search)

because nodes are contiguous in memory

Binary search cannot be used on linked lists because
it relies on relationship between address of data (array
index) and value of data.

Later we will see some other data structures that try to
get the best of both worlds.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [59]

Other Linked Structures

We don’t have to restrict ourselves to just having one
link instance variable per node. We can get arbitrarily
complicated linked structures.

Some of the more common and useful ones are:
� doubly linked list — have a forward link and a

backward link per node. Reduces time for delete-
Last from � � ���

to � � � �
. Penalty is extra space for

keeping backward links, which totals � �����
space, a

constant amount per node.
� rings — link of last node points to first node, circu-

lar.
� trees — we’ll see more later about these.
� general graphs — arbitrary number of links per

node that point to arbitrary other nodes

CPSC 211 Data Structures & Implementations (c) Texas A&M University [60]

Recursion

Idea of recursion is closely related to the principle of
mathematical induction.

� Figure out how to solve the problem for small prob-
lem instances.

� Assume you have a solution for smaller problem
instances.

� Figure out how to do a little more work which, in
combination with solution(s) to smaller instance(s),
solves the larger problem instance.

This is also an application of divide and conquer.

Rules for recursive programs:
� There must be a stopping (base) case.
� Recursive call(s) must get you closer to a stopping

case.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [61]

Stack Frames for Recursive Methods

When a recursive method is executed, each invocation
of the method gets a separate stack frame. Thus each
invocation has a separate copy of

� formal parameters
� local variables
� return value

Example:
The factorial of

�
, represented

� �
, is calculated as

� �
��� � � � � ��� � � � ��� � �

.

To compute
� �

:

int fact(int n) {
if (n == 1) return 1;
else return n * fact(n-1);

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [62]

Stack Frames for Factorial Example

Stack frames when calling fact(4) :

n fact4 n fact4

n fact4 n fact4

n fact

n fact3

n fact1

n fact2

n fact3

n fact2

3

CPSC 211 Data Structures & Implementations (c) Texas A&M University [71]

Towers of Hanoi

Towers of Hanoi is is an example of a problem that
is much easier to solve using recursion than not using
recursion.

� There are 3 pegs and
�

disks, all of different sizes
� Initially all disks are on the start peg, stacked in

decreasing size, with largest on bottom and smallest
on top.

� We must move all the disks to the end peg one at
a time and without ever putting a larger disk on top
of a smaller disk.

� The third peg can be used as a spare.

Example:
� � . Solution is:

1. Move smaller disk from start peg to spare peg.

2. Move larger disk from start peg to end peg.

3. Move smaller disk from spare peg to end peg.

For larger
�

, it becomes difficult to figure out.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [72]

Recursive Solution to Towers of Hanoi

Using recursion can help. Suppose someone gives us a
method to move

� � �
pegs. We can use it to solve

the problem for
�

pegs as follows:

1. Move the top
� � �

disks from the start peg to the
spare peg using method .

2. Move the bottom disk directly from the start peg to
the end peg.

3. Move the
� � �

disks from the spare peg to the end
peg using method .

Steps 1 and 3 will be done using recursion.

Stopping case? When
� � �

, the peg can be moved
directly.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [73]

Figure for Towers of Hanoi

n - 1
disks

peg #1 peg #2 peg #3

n - 1
disks

peg #1 peg #2 peg #3

n - 1
disks

peg #1 peg #2 peg #3

n - 1
disks

peg #1 peg #2 peg #3

1 disk

CPSC 211 Data Structures & Implementations (c) Texas A&M University [74]

Recursive Solution to Towers of Hanoi (cont’d)

The output of the program will be a list of instructions.

void Towers(int n, int start, int finish, int spare) {
if (n == 1)
S.o.p("move from " + start + " to " + finish);

else {
// move n-1 disks from start to spare:
Towers(n-1, start, spare, finish)
// move bottom disk directly to finish:
S.o.p("move from " + start + " to " + finish);
// move n-1 disks from spare to finish:
Towers(n-1, spare, finish, start)

}
}

To call this method, suppose you have 4 pegs and you
want to use peg 1 as the start peg, peg 3 as the finish
peg, and peg 2 as the spare peg:

Towers(4, 1, 3, 2);

CPSC 211 Data Structures & Implementations (c) Texas A&M University [75]

Time Complexity of Towers of Hanoi Solution

Time Complexity: Asymptotically proportional to the
number of instructions output.

Each instantiation of the method prints one instruc-
tion.

To count the number of instantiations, draw a call
tree:

T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1)

T(2)T(2)T(2)T(2)

T(3) T(3)

T(4)

Number of vertices in the tree is � � �
.

Therefore time complexity is � � � � .

CPSC 211 Data Structures & Implementations (c) Texas A&M University [76]

Parsing Arithmetic Expressions

An important part of a compiler is the parser, which
checks whether the input program conforms to the
grammar, or syntax, of the programming language.

An important part of this problem is to check whether
arithmetic expressions are well-formed. For example:

� � � ��� � ������� � �
— OK

� � � � �	��

— BAD

�
� � � � � � — BAD

To simplify the problem:
� Assume that the operands are single-letter variables

(� through

) or single digit numbers (0 through 9)

� Only consider operators
�

,
�

, � and
�

The correct syntax for arithmetic expressions can be
described using grammar rules. Then a particular
input can be checked to see whether it is derivable from
the grammar rules.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [77]

A Grammar for Arithmetic Expressions

Sample Rules: (
�
means “or”)

1. expression � term
�

term
�
term

�
term

�
term

2. term � factor � factor
�
factor

�
factor

�
factor

3. factor � (expression)
�
letter

�
digit

Here are some derivations:
E

T + T

F F

a b

E

T - T

F * F F / F

5gx2

T

F * F

(E) c

T + T

F F

b

E

a

CPSC 211 Data Structures & Implementations (c) Texas A&M University [78]

Recursive Parsing Algorithm

Idea is to try to obtain an expression from the input. To
do this, try to obtain from the input

� a term, or
� a term, followed by a

�
, followed by another term,

or
� a term, followed by a

�
, followed by another term.

To obtain a term from the input (starting at the current
position), try to obtain

� a factor
� a factor, followed by a � , followed by another factor,

or
� a factor, followed by a

�
, followed by another factor.

To obtain a factor from the input (starting at the current
position), try to obtain

� a letter, or a digit, or
� a (, followed by an expression, followed by a).

Note the indirect recursion.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [79]

Recursive Parsing Algorithm (cont’d)

At the top level:

boolean valid(String input) {
String remainder = getExpr(input);
return ((remainder != null) &&

(remainder.length() == 0));
}

getExpr recognizes an expression at the beginning
of input and returns the rest of the string, which will
be the empty string if nothing is left over. If a syntax
error is encountered, it returns null. (Does not handle
white space in the input.)

String getExpr(String input) {
String remainder = getTerm(input);
if ((remainder != null) &&

(remainder.startsWith("+") ||
remainder.startsWith("-")))

// lop off + or - before looking for a term
remainder = getTerm(remainder.substring(1));

return remainder;
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [80]

Recursive Parsing Algorithm (cont’d)

String getTerm(String input) {
String remainder = getFactor(input);
if ((remainder != null) &&

(remainder.startsWith("*") ||
remainder.startsWith("/")))

// lop off * or / before looking for a factor
remainder = getFactor(remainder.substring(1));

return remainder;
}
String getFactor(String input) {
if (Character.isLetterOrDigit(input.charAt(0)))
// lop off digit or char before returning
return input.substring(1);

else if (input.startsWith("(")) {
// lop off (before looking for expression
String remainder = getExpr(input.substring(1));
if ((remainder == null) ||

!remainder.startsWith(")"))
return null; // syntax error

// lop off) before returning
else return remainder.substring(1);

}
else return null; // syntax error

}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [81]

Abstract Data Types

An abstract data type (ADT) defines entities that have
� state and
� operations that can change the state and return in-

formation

ADTs provide the benefits of abstraction, modularity,
and information hiding.

There is a strict separation between the public inter-
face, or specification, and the private implementation
of the ADT.

This separation facilitates correctness proofs of pro-
grams/algorithms that use entities of the ADT.

ADTs are easily achieved in Java using classes and the
appropriate visibility modifiers.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [82]

ADT Example: Priority Queue Specification

The priority queue ADT is useful in many situations.
Here is its specification:

� The state is a set of elements that can be compared
to each other according to some “priority”.

� The operations on a priority queue are:

– make a new empty priority queue
– insert a new element into the priority queue
– remove the highest priority element from the pri-

ority queue

Note that there is no operation to remove any other
element.

Example applications:
� Pay the bill among all your outstanding bills that

has the closest deadline.
� Provide medical treatment to the sickest person in

the hospital’s emergency room.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [83]

Using a Priority Queue to Sort a List of Integers

Even without knowing anything about how a priority
queue might be implemented, we can take advantage
of its operations to solve other problems.

For example, to sort a list of numbers:
� Insert each number in the list into a priority queue;

(smallest number has highest priority)
� Successively remove the highest priority (i.e., small-

est) number until the priority queue is empty.
� Store the removed numbers in order.

void sortPQ (int[] A) {
int n = A.length;
PriorityQueue pq = new PriorityQueue();
for (int i = 0; i < n; i++) pq.insert(A[i]);
for (int i = 0; i < n; i++) A[i] = pq.remove();

}

This method correctly sorts the number, for ANY
(correct) implementation of the PriorityQueue class.

Time Complexity: � ��� � � ����� � � ����� � �
, where

� �����
is

the time to insert and � �����
is the time to remove.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [84]

Implementing a Priority Queue with an Array

class PriorityQueue {
private int[] A = new int[100];
private int next; // next inserted element goes here
PriorityQueue() {
next = 0;

}
public void insert(int x) { // no overflow check
A[next] = x;
next++;
}

public int remove() { // no underflow check
int high = A[0];
int highLoc = 0;
for (int cur = 1; cur < next; cur++) {
if (high < A[cur]) { // find highest priority elt.
high = A[cur];
highLoc = cur;

}
}
A[highLoc] = A[next-1]; // reorder array
next--;
return high;

}
}

Time Complexity: insert � � � �
, remove � �����

, sort � ��� � �
.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [85]

Implementing a Priority Queue with a Linked List

Pseudocode:
� To insert an element: Insert the element at the head

of the linked list. Time is � ��� �
.

� To remove the highest priority element:

– Scan through the entire linked list, maintaining a
pointer to the highest priority item found so far.

– When the entire list has been scanned, splice the
highest priority node out of the linked list.

Time is � �����
.

Asymptotic running times are same as for the array.

Time to sort is again � ��� � �
.

Can we do things faster by keeping the array, or linked
list, elements in sorted order?
Warning: Do not confuse the implementation of the
priority queue with a possible application of it (e.g.,
sorting).

CPSC 211 Data Structures & Implementations (c) Texas A&M University [86]

Implementing a PQ with a Sorted Array

Keep the array elements in increasing order of priority.
(If highest priority is smallest element, then elements
will be in decreasing order).
Pseudocode:

� To insert an element: Starting at the end, search for
correct location for new element while simultane-
ously shifting elements down to make room. Time
is � �����

, due to the shifting.
� To remove the highest priority element:

– Indicate that the effective size of the array has
been decreased by one.

– Return the element at the end of the effective part
of the array.

Time is � � � �
, an improvement.

However, time to sort is still � ��� � �
.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [87]

Implementing a PQ with a Sorted Linked List

Pseudocode:
� To insert an element: Scan down the linked list un-

til finding the correct spot to insert the new element.
Insert it there. Time is � �����

, due to the scan.
� To remove the highest priority element: Remove

the last element of the list. Time is � ��� �
.

Asymptotic times are the same as for a sorted array;
time to sort is still � � ��� �

.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [88]

Generic PQ Implementation Using Java

To avoid rewriting the priority queue implementation
for every different kind of element (integer, double,
String, user-defined classes, etc.), we can use Java’s
interface feature.

All that is required is a way to compare two elements.

interface ComparisonKey {
int HIGHER = -1;
int LOWER = 1;
int EQUAL = 0;

// k1.compareTo(k2) returns
// EQUAL if k1 "equals" k2
// HIGHER if k1 "is higher than" k2
// LOWER if k1 "is lower than" k2

int compareTo(ComparisonKey k);
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [89]

Using the ComparisonKey Interface

� Change the specification of the PriorityQueue
class to consist of a collection of ComparisonKey’s,
with the methods

– insert, which takes a ComparisonKey as a
parameter (instead of an int)

– remove, which returns a ComparisonKey (in-
stead of an int)

� Any class that implements ComparisonKey can
be used in place of ComparisonKey.

� Define a class called PQItem that implements
ComparisonKey.

� sortPQ, the sorting algorithm that uses a priority
queue, can also be generalized to work on an array
of ComparisonKey’s.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [90]

Generic Implementation of PQ with Array

class PriorityQueue {
private ComparisonKey[] A =

new ComparisonKey[100]; // int -> CK
private int next;
PriorityQueue() {
next = 0;

}
public void insert(ComparisonKey x) { // int -> CK
A[next] = x;
next++;

}
public ComparisonKey remove() { // int -> CK
ComparisonKey high = A[0]; // int -> CK
int highLoc = 0;
for (int cur = 1; cur < next; cur++) {
if (high.compareTo(A[cur]) ==

ComparisonKey.LOWER) { // use compareTo method!
high = A[cur];
highLoc = cur;

}
}
A[highLoc] = A[next-1];
next--;
return high;

}
}

CPSC 211 Data Structures & Implementations (c) Texas A&M University [91]

Implementing the Generic PQItem

Here is a possible PQItem class for integers. Note
overhead vs. flexibility.

class PQItem implements ComparisonKey {
private int key;
PQItem(int value) { // constructor
key = value;

}
public int compareTo(ComparisonKey k) {
int otherKey = ((PQItem) k).key; // extract int
if (key < otherKey) return HIGHER;
if (key > otherKey) return LOWER;
return EQUAL;

}
}

For a PQItem class for strings:
� make key a string
� make parameter to the constructor a string
� the method compareTo can use the compareTo

method for strings

CPSC 211 Data Structures & Implementations (c) Texas A&M University [92]

Generic PQItem’s (cont’d)

This approach is particularly powerful since we can
define the priority any way we want to for our own
user-defined class.

Suppose the items are student records.

One form of priority might be according to GPA, break-
ing ties according to number of hours completed.

Another form might be alphabetical order of name,
breaking ties according to year of birth.

All those decisions will be encapsulated inside the
compareTo method of the PQItem class.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [93]

Sorting with Generic PQ

Finally, here is the sorting algorithm:

void sortPQ (ComparisonKey[] A) {
int n = A.length;
PriorityQueue pq =

new PriorityQueue();
for (int i = 0; i < n; i++)

pq.insert(A[i]);
for (int i = 0; i < n; i++)

A[i] = pq.remove();
}

The only difference from before is the type of A.

IMPORTANT TO NOTICE:
� The PriorityQueue class will NOT be changed

even if the PQItem class changes.
� The sortPQ method will NOT be changed even if

the PQItem class or PriorityQueue class changes.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [94]

Importance of Modularity and Information Hiding

Why is it valuable to be able to do these kinds of things?

The public/private visibility modifiers of Java, and the
discipline of not making the internal details be avail-
able outside are forms of information hiding.

Information hiding promotes modular programming
— you can switch the implementation of one class
without affecting (correctness of) other classes.

The key to abstraction is separating WHAT (the
specification) from HOW (the implementation).

