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1. INTRODUCTION

1.1 Overview

We present a quantitative comparison of the inherent costs of two well-known con-

sistency conditions for concurrently accessed shared data|sequential consistency

and linearizability. Our main conclusion is that under realistic timing assumptions

it is strictly more expensive to provide linearizability than to provide sequential

consistency in distributed (message-passing) implementations, where the cost mea-

sure is the worst-case time for a data access. Because their de�nitions are very

similar, linearizability and sequential consistency are often confused, but our work

shows that there can be a considerable cost to such confusion. For example, Dubois

and Scheurich ([42, 19]) de�ne a su�cient condition for sequential consistency (cf.

[19, De�nition 6.3]); however, this condition implies linearizability.1 Implementing

linearizability imposes more cost than is necessary to support the target condi-

tion of sequential consistency. To our knowledge, this is the �rst time sequential

consistency is shown to be more costly than linearizability.

We also study the worst-case access time for the two conditions under more

stringent timing assumptions, namely that processors have perfectly synchronized

clocks. We show several lower bounds for sequential consistency in this model; these

lower bounds carry over to more realistic models in which weaker assumptions hold

about the clock behavior. We also present matching \counter-example" algorithms

for linearizability in this model. They demonstrate that no improved lower bounds

for either condition are possible without weakening the timing assumptions. The

fact that sequential consistency and linearizability are equally costly in this model

(for our measure) is somewhat surprising. It indicates the importance of explic-

itly and carefully specifying system timing assumptions and the non-triviality of

separating sequential consistency from linearizability.

1.2 Detailed Description

Managing concurrent accesses to shared data by several processes is a problem

that arises in many contexts, ranging from cache coherence for multiprocessors to

distributed �le systems and transaction systems. A consistency condition must

specify what guarantees are provided about the values returned by data accesses in

the presence of interleaved and/or overlapping accesses perhaps to distinct copies

of a single logical data item. Two con
icting goals of a consistency condition are

to be strong enough to be useful to the user and weak enough to be implemented

e�ciently. Sequential consistency and linearizability are two well-known consistency

conditions.

Sequential consistency requires that all the data operations appear to have ex-

ecuted atomically, in some sequential order that is consistent with the order seen

at individual processes.2 When this order must also preserve the global (exter-

nal) ordering of non-overlapping operations, this consistency guarantee is called

1Technically, the de�nition of [19] relies on the notion of \performing an operation", which can

only be interpreted in a speci�c architectural model. Under a natural interpretation (e.g., as in

[25]) the de�nition implies linearizability.
2This condition is similar in 
avor to the notion of serializability from database theory ([11, 40]);

however, serializability applies to transactions which aggregate many operations.
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linearizability ([28]).3

Clearly linearizability is stronger than sequential consistency. As discussed in

[28], linearizability has two advantages over sequential consistency. First, it is

somewhat more convenient to use, especially for formal veri�cation, because it

preserves real-time ordering of operations, and hence corresponds more naturally

to the intuitive notion of atomic execution of operations. Second, linearizability is

compositional (or local), that is, the combination of separate linearizable implemen-

tations of two objects yields a linearizable implementation.4 In contrast, sequential

consistency is not compositional, implying that all objects must be implemented to-

gether. Consequently, development costs and the amount of synchronization needed

increase, and it is harder to apply separate optimizations to di�erent objects.

Several papers have proposed sequentially consistent implementations of read/write

objects, which were claimed to achieve a high degree of concurrency (e.g., [2, 3, 10,

14, 19, 38, 42]). None of these papers proves that similar improvements cannot be

achieved for linearizability and none provides an analysis of the response time of

the implementations suggested (or any other complexity measure).

In contrast, our work shows the existence of a gap between the the fastest im-

plementation of linearizability and what can be achieved for sequential consistency.

To our knowledge, this is the �rst such quantitative result comparing the two con-

ditions. Our results are shown in relatively abstract formal models. We believe

that the correct abstraction has been done so that the results are applicable in a

wide variety of contexts.

Our system model consists of a collection of application processes running con-

currently and communicating via virtual shared memory. The shared memory

consists of a collection of objects. Unlike most previous research, we consider other

types of shared objects in addition to the usual read/write objects. Since read/write

objects do not provide an expressive and convenient abstraction for concurrent pro-

gramming (cf. [27]), many multiprocessors now support more powerful concurrent

objects, e.g., FIFO queues, stacks, Test&Set and Fetch&Add ([14, 26]). We study

FIFO queues and stacks; our results easily extend to Test&Set and Fetch&Add.

The application processes are running in a distributed system consisting of a

collection of nodes and a communication network. The network need not be fully

connected physically, but it must be possible for every node to communicate with

every other node. The shared memory abstraction is implemented by a memory
consistency system (MCS), which uses local memory at the various nodes and some

protocol executed by the MCS processes (one at each node). (Nodes that are

dedicated storage can be modeled by nullifying the application process.) Fig. 1

illustrates a node, on which an application process and an MCS process are running.

The application process sends calls to access shared data to the MCS process; the

MCS process returns the responses to the application process, possibly based on

messages exchanged with MCS processes on other nodes. The responses must be

consistent with the particular consistency condition that is being implemented.

Thus the consistency condition is de�ned at the interface between the application

process and the MCS.

3Also called atomicity ([27, 33, 39]) in the case of read/write objects.
4We use the term implementation in its usual meaning in the semantics literature, of satisfying a

certain speci�cation.
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Figure 1 should go on this page.

Fig. 1. System Architecture

On each node there is a real-time clock readable by the MCS process at that

node, that runs at the same rate as real-time. Every message incurs a delay in

the interval [d � u; d], for some known constants u and d, 0 � u � d (u stands

for uncertainty). If u = 0, then the message delays are constant. Thus d is the

worst-case delay in the network over all pairs of processes and u is the worst-case

uncertainty. Our lower bounds are given in terms of d and u. Our upper bounds

are given in terms of d (u happens not to enter in); however all our algorithms also

work in asynchronous systems where d and u are unknown (or even unbounded),

since these constants appear nowhere in the code.

We have chosen to focus on the distinction between performing a data operation

locally at a process, based on its local state, and performing an operation that

requires communication between processes before it can return to the user. We

model this by assuming 0 time for local processing and d > 0 time for the worst-

case communication cost in the system. This is a reasonable approximation, as in

many systems the time required for communication far outweighs the time for local

computation.

We start with the case when the process clocks are only approximately synchro-

nized and there is uncertainty in the message delay.5 Under this assumption, for

all three object types, there are gaps between the upper bounds for sequentially

consistent implementations and the lower bounds for linearizable implementations.

We show that there are operations that can be done instantaneously (i.e., locally) in

sequentially consistent implementations but that require 
(u) time in linearizable

implementations (note that u can be as large as d). In particular:

|For read/write objects:

|for linearizability, the worst-case time for a read is at least u=4,

|for linearizability, the worst-case time for a write is at least u=2,

|for sequential consistency, there is an algorithm that guarantees time 0 for a

read and time 2d for a write, and another that guarantees the reverse.

|For FIFO queues:

|for linearizability, the worst-case time for an enqueue is at least u=2,

|for sequential consistency, there is an algorithm that guarantees time 0 for an

enqueue and time 2d for a dequeue.

|The situation for stacks is analogous to that for FIFO queues, with \pop" playing

the role of \dequeue" and \push" the role of \enqueue".

Thus, under these timing assumptions, linearizability is more expensive to imple-

ment than sequential consistency, when there are signi�cantly more operations of

one type.

We then consider the stronger model when processes' clocks are perfectly synchro-

nized. In this case we show several strong lower bounds for sequential consistency.

We also give matching upper bounds for linearizability. In particular:

5If there is no uncertainty in the message delay, then clocks can be perfectly synchronized.
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|For read/write objects:

|For sequential consistency, the sum of the worst-case response times for a read

operation and a write operation is at least d.

|For linearizability, there is an algorithm in which a read operation is performed

instantaneously (locally), while a write operation returns within time d; also

there is an algorithm in which the roles are reversed.

The above lower bound formalizes and strengthens a result of Lipton and Sand-

berg ([35]). The two matching algorithms show that the lower bound tradeo�

is tight|it is possible to have the response time of only one of the operations

depend on the network's latency.

|For FIFO queues:

|for sequential consistency, the worst-case response time for a dequeue operation

is at least d,

|for linearizability, there is an algorithm in which an enqueue operation returns

instantaneously, while a dequeue operation returns within time d.

|For stacks, as in the case of imperfect clocks, the results are analogous to those

for FIFO queues, with \pop" playing the role of \dequeue" and \push" the role

of \enqueue".

Thus we need to assume that clocks are imperfect in order to separate sequential

consistency from linearizability, indicating that this separation is not as obvious as

it may seem and depends on delicate timing assumptions.

Section 2 presents our de�nitions and reviews a technique called \shifting" used

in our lower bounds. Section 3 covers the imperfect clock case. There is a sub-

section for each object type; each subsection consists of the lower bound(s) for

linearizability followed by the upper bound(s) for sequential consistency. Section

4 considers the case of perfect clocks. Again there is one subsection for each of

the three object types; each subsection consists of the lower bound(s) for sequen-

tial consistency followed by the upper bound(s) for linearizability. We conclude in

Section 5 with a discussion of our results, describe work that followed the original

version of this paper, and suggest avenues for further research.

2. PRELIMINARIES

2.1 Objects

Every shared object is assumed to have a serial speci�cation (cf. [28]) de�ning a

set of operations, which are ordered pairs of call and response events, and a set of

operation sequences, which are the allowable sequences of operations on that object.

A sequence � of operations for a collection of objects is legal if, for each object O,

the restriction of � to operations of O, denoted � jO, is in the serial speci�cation of

O.

In the case of a read/write object X, the ordered pair of events [Readp(X),

Retp(X; v)] forms a Read operation for any process p and value v, and [Writep(X; v),

Ackp(X)] forms a Write operation. The set of operation sequences consists of all

sequences in which every read operation returns the value of the latest preceding

write operation (the usual read/write semantics).6

6The speci�cations used in this paper are operational. It is possible to give algebraic (axiomatic)

speci�cations (cf. [28]); operational speci�cations are used here for simplicity.



6 � Attiya and Welch

In the case of a FIFO queue Q, the ordered pair of events [Deqp(Q), Retp(Q; v)]

forms a Deq operation for any process p and value v, and [Enqp(Q; v), Ackp(Q)]

forms an Enq operation. The set of operation sequences consists of all sequences

that obey the usual FIFO queue semantics. That is, with a sequence of operations

we associate a sequence of queue states, starting with an initial empty state and

continuing with a state for each operation representing the state of the queue after
the operation. Each enqueue operation adds an item to the end of the queue, and

each dequeue operation removes an item from the head of the queue, or returns ?
if the queue is empty.

The speci�cation of a stack S is similar to the speci�cation of a queue: [Popp(S),

Retp(S; v)] forms a Pop operation for any process p and value v, and [Pushp(S; v),

Ackp(S)] forms a Push operation. The set of operation sequences consists of all

sequences that obey the usual last-in-�rst-out stack semantics.

2.2 System Model

We assume a system consisting of a collection of nodes connected via a communica-

tion network. On each node there is an application process, a memory-consistency

system (MCS) process, and a real-time clock readable by the MCS process at that

node. Formally, a clock is a monotonically increasing function from < (real time)

to < (clock time).7 The clock cannot be modi�ed by the process. Processes do not

have access to the real time; each process obtains its only information about time

from its clock.

Below we list and informally explain the events that can occur at the MCS process

on node p. (The name p is also used for the MCS process on node p.)

Call events: the application process on node p wants to access a shared

object.

Response events: the MCS process on node p is providing a response from a

shared object to the application process on node p.

Message receive events: receive(p;m; q) for all messages m and nodes q: the MCS

process on node p receives message m from the MCS pro-

cess on node q.

Message send events: send(p;m; q) for all messages m and MCS processes q: the

MCS process on node p sends message m to the MCS pro-

cess on node q.

Timer set events: timerset(p; T ) for all clock times T : p sets a timer to go o�

when its clock reads T .

Timer events: timer(p; T ) for all clock times T : a timer that was set for

time T on p's clock goes o�.

The call, message-receive, and timer events are interrupt events.
An MCS process (or simply process) is an automaton with a (possibly in�nite)

set of states, including an initial state, and a transition function. Each interrupt

event causes an application of the transition function. The transition function is a

function from states, clock times, and interrupt events to states, sets of response

events, sets of message-send events, and sets of timer-set events (for subsequent

7< denotes the real numbers.
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clock times). That is, the transition function takes as input the current state, clock

time, and interrupt event (which is the receipt of a call from the application process,

or the receipt of a message from another node, or a timer going o�), and produces

a new state, a set of response events for the application process, a set of messages

to be sent, and a set of timers to be set for the future.

A step of p is a tuple (s; T; i; s0; R;M; S), where s and s0 are states, T is a clock

time, i is an interrupt event, R is a set of response events, M is a set of message-

send events, S is a set of timer-set events, and s0, R,M , and S are the result of p's

transition function acting on s, T , and i.

A history of a process p with clock C is a mapping from < (real time) to �nite

sequences of steps such that

(1) for each real time t, there is only a �nite number of times t0 < t such that the

corresponding sequence of steps is nonempty (thus the concatenation of all the

sequences in real-time order is a sequence);

(2) the old state in the �rst step is p's initial state;

(3) the old state of each subsequent step is the new state of the previous step;

(4) for each real time t, the clock time component of every step in the corresponding

sequence is equal to C(t); and

(5) for each real time t, in the corresponding sequence all non-timer events are

ordered before any timer event and there is at most one timer event.

A memory-consistency system (MCS) is a set of processes P together with a set

of clocks C, one for each p in P . An execution of an MCS is a set of histories, one

for each process p in P with clock Cp in C, satisfying the following two conditions:
(1) There is a one-to-one correspondence between the messages sent by p to q and

the messages received by q from p, for any processes p and q. We use the message

correspondence to de�ne the delay of any message in an execution to be the real

time of receipt minus the real time of sending. (2) A timer is received by p at

clock time T if and only if p has previously set a timer for T . (The network is not

explicitly modeled, although the constraints on executions given below imply that

the network reliably delivers all messages sent.)

Execution � is admissible if the following conditions hold:

(1) For every p and q, every message in � from p to q has its delay in the range

[d� u; d], for �xed nonnegative integers d and u, u � d. (This is a restriction

on the network.)

(2) For every p, at most one call at p is pending at a time. (This is a restriction

on the application process.)

Note that the last condition allows each application process to have at most one

call outstanding at any time. This outlaws pipelining or prefetching.

2.3 Correctness Conditions

Given an execution �, let ops(�) be the sequence of call and response events ap-

pearing in � in real-time order, breaking ties for each real time t as follows. First

order all response events for time t whose matching call events occur before time t,

using process ids to break any remaining ties. Then order all operations whose call

and response both occur at time t. Preserve the relative ordering of operations for
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each process and break any remaining ties with process ids. Finally, order all call

events for time t whose matching response events occur after time t, using process

ids to break any remaining ties.

Our formal de�nitions of sequential consistency and linearizability follow. These

de�nitions imply that every call gets an eventual response and that calls and re-

sponses alternate at each process. Given a sequence s of operations and a process

p, we denote by sjp the restriction of s to operations of p.

Definition 2.1. (Sequential consistency) An execution � is sequentially

consistent if there exists a legal sequence � of operations such that � is a permutation
of ops(�) and, for each process p, ops(�)jp is equal to � jp.

Definition 2.2. (Linearizability) An execution � is linearizable if there ex-
ists a legal sequence � of operations such that � is a permutation of ops(�), for
each process p, ops(�)jp is equal to � jp, and furthermore, whenever the response for
operation op1 precedes the call for operation op2 in ops(�), then op1 precedes op2
in � .

An MCS is a sequentially consistent implementation of a set of objects if any

admissible execution of the MCS is sequentially consistent; similarly, an MCS is a

linearizable implementation of a set of objects if any admissible execution of the

MCS is linearizable.

We measure the e�ciency of an implementation by the worst-case response time

for any operation on any object in the set. Given a particular MCS, an object O

implemented by it, and an operation P on O, we denote by jP (O)j the maximum

time taken by a P operation on O in any admissible execution. We denote by jP j
the maximum of jP (O)j over all objects O implemented by the MCS.

2.4 Shifting

A basic technique we use in our lower bound proofs (in Sections 3.1.1 and 3.2.1) is

shifting, originally introduced in [36] to prove lower bounds on the precision achieved
by clock synchronization algorithms. Shifting is used to change the timing and the

ordering of events in the system while preserving the local views of the processes.

Informally, given an execution with a certain set of clocks, if process p's history

is changed so that the real times at which the events occur are shifted by some

amount s and if p's clock is shifted by the same amount, then the result is another

execution in which every process still \sees" the same events happening at the same

real time. The intuition is that the changes in the real times at which events happen

at p cannot be detected by p because its clock has changed by a corresponding

amount.

More precisely, the view of process p in history � of p with clock C is the con-

catenation of the sequences of steps in �, in real-time order. The real times of

occurrence are not represented in the view. Two histories, one of process p with

clock C and the other of process p with clock C0, are equivalent if the view of p

is the same in both histories. Two executions, execution � of system (P; C) and
execution �0 of (P; C0), are equivalent if for each process p, the component histories

for p in � and �0 are equivalent. Thus, the executions are indistinguishable to the

processes. Only an outside observer who has access to the real time can tell them

apart.
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Given history � of process p with clock C, and real number s, a new history �0 =

shift(�; s) is de�ned by �0(t) = �(t + s) for all t. That is, all tuples are shifted

earlier in �0 by s if s is positive, and later by jsj if s is negative. Given a clock C

and real number s, a new clock C0 = shift(C; s) is de�ned by C0(t) = C(t) + s for

all t. That is, the clock is shifted forward by s if s is positive, and backward by jsj
if s is negative.

The following lemma observes that shifting a history of process p and p's clock

by the same amount produces another history.

Lemma 2.1. Let � be a history of process p with clock C, and let s be a real
number. Then shift(�; s) is a history of p with clock shift(C; s).

Given execution � of system (P; C), and real number s, a new execution �0 =

shift(�; p; s) is de�ned by replacing �, p's history in �, by shift(�; s), and by retaining
the same correspondence between sends and receives of messages. (Technically, the

correspondence is rede�ned so that a pairing in � that involves the event for p at

time t, in �0 involves the event for p at time t � s.) All tuples for process p are

shifted by s, but no others are altered. Given a set of clocks C = fCq : q 2 Pg, and
real number s, a new set of clocks C0 = shift(C; p; s), is de�ned by replacing clock

Cp by clock shift(Cp; s). Process p's clock is shifted forward by s, but no other

clocks are altered.

The following lemma observes that shifting one process' history and clock by the

same amount in an execution results in another execution that is equivalent to the

original.

Lemma 2.2. (Lundelius and Lynch [36]) Let � be an execution of system
(P; C), p a process, and s a real number. Let C0 = shift(C; p; s) and �0 = shift(�; p; s).
Then �0 is an execution of (P; C0), and �0 is equivalent to �.

The following lemma quanti�es how message delays change when an execution is

shifted. Notice that the result of shifting an admissible execution is not necessarily

admissible.

Lemma 2.3. (Lundelius and Lynch [36]) Let � be an execution of system
(P; C), p a process, and s a real number. Let C0 = shift(C; p; s) and �0 = shift(�; p; s).
Make the obvious correspondence between messages in � and in �0. Suppose x is

the delay of message m from process q to process r in �. Then the delay of m in
�0 is x if q 6= p and r 6= p, x� s if r = p, and x+ s if q = p.

3. IMPERFECT CLOCKS

We start by assuming a system in which clocks run at the same rate as real time

but are not initially synchronized, and in which message delays are in the range

[d� u; d] for some u > 0.

We show that in this model there is a gap between the upper bounds for sequential

consistency and the lower bounds for linearizability, for all three object types. The

lower bounds state that the worst-case time for a read is at least u=4 and the worst-

case time for a write, an enqueue, or a push is at least u=2. Recall that u is the

uncertainty in the message delay and can be as large as d. In contrast, we describe

sequentially consistent algorithms that implement these operations instantaneously.

Intuitively, the algorithms are similar to a snoopy write-through cache protocol

with a write-broadcast policy for bused systems. The main idea is that in order
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to guarantee sequential consistency, it su�ces for processes to update their local

copies in the same order. (This is provided immediately in bused systems.) A

simple way to achieve this property is for a centralized controller to collect update

messages and broadcast them. Using atomic broadcast it is possible to translate

this idea into algorithms that are fully distributed and do not rely on a centralized

controller. The algorithms do not rely on timing information and also work in an

asynchronous system.

Atomic broadcast ([13]) is a communication primitive which guarantees that ev-

ery message sent using the primitive is received at every process, all messages are

delivered in the same order at all processes, and two messages sent by the same

process are delivered in the same order they were sent. Our implementations are

described in a modular way so that they will work with any atomic broadcast algo-

rithm (e.g., [13, 16, 23]). The interface to the primitive consists of two operations,

ABC-send(m) to broadcast a message m (possibly consisting of several �elds) and

ABC-receive(m) to receive a message m. In analyzing our implementations, we

assume there is a known bound, h, on the time that the atomic broadcast primitive

takes to deliver a message to all processes. Each of our implementations has one

fast operation, which takes time 0, and one slow operation, which takes time h. In

Appendix A we describe and prove correct a fast atomic broadcast algorithm with

h = 2d. By using this algorithm in our implementations, we obtain implementations

in which slow operations take time 2d = O(d).

3.1 Read/Write Objects

We show in Section 3.1.1 that in any linearizable implementation of a read/write

object, the worst-case response time of both read and write operations must depend

on u. We then present in Section 3.1.2 two sequentially consistent algorithms for

read/write objects, one in which reads are performed instantaneously while the

worst-case response time for a write is O(d), and another in which the roles are

reversed.

3.1.1 Lower Bounds for Linearizability. We now show that, under reasonable

assumptions about the pattern of sharing, in any linearizable implementation of an

object, the worst-case time for a read is u=4 and the worst-case time for a write is

u=2. The proofs of these lower bounds use the technique of shifting, described in

Section 2.4.

Theorem 3.1. Assume X is a read/write object with at least two readers and a
distinct writer. Then any linearizable implementation of X must have jRead(X)j �
u
4
.

Proof. Let p and q be two processes that read X and r be a process that writes

X. Assume in contradiction that there is an implementation with jRead(X)j < u
4
.

Without loss of generality, assume that the initial value of X is 0. The idea of the

proof is to consider an execution in which p reads 0 from X, then q and p alternate

reading X while r writes 1 to X, and then q reads 1 from X. Thus there exists a

read R1, say by p, that returns 0 and is immediately followed by a read R2 by q

that returns 1. If q is shifted earlier by u=2, then R2 precedes R1 in the resulting

execution. Since R2 returns the new value 1 and R1 returns the old value 0, this

contradicts linearizability.
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Figure 2 should go on this page.

Figure 2

Let k = d jWrite(X)j

u
e. By the speci�cation of X, there is an admissible execution

�, in which all message delays are d� u
2
, consisting of the following operations (see

Fig. 2(a))8):

|At time u
4
, r does a Writer(X; 1).

|Between times u
4
and (4k + 1) � u

4
, r does an Ackr(X). (By de�nition of k,

(4k + 1) � u
4
� u

4
+ jWrite(X)j, and thus r's write operation is guaranteed to

�nish in this interval.)

|At time 2i � u
4
, p does a Readp(X), 0 � i � 2k.

|Between times 2i � u
4
and (2i + 1) � u

4
, p does a Retp(X; v2i), 0 � i � 2k.

|At time (2i+ 1) � u
4
, q does a Readq(X), 0 � i � 2k.

|Between times (2i+ 1) � u
4
and (2i+ 2) � u

4
, q does a Retq(X; v2i+1), 0 � i � 2k.

Thus in ops(�), p's read of v0 precedes r's write, q's read of v4k+1 follows r's

write, no two read operations overlap, and the order of the values read from X is

v0, v1, v2, : : :, v4k+1. By linearizability, v0 = 0 and v4k+1 = 1. Thus there exists

j, 0 � j � 4k, such that vj = 0 and vj+1 = 1. Without loss of generality, assume

that j is even, so that vj is the result of a read by p.

De�ne � = shift(�; q; u
2
); i.e., we shift q earlier by u

2
. (See Fig. 2(b) The result is

admissible, since by Lemma 2.3 the message delays to q become d�u, the message

delays from q become d, and the remaining message delays are unchanged.

As a result of the shifting, we have reordered read operations with respect to

each other at p and q. Speci�cally, in ops(�), the order of the values read fromX is

v1, v0, v3, v2, : : :, vj+1, vj , : : :. Thus in � we now have vj+1 = 1 being read before

vj = 0, which violates linearizability.

Theorem 3.2. If X is a read/write object with at least two writers and a distinct

reader, then any linearizable implementation of X must have jWrite(X)j � u
2
.

The proof uses techniques similar to the proof of Theorem 3.1. It constructs an

execution in which, if write operations are too short, linearizability can be violated

by appropriately shifting histories.

Proof. Let p and q be two processes that write X and r be a process that reads

X. Assume in contradiction that there is an implementation with jWrite(X)j <
u
2
. Without loss of generality, assume that the initial value of X is 0. By the

speci�cation of X, there is an admissible execution � such that

|ops(�) is Writep(X; 1) Ackp(X) Writeq(X; 2) Ackq(X) Readr(X) Retr(X; 2);

|Writep(X; 1) occurs at time 0, Writeq(X; 2) occurs at time u
2
, and Readr(X)

occurs at time u; and

8In the �gures, time runs from left to right, and each line represents events at one process.

Important time points are marked at the bottom.
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Readp(X):

generate Retp(X;v), where v is the value of p's copy of X

Writep(X;v):

ABC-send(X;v)

ABC-receive(X;v) from q:

set local copy of X to v

if q = p then generate Ackp(X) endif

Fig. 3. Sequentially consistent fast read algorithm.

|the message delays in � are d from p to q, d � u from q to p, and d� u
2
for all

other ordered pairs of processes.

Let � = shift(shift(�; p;�u
2
); q; u

2
); i.e., we shift p later by u

2
and q earlier by

u
2
. The result is still an admissible execution, since by Lemma 2.3 the delay of a

message from p or to q becomes d�u, the delay of a message from q or to p becomes

d, and all other delays are unchanged.

But ops(�) is

Writeq(X; 2) Ackq(X) Writep(X; 1) Ackp(X) Readr(X) Retr(X; 2)

which violates linearizability, because r's read should return 1, not 2.

The assumptions about the number of readers and writers made in Theorems 3.1

and 3.2 are crucial to the results, since it can be shown that the algorithms from

Theorems 4.2 and 4.3 are correct if there is only one reader and one writer.

3.1.2 Upper Bounds for Sequential Consistency

Fast Reads. We start with the algorithm for fast reads (time 0) and slow writes

(time at most h).

In the algorithm, each process keeps a local copy of every object. A read returns

the value of the local copy immediately. When a write comes in to p, p sends an

atomic broadcast containing the name of the object to be updated and the value

to be written; but it does not yet generate an Ack for the write operation. When

an update message is delivered to a process q, q writes the new value to its local

copy of the object. If the update message was originated by q, then q generates an

Ack and the (unique pending) write operation returns.

More precisely, the state of each process consists of a copy of every object, initially

equal to its initial value. The transition function of process p appears in Fig. 3.

To prove the correctness of the algorithm, we �rst show:

Lemma 3.3. For every admissible execution and every process p, p's local copies
take on all the values contained in write operations, all updates occur in the same
order at each process, and this order preserves the order of write operations on a
per-process basis.

Proof. By the code, an ABC-send is done exactly once for each write opera-

tion. By the guarantees of the atomic broadcast, each process receives exactly one

message for each write operation, these messages are received in the same order at

each process, and this order respects the order of sending on a per-process basis.
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Call the total order of Lemma 3.3 the \Abcast order".

Lemma 3.4. For every admissible execution, every process p, and all objects X
and Y , if read R of object Y follows writeW to object X in ops(�)jp, then R's read
of p's local copy of Y follows W 's write of p's local copy of X.

Proof. The lemma is true because W does not end until its update is performed

at its initiator.

Theorem 3.5. There exists a sequentially consistent implementation of read/write
objects with jReadj = 0 and jWritej = h.

Proof. Consider the algorithm just presented. Clearly the time for any read is

0. The time for any write is the time for the initiator's ABC-send to be received by

the initiator, which is at most h. The remainder of the proof is devoted to showing

sequential consistency. Fix admissible execution �.

De�ne the sequence of operations � as follows. Order the writes in � in Abcast

order. Now we explain where to insert the reads. We proceed in order from the

beginning of �. [Readp(X), Retp(X; v)] goes immediately after the latest of (1) the

previous operation for p (either read or write, on any object), and (2) the write that

spawned the latest update of p's local copy of X preceding the generation of the

Retp(X; v). (Break ties using process ids; e.g., if every process reads some object

before any process writes any object, then � begins with p1's read, followed by p2's

read, etc.)

We must show ops(�)jp = � jp for all processes p. Fix some process p. The relative

ordering of two reads in ops(�)jp is the same in � jp by de�nition of � . The relative

ordering of two writes in ops(�)jp is the same in � jp by Lemma 3.3. Suppose in

ops(�)jp that read R follows write W . By de�nition of � , R comes after W in � .

Suppose in ops(�)jp that read R precedes writeW . Suppose in contradiction that

R comes after W in � . Then in � there is some read R0 = [Readp(X), Retp(X; v)]

and some write W 0 = [Writeq(X; v), Ackq(X)] such that (1) R0 equals R or occurs

before R in �, (2) W 0 equals W or follows W in the Abcast order, and (3) W 0

spawns the latest update to p's copy of X that precedes R0's read. But in �, R0

�nishes before W starts. Since updates are performed in � in Abcast order (Lemma

3.3), R0 cannot see W 0's update, a contradiction.

We must show � is legal. Consider read R = [Readp(X), Retp(X; v)] in � . Let W

be the write in � that spawns the latest update to p's copy of X preceding R's read

of p's copy of X. Clearly W = [Writeq(X; v), Ackq(X)] for some q. (If there is no

such W , then consider an imaginary write at the beginning of �.) By the de�nition

of � , R follows W in � . We must show that no other write to X falls in between

W and R in � . Suppose in contradiction that W 0 = [Writer(X;w), Ackr(X)] does.

Then by Lemma 3.3, the update for W 0 follows the update for W at every process

in �.

Case 1: r = p. Since � preserves the order of operations at p, W 0 precedes R in

�. Since the update for W 0 follows the update for W in �, R sees W 0's update, not

W 's, contradicting the choice of W .

Case 2: r 6= p. By de�nition of � , there is some operation in ops(�)jp that, in � ,
precedes R and follows W 0 (otherwise R would not follow W 0). Let O be the �rst

such operation.

Suppose O is a write to some object Y . By Lemma 3.4, O's update to p's copy
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of Y precedes R's read of p's copy of X. Since updates are done in Abcast order,

the update for W 0 occurs at p before the update for O, and thus before R's read,

contradicting the choice of W .

Suppose O is a read. By the de�nition of � , O is a read of X, and W 0's update

to p's copy of X is the latest one preceding O's read (otherwise O would not follow

W 0). Since updates are done in Abcast order, the value from W 0 supersedes the

value from W , contradicting the choice of W .

Theorem 3.1 implies that this algorithm does not guarantee linearizability. We

can also explicitly construct an admissible execution that violates linearizability as

follows. The initial value of X is 0. Process p writes 1 to X. The ABC-send for

the write occurs at time t. It arrives at process r at time t and at process q at

time t+ h. Meanwhile, r performs a read at time t and gets the new value 1, while

q performs a read at time t + h=2 and gets the old value 0. No permutation of

these operations can both conform to the read/write speci�cation and preserve the

relative real-time orderings of all non-overlapping operations.

Fast Writes. We now discuss the algorithm that ensures sequential consistency

with fast writes (time 0) and slow reads (time at most h). When a Read(X) comes

in to p, if p has no pending updates (to any object, not justX) that it initiated, then

it Returns the current value of its copy of X. Otherwise, it waits for all pending

writes to complete and then returns. This is done by maintaining a count of the

pending writes and waiting for it to be zero. When a Write(X) comes in to p, it

is handled very similarly to the other algorithm; however, it is Acked immediately.

E�ectively, the algorithm pipelines write updates generated at the same process.

Speci�cally, the state of each process consists of the following variables:

|num : integer, initially 0 (number of pending updates initiated by this process),

|copy of every object, initially equal to its initial value.

The transition function of process p appears in Fig. 4.

Theorem 3.6. There exists a sequentially consistent implementation of read/write
objects with jReadj = h and jWritej = 0.

Proof. Consider the algorithm just presented. Clearly every write takes 0 time.

The worst-case time for a read occurs if the return must wait for the initiator to

receive its own ABC-send for a pending write. This takes at most h time. The

structure of the proof of sequential consistency is identical to that in the proof of

Theorem 3.5. We just need a new proof for Lemma 3.4. Lemma 3.4 is still true for

this algorithm because when a Read occurs at p, if any update initiated by p is still

waiting, then the Return is delayed until the latest such update is performed.

Theorem 3.2 implies that this algorithm does not guarantee linearizability. An

explicit scenario is easy to construct as well.

3.2 FIFO Queues

We show in Section 3.2.1 that in any linearizable implementation of a FIFO queue,

the worst-case response time of an enqueue operation must depend on u. We then

present in Section 3.2.2 a sequentially consistent implementation in which enqueue

operations return instantaneously while the worst-case response time for a dequeue

operation is h.
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Readp(X):

if num = 0 then

generate Retp(X;v), where v is the value of p's copy of X

endif

Writep(X;v):

num := num + 1

ABC-send(X;v)

generate Ackp(X)

ABC-receive(X;v; i) from q:

set local copy of X to v

if p = q then

num := num �1

if num = 0 then

generate Retp(X;v), where v is the value of p's copy of X

endif

endif

Fig. 4. Sequentially consistent fast write algorithm.

3.2.1 Lower Bound for Linearizability. We show that in any linearizable imple-

mentation of a FIFO queue the worst-case time for an enqueue is u=2 (assuming

that at least two processes can enqueue to the same FIFO queue). The proof uses

the technique of shifting, described in Section 2.4.

Theorem 3.7. If Q is a FIFO queue with at least two enqueuers and a distinct
dequeuer, then any linearizable implementation of Q must have jEnq(Q)j � u

2
.

Proof. Let p and q be two processes that can enqueue to Q and r be a process

that dequeues from Q. Assume in contradiction that there is an implementation

with jEnq(Q)j < u
2
. Initially, Q is empty. By the speci�cation of Q, there is an

admissible execution � such that

|ops(�) is Enqp(Q; 1) Ackp(Q) Enqq(Q; 2) Ackq(Q) Deqr(Q) Retr(Q; 1);

|Enqp(Q; 1) occurs at time 0, Enqq(Q; 2) occurs at time u
2
, and Deqr(Q) occurs

at time u; and

|the message delays in � are d from p to q, d � u from q to p, and d� u
2
for all

other ordered pairs of processes.

Let � =shift(shift(�; p;�u
2
); q; u

2
); i.e., we shift p later by u

2
and q earlier by

u
2
. The result is still an admissible execution, since by Lemma 2.3 the delay of a

message from p or to q becomes d�u, the delay of a message from q or to p becomes

d, and all other delays are unchanged. But ops(�) is

Enqq(Q; 2) Ackq(Q) Enqp(Q; 1) Ackp(Q) Deqr(Q) Retr(Q; 1)

which violates linearizability, because r's dequeue should return 2, not 1 (by the

FIFO property).

The assumption about the number of enqueuers made in Theorem 3.7 is crucial

to the results, since it can be shown that the algorithm of Theorem 4.6 is correct if

there is only one enqueuer.
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Enqp(Q;v):

ABC-send(Q;v,\enq")

generate Ackp(Q)

Deqp(Q):

ABC-send(Q,\deq")

ABC-receive(Q;v,\enq") from q:

enqueue v on local copy of Q

ABC-receive(Q,\deq") from q:

val := dequeue local copy of Q

if p = q then generate Retp(Q,val) endif

Fig. 5. Sequentially consistent fast enqueue algorithm.

3.2.2 Upper Bound for Sequential Consistency. Informally, the algorithm works

as follow. Each process keeps a local copy of every object. When a request to

enqueue v to Q comes in to p, p broadcasts an update message with the object

name, the operation name, and the value to be enqueued to all processes. The

operation returns immediately. When a request to dequeue from Q comes in to p,

p broadcasts an update message with the object name and the operation name. It

does not generate a response.

When an update message (either \deq" or \enq") is delivered to a process it

handles it by performing the appropriate change (enqueue or dequeue) to the local

copy of the object. If the update is a dequeue by the same process, the dequeue op-

eration that is currently waiting returns the value that was dequeued from the local

copy. (Note that by well-formedness, there is only one pending dequeue operation

for a given process.)

In more detail, the state of each process consists of the following variables:

|copy of every object, initially equal to its initial value

|val : value (of a queue element)

The transition function of process p appears in Fig. 5.

To prove correctness of the algorithm we show:

Lemma 3.8. In every admissible execution, all updates are done exactly once at
each local copy, updates are done in the same order at each process, and this order
preserves the per-process order.

Theorem 3.9. There exists a sequentially consistent implementation of FIFO
queues with jEnqj = 0 and jDeqj = h.

Proof. Consider the algorithm just presented. Clearly, the time for an enqueue

is 0 and the time for a dequeue is at most h. The remainder of the proof is devoted

to showing sequential consistency. Fix some admissible execution �.

De�ne the sequence of operations � as follows: Order the operations in � by

Abcast order. From Lemma 3.8 it follows that operations by p are ordered in

� as they were ordered in �, and thus ops(�)jp = � jp, for all processes p. It

remains to show that � is legal, i.e., that for every FIFO queue Q, � jQ is in the
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serial speci�cation of Q. Pick any Q and consider � jQ = op1op2 : : :. Suppose

opi is [Deqp(Q), Retp(Q; v)]. Since the local updates at p occur in Abcast order

(Lemma 3.8), updates at p to the local copy of Q occur in the same order as in � ,

and the claim follows.

Theorem 3.7 implies that this algorithm does not guarantee linearizability. It is

also possible to construct an explicit scenario which violates linearizability.

3.3 Stacks

These results are analogous to those for FIFO queues with Pop in place of Deq and

Push in place of Enq.

Theorem 3.10. If S is a stack with at least two pushers and a distinct popper,
then for any linearizable implementation of S, jPush(S)j � u

2
.

Theorem 3.11. There exists a sequentially consistent implementation of stacks
with jPushj = 0 and jPopj = h.

4. PERFECT CLOCKS

In the previous section, we have shown a gap between the cost of implementing

sequential consistency and the cost of implementing linearizability. This separation

hinged on the assumption that clocks are not initially synchronized. In this section,

we show that this assumption is necessary by considering the case in which processes

have perfectly synchronized (perfect) clocks and message delay is constant and

known.9 Another contribution of these results is that our lower bounds for this

model also hold a fortiori in more realistic models. Perfect clocks are modeled by

letting Cp(t) = t for all p and t. The constant message delay is modeled by letting

u = 0; d is known and can be used by the MCS.

For each of the three object types, we �rst prove lower bounds on the worst-

case response time for sequentially consistent implementations. Since sequential

consistency is a weaker condition than linearizability, these bounds also hold for

linearizable implementations. Then we present algorithms that achieve linearizabil-

ity, and hence sequential consistency, with worst-case response times matching the

lower bounds. Section 4.1 considers read/write objects, Section 4.2 considers FIFO

queues, and Section 4.3 considers stacks.

4.1 Read/Write Objects

We show in Section 4.1.1 that for sequential consistency the sum of the worst-case

response times of read and write operations is at least d, even in this strong model.

This is a formalization of a result of Lipton and Sandberg ([35, Theorem 1]), making

precise the timing assumptions made on the system. We then show in Section 4.1.2

9The assumptions that processes have perfect clocks and that message delays are constant (and

known) are equivalent. If one assumes that clocks are not necessarily synchronized perfectly (but

run at the rate of real time) and that the message delay is constant and known, then a simple

algorithm su�ces to synchronize the clocks perfectly. If one assumes that clocks are perfectly

synchronized and that there is a known upper bound d on message delays, then constant message

delays can be easily simulated by timestamping each message with the clock time of the sender

and having each recipient delay any message that arrives with delay smaller than d until the delay

is exactly d.
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that the lower bound is tight for this model by describing two linearizable algorithms

that match the lower bound exactly: In the �rst algorithm, reads are performed

instantaneously, while the worst-case response time for a write is d. In the second

algorithm, writes are performed instantaneously, while the worst-case response time

for a read is d.

4.1.1 Lower Bounds for Sequential Consistency

Theorem 4.1. (Lipton and Sandberg [35]) For any memory-consistency
system that is a sequentially consistent implementation of two read/write objects
X and Y , jWritej+ jReadj � d.

Proof. Let p and q be two processes that access X and Y . Assume by way of

contradiction that there exists a sequentially consistent implementation of X and

Y for which both jWrite(X)j + jRead(Y )j < d and jWrite(Y )j + jRead(X)j < d.

Without loss of generality, assume that 0 is the initial value of both X and Y .

By the speci�cation of Y , there is some admissible execution �1 such that ops(�1)

is

Writep(X; 1) Ackp(X) Readp(Y ) Retp(Y; 0)

and Writep(X; 1) occurs at real time 0 and Readp(Y ) occurs immediately after

Ackp(X). By assumption, the real time at the end of �1 is less than d. Thus no

message is received at any node during �1.

By the speci�cation ofX, there is some admissible execution �2 such that ops(�2)

is

Writeq(Y; 1) Ackq(Y ) Readq(X) Retq(X; 0)

and Writeq(Y; 1) occurs at real time 0 and Readq(X) occurs immediately after

Ackq(Y ). By assumption, the real time at the end of �2 is less than d. Thus no

message is received at any node during �2.

Since no message is ever received in �1 and �2, the execution � obtained from �1
by replacing q's history with q's history in �2 is admissible. Then ops(�) consists

of the operations [Writep(X; 1), Ackp(X)] followed by [Readp(Y ), Retp(Y; 0)], and

[Writeq(Y; 1), Ackq(Y )] followed by [Readq(X), Retq(X; 0)].

By assumption, � is sequentially consistent. Thus there is a legal operation se-

quence � consisting of the operations [Writep(X; 1), Ackp(X)] followed by [Readp(Y ),

Retp(Y; 0)], and [Writeq(Y; 1), Ackq(Y )] followed by [Readq(X), Retq(X; 0)]. Since

� is a sequence of operations, either the read ofX follows the write ofX, or the read

of Y follows the write of Y . But each possibility violates the serial speci�cation of

either X or Y , contradicting � being legal.

4.1.2 Upper Bounds for Linearizability. In this section we show that the tradeo�

suggested by Theorem 4.1 is inherent, and that a sequentially consistent implemen-

tation may choose which operation to slow down. More precisely, we present an

algorithm in which a read operation is instantaneous (local) while a write operation

returns within time d; we also present an algorithm in which the roles are reversed.

These algorithms actually ensure the stronger condition of linearizability.

The algorithm for fast reads and slow writes works as follows. Each process keeps

a copy of all objects in its local memory. When a Readp(X) occurs, p reads the

value v of X in its local memory and immediately does a Retp(X; v). When a
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Writep(X; v) occurs, p sends \write(X; v)" messages to all other processes. Then p

waits d time, after which it changes the value of X to v in its local memory and

does an Ackp(X). Whenever a process receives a \write(X; v)" message, it changes

the value of X to v in its local memory. (If it receives several at the same time, it

\breaks ties" using sender ids; that is, it writes the value in the message from the

process with the largest id and ignores the rest of the messages.)

Theorem 4.2. There exists a linearizable implementation of read/write objects
with jReadj = 0 and jWritej = d.

Proof. Consider the algorithm just described. Clearly the time for every read

is 0 and the time for every write is d.

Let � be an admissible execution of this algorithm. For each operation in �, say

that it occurs at the real time when its response happens. Let � be the sequence

of operations in � ordered by time of occurrence, breaking ties with process ids.

Clearly �jp is equal to � jp for all p, and the order of non-overlapping operations is

preserved.

It remains to show that � is legal, i.e., that for every object X, � jX is in the

serial speci�cation of X. Since X is a read/write object, we must show that every

Read Returns the value written by the latest preceding Write (and if there is no

such Write, then it returns the initial value).

Pick anyX and consider � jX = op1op2 : : :. Suppose opi is [Readp(X), Retp(X; v)]

and opi occurs at time t in �.

Case 1: No Write precedes opi in � . By the de�nition of � , no Write is Acked before

opi starts. Since the Ack for a Write happens at the same time that every process

updates its local copy of X, the Read reads the initial value for X and Returns

that value.

Case 2: Some Writep(X; v) is the latest Write preceding opi in � . By the de�nition

of � , this Write is Acked before opi starts, but no other Write is Acked before opi
starts. Since the Ack for a Write happens at the same time that every process

updates its local copy of X, the Read reads v for the value of X and Returns that

value.

The algorithm for slow reads and fast writes is similar to the previous one. Each

process keeps a copy of all objects in its local memory. When a Readp(X) occurs,

p waits d time, after which it reads the value v of X in its local memory and imme-

diately does a Retp(X; v). When a Writep(X; v) occurs, p sends \write(X; v)" mes-

sages to all other processes (including a dummy message to itself which is delayed

d time) and does an Ack immediately. Whenever a process receives a \write(X; v)"

message, it changes the value of X to v in its local memory. Ties are resolved as in

the previous algorithm.

Theorem 4.3. There exists a linearizable implementation of read/write objects
with jReadj = d and jWritej = 0.

Proof. Consider the algorithm just described. Clearly the time for every read

is d and the time for every write is 0.

Let � be an admissible execution of this algorithm. For each operation in �,

say that it occurs at the real time when its call happens. Let � be the sequence

of operations in � ordered by time of occurrence, breaking ties with process ids.
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Clearly �jp is equal to � jp for all p, and the order of non-overlapping operations is

preserved.

It remains to show that � is legal, i.e., that for every object X, � jX is in the

serial speci�cation of X. Since X is a read-write object, we must show that every

Read Returns the value written by the latest preceding Write (and if there is no

such Write, then it returns the initial value).

Pick anyX and consider � jX = op1op2 : : :. Suppose opi is [Readp(X), Retp(X; v)]

and opi occurs at time t in �.

Case 1: No Write precedes opi in t. By the de�nition of � , no Write starts before

opi starts. Since the local changes occur d time after the Write starts and the Read

reads the local memory d time after the Read starts, it reads the local memory

before any change is made to it. Thus the Read returns the initial value.

Case 2: Some Writep(X; v) is the latest Write preceding opi in � . Essentially the

same argument as in Case 1 works.

4.2 FIFO Queues

We show in Section 4.2.1 that for sequential consistency the worst-case response

time of a dequeue operation is at least d, even when clocks are perfectly synchronized

and message delays are constant. We then show in Section 4.2.2 that this lower

bound is tight for this model by describing a linearizable algorithm that matches

the lower bound exactly: enqueues are performed instantaneously, while dequeues

take time d.

4.2.1 Lower Bound for Sequential Consistency

Theorem 4.4. For any sequentially consistent implementation of a FIFO queue
Q, jDeq(Q)j � d.

Proof. Let p and q be two processes that access Q. Assume by way of contra-

diction that there exists a sequentially consistent implementation of Q for which

jDeq(Q)j < d. Let T = jDeq(Q)j. By de�nition, the queue Q is initially empty.10

By the speci�cation of Q, there is some admissible execution �0

1 such that ops(�0

1)

is

Enqq(Q; 1) Ackq(Q) Deqp(Q) Retp(Q; v1) : : :Deqp(Q) Retp(Q; vi) : : :

Enqq(Q; 1) occurs at real time 0 and Ackp(Q) occurs at time t; the �rst Deqp(Q)

occurs at time t, while the jth Deqp(Q) occurs at time t+(j�1)T (see Figure 6(a)).

Consider now the in�nite sequence v1; : : : ; vi; : : :. It is possible that many of them

are ?; however, since only a �nite number of Deq operations can be serialized before

the Enq operation, we have:

Lemma 4.5. There exists some i such that vi 6= ?.

Fix this particular i, and note that vi = 1 and, for all j, 1 � j < i, vj = ?. Let
�1 be �

0

1 truncated after the ith Deq operation by p. More precisely, ops(�1) is

Enqq(Q; 1) Ackq(Q) Deqp(Q) Retp(Q;?) : : :Deqp(Q) Retp(Q;?) Deqp(Q)
Retp(Q; 1)

10If we allow queues to be initially non-empty, the proof of the lower bound becomesmuch simpler;

we leave the details to the interested reader.
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Figure 6 should go on this page.

Figure 6

Enqq(Q; 1) occurs at real time 0 and Ackq(Q) occurs at time t; the �rst Deqp(Q)

occurs at time t, while the ith Deqp(Q) occurs at time t+(i�1)T (see Figure 6(b)).

It is clear that the vj 's are exactly as in �0

1. By assumption, the real time at the

end of � is less than t+ (i � 1)T + d. Thus, no message sent after t + (i � 1)T is

received during �1.

We now consider the execution where the ith (and last) dequeue by p is replaced

with a dequeue by q. More precisely, by the speci�cation of Q, there is some

admissible execution �2 such that ops(�2) is

Enqq(Q; 1) Ackq(Q) Deqp(Q) Retp(Q;?) : : :Deqp(Q) Retp(Q;?) Deqq(Q)
Retq(Q; u)

Enqq(Q; 1) occurs at real time 0 and Ackq(Q) occurs at time t; the �rst Deqp(Q)

occurs at time t, while the (i� 1)st Deqp(Q) occurs at time t+ (i� 2)T , and Deqq
occurs at time t + (i � 1)T (see Figure 6(c)). Since �2 is sequentially consistent,

it follows that u = 1. By assumption, the real time at the end of �2 is less than

t+ (i� 1)T + d. Thus, no message sent after t+ (i� 1)T is received during �2.

Consider now an execution � obtained from �1 by replacing q's history with q's

history in �2. No message sent after time t + (i � 1)T is ever received in �1 or

�2, and �1 and �2 are identical until time t + (i � 1)T . This implies that � is

admissible. Then ops(�) is

Enqq(Q; 1) Ackq(Q) Deqp(Q) Retp(Q;?) : : :Deqp(Q) Retp(Q; 1) Deqq(Q)
Retq(Q; 1)

(see Figure 6(d)). By assumption, � is sequentially consistent. Thus, there is a

legal sequence � , which is a permutation of the above operations. However, in �

the element \1" is enqueued once but dequeued twice, a contradiction.

4.2.2 Upper Bound for Linearizability. In this section we show that the lower

bound given in Theorem 4.4 is tight for the model with perfect clocks. Specif-

ically, we present an algorithm in which an enqueue operation returns instanta-

neously, while a dequeue operation returns within time d. The algorithm ensures

the stronger condition of linearizability.

The algorithmworks as follows. Each process keeps a copy of all queues in its local

memory. When an Enqp(Q; v) occurs, p sends \enqueue(Q; v)" messages to all other

processes (including a message to itself which is delayed d time) and does an Ack

immediately. When a Deqp(Q) occurs, p sends \dequeue(Q)" messages to all other

processes (including a message to itself which is delayed d time). After waiting d

time, p handles its own message and does a Retp(Q; v). Whenever a process receives

an \enqueue(Q; v)" or \dequeue(Q)" message, it makes the appropriate update to

the copy of Q in its local memory. (If it receives several messages at the same time,

it \breaks ties" using sender ids, that is, it handles them by increasing order of

process ids.)

Theorem 4.6. There exists a linearizable implementation of FIFO queues with
jEnqj = 0 and jDeqj = d.
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In the proof, we serialize each operation to occur d time after it is called. Since

all processes update their local copies at these serialization times, the claim follows.

Proof. Consider the algorithm just described. Clearly jEnqj = 0 and jDeqj = d.

Let � be an admissible execution of this algorithm. For each operation in �,

say that it occurs at time d after the real time when its call happens. Let � be

the sequence of operations in � ordered by time of occurrence, breaking ties with

process ids. Clearly �jp is equal to � jp for all p, and the order of non-overlapping

operations is preserved.

It remains to show that � is legal, i.e., that for every object Q, � jQ is in the

serial speci�cation of Q. Pick any Q and consider � jQ = op1op2 : : :. Suppose opi
is [Deqp(Q), Retp(Q; v)]. Because message delay is �xed, updates at p to the local

copy of Q occur in the same order as in � , and the claim follows.

4.3 Stacks

The results for stacks are analogous to those for FIFO queues, with POP playing

the role of DEQ and PUSH the role of ENQ.

Theorem 4.7. For any sequentially consistent implementation of a stack S,
jPop(S)j � d.

Theorem 4.8. There exists a linearizable implementation of stacks with jPushj =
0 and jPopj = d.

5. CONCLUSIONS AND FURTHER RESEARCH

We have presented a quantitative comparison of the data access time for two well-

known consistency conditions for concurrently accessed shared data|sequential

consistency and linearizability. Our results indicate that supporting sequential

consistency can be more cost-e�ective than supporting linearizability, for certain

object types and under certain timing assumptions. Our results also show that

a very precise de�nition of the guarantees provided is important since seemingly

minor di�erences in the de�nitions result in signi�cant di�erences in the inherent

e�ciency of implementing them. Since our lower bounds are proved in a very strong

model, they clearly hold for more practical systems. We believe our algorithms can

be adapted to work in more realistic systems.

Our work is closely related to the design of cache consistency schemes that guar-

antee sequential consistency ([14, 15, 17, 21, 32]). Our implementations use ideas

similar to those previously used in cache coherence protocols (cf. [5]). In a sense, we

have snooping protocols (without a bus) with a write broadcast policy (cf. [29, pp.

467{469]). We believe our ideas can be modi�ed to accommodate a write invalidate
policy; however, this will slow down the reads.

Our results can be extended to obtain bounds on the response time of imple-

menting other objects, e.g., Test&Set registers, under sequential consistency and

linearizability. Further work in this direction is currently underway [22, 31].

The modular usage of atomic broadcast in our implementations of sequential

consistency admits several extensions. For example, a bus provides an easy mecha-

nism for atomic broadcast by enforcing a global ordering on all messages delivered

to the processes. Afek, Brown, and Merritt ([3]) present a sequentially consistent

implementation of read/write objects, for systems where processes communicate
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via a bus. It might be possible to improve and simplify the correctness proof of

the algorithm in [3] using this observation. Also, atomic broadcast algorithms can

be made fault-tolerant. This can help in the design of memory consistency systems

that can sustain failures of some of the processes. In general, the issue of fault-

tolerance is rarely addressed in the current research on memory consistency. As

multiprocessors scale up and the probability of failure increase, this will become an

important concern.

Following the original appearance of our results [9], Mavronicolas and Roth have

shown that the tradeo� jW j+ jRj = d for sequential consistency is indeed continu-

ous, and there are algorithms that achieve all intermediate values [37]. Furthermore,

they have shown that the 
(u) bounds we prove for linearizability in the approx-

imate clocks model are tight, by extending our algorithms for the perfect clocks

model. It is known that u depends on how closely the clocks in the system are syn-

chronized. Since closely synchronized clocks admit more e�cient implementations

of linearizability it may be worthwhile to provide such clocks.

Recently, several non-global conditions that are weaker than sequential consis-

tency have been suggested, e.g., weak ordering ([20, 12, 1]), release consistency

([24, 25]), pipelined memory ([35]), slow memory ([30]), causal memory ([4]), loosely

coherent memory ([10]), and the de�nitions in [17] and [41]. It would be interesting

to investigate the inherent e�ciency of supporting these consistency guarantees. In

order to do so, crisp and precise de�nitions of these conditions are needed. Results

in this direction appear in [7, 8].

The cost measure we have chosen to analyze is response time, but it is clear

that e�ciency in general, and response time in particular, are not the only criteria

for evaluating consistency guarantees. Other important quantitative measures are

amount of local processing and level of message tra�c. It has been suggested

that it may be possible to implement linearizability more cheaply than sequential

consistency with regard to these measures, since linearizability is a local property

and sequential consistency is not. More qualitative properties such as the ease of

designing, verifying, programming, and debugging algorithms using such shared

memories are also very important.

Our formal model ignores several important practical issues, e.g., limitations on

the size of local memory storage, network topology, clock drift and \hot-spots". It

will be interesting to understand how these issues in
uence the bounds.

As multiprocessor systems become larger, distributed implementations of shared

virtual memory are becoming more common since truly shared memories, or even

buses, cannot be used in systems with a large number of processors. Such implemen-

tations and their evaluation relate issues concerning multiprocessor architecture,

programming language design, software engineering, and the theory of concurrent

systems. (For instance, our work makes use of shifting and atomic broadcast tech-

niques from the theoretical and practical distributed computing literature.) We

hope our work contributes toward a more solid ground for this interaction.

ACKNOWLEDGMENTS

The authors thank Sarita Adve, Roy Friedman, Mark Hill, and Rick Zucker for

helpful comments on an earlier version of this paper. We especially thank Martha

Kosa for a careful reading. The comments of the anonymous referees helped us



24 � Attiya and Welch

improve the presentation.

APPENDIX A. ATOMIC BROADCAST

The atomic broadcast algorithm employed by our algorithms is based on assigning

timestamps to messages. Each process maintains a local timestamp (counter) and

a vector with (conservative) estimates of the timestamps of all other processes. A

process keeps a timestamp bigger than or equal to the timestamps of all the other

processes (according to its estimates). Upon a request to broadcast a message, the

message is tagged with the requester's current timestamp. Each process maintains

a set of messages that are waiting to be delivered. A message with timestamp x is

delivered only when the process is certain that all other messages with timestamp

� x have arrived at it. This is done by waiting to learn that all processes have

increased their timestamp to be at least x+ 1.11 Once it learns that all processes

have increased their timestamps beyond x, the process handles all pending messages

with timestamps less than or equal to x, in order, breaking ties using process ids.

More precisely, to broadcast a message m, p sends a message (tp,m) to all pro-

cesses (including itself), where tp is p's current timestamp. It then increases its

own timestamp by one, and returns. When a process q receives a message with

timestamp tp from p, it saves it in a list of pending messages, sorted by timestamp

and process id. It then increases its timestamp to be at least as large as tp + 1 and

sends a timestamp increase message \timestamp(tq; q)".

When a process receives a timestamp increase message, it updates the timestamp

entry for the sender, and checks to see if there are any pending messages whose

timestamp is strictly less than all processes' timestamps (saved in its local vector).

These messages are delivered in increasing timestamp order, breaking ties using

process ids.

The algorithm uses the following data types:

timestamp = integer

message = record with �elds

mess : string (message to be delivered)

ts : timestamp (assigned by initiator)

id : process id (id of initiator)

Each process knows n, the total number of processes.

The state of each process consists of the following components:

ts : array[1..n] of integer, all initially 0

(estimate (from below) timestamps of all processes)

pending : set of message, initially empty

(set of message waiting to be delivered)

The transition function of process p appears in Fig. 7.

To show that this algorithm implements atomic broadcast, we must show, for any

admissible execution, that messages are delivered at the same order to all processes.

The ordering of messages is done by timestamps (breaking ties with process ids).

The resulting sequence respects the order at each process by construction and

because of the way timestamps are assigned.

11For simplicity, the algorithm presented here assumes FIFO channels. This assumption can be

removed if sequence numbers are employed.
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ABC-sendp(m):

send (ts[p],m) to all processes

ts[p] := ts[p] + 1

receive (t,m) from q:

add (m,t,q) to pending

if t+ 1 > ts[p] then

ts[p] := t+ 1

send timestamp(ts[p]) to all processes

endif

receive timestamp(t) from q:

ts[q] := t

repeat

let E be element with smallest (ts,id) pair in pending

if for some q, ts[q] � E:ts then exit

deliver E:m f this is the ABC-receive g

remove E from pending

endrepeat

Fig. 7. Atomic broadcast algorithm.

More formally, �x some admissible execution � of the algorithm. The next lemma

follows immediately from the code.

Lemma A.1. Let p be any process. Then every message broadcast by p in � is
given a unique timestamp in increasing order.

This immediately implies:

Lemma A.2. The timestamps assigned to messages in �, together with process
ids, form a total order.

This total order is called timestamp order.

Lemma A.3. Let p be any process. Then all messages are delivered to p in � in
timestamp order.

Proof. Let (t1; q1) be the timestamp of the message m1, and let (t2; q2) be the

timestamp of the message m2. Suppose, by way of contradiction, that (t1; q1) <

(t2; q2) but m2 was delivered to p before m1.

Whenm2 is delivered to p, it cannot yet have the messagem1 in pending, because

otherwise it would deliver it before m2. By the code, in order to deliver m2, it must

be that tsp[q1] > t2. But then p must have received a timestamp message from q1
with a timestamp t � t2 + 1. Since (t1; q1) < (t2; q2) it must be that t1 � t2,

and hence t > t1. By the code, the message m1 was sent before the timestamp

message. But then the FIFO property of the communication system implies that p

has already received m1. A contradiction.

The next lemma guarantees that each message is delivered within time 2d from

the initiation of the operation.

Lemma A.4. If process p broadcasts a message m, then m is delivered at each
process within time at most 2d in �.
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Proof. Assume p broadcasts m at time T , with timestamp x. By time T +d all

processes will get the message (x;m), and will set their timestamps to be at least

x + 1, sending a timestamp increase message to all other processes, if necessary.

Thus, by time T +2d, all processes will have in their timestamp vectors values that

are strictly larger than x, and will deliver m.

Lemmas A.3 and A.4 prove the following theorem.

Theorem A.5. The algorithm in Fig. 7 is an atomic broadcast algorithm with
h = 2d.
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process r
Write(X; 1)

process p
Read(X; v0) Read(X; v2)

: : : : : :
Read(X; v4k)

process q
Read(X; v1)

: : : : : :
Read(X; v4k+1)

Time 0 u
4

u
2

: : : : : :
(4k+1)u

4

(a) The execution �.

process r
Write(X; 1)

process p
Read(X; v0) Read(X; v2)

: : : : : :
Read(X; v4k)

process q
Read(X; v1) Read(X; v3)

: : : : : :

Time �u
4

0 u
4

u
2

: : : : : :
(4k+1)u

4

(b) The execution �.

Figure 2. Executions used in the proof of Theorem 3.1.
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process q
Enq(Q; 1)

process p
Deq(Q; v1) Deq(Q; v2)

: : : : : :
Deq(Q; vi�1) Deq(Q; vi)

: : : : : :

Time
0 t t+ T t+ (i � 2)T t + (i � 1)T

(a) The execution �0

1.

process q
Enq(Q; 1)

process p
Deq(Q;?) Deq(Q;?)

: : : : : :
Deq(Q;?) Deq(Q; 1)

Time
0 t t+ T t+ (i � 2)T t + (i � 1)T

(b) The execution �1.

process q
Enq(Q; 1) Deq(Q; u)

process p
Deq(Q;?) Deq(Q;?)

: : : : : :
Deq(Q;?)

Time
0 t t+ T t+ (i � 2)T t + (i � 1)T

(c) The execution �2.

process q
Enq(Q; 1) Deq(Q; 1)

process p
Deq(Q;?) Deq(Q;?)

: : : : : :
Deq(Q;?) Deq(Q; 1)

Time
0 t t+ T t+ (i � 2)T t + (i � 1)T

(d) The execution �.

Figure 6. Executions used in the proof of Theorem 4.4.


