
Leader Election Algorithms for Mobile Ad Hoc Networks �

Navneet Malpani
Dept. of Computer Science

Texas A&M University
College Station, TX

77843-3112
n0m4119@cs.tamu.edu

Jennifer L. Welch
Dept. of Computer Science

Texas A&M University
College Station, TX

77843-3112
welch@cs.tamu.edu

Nitin Vaidya
Dept. of Computer Science

Texas A&M University
College Station, TX

77843-3112
vaidya@cs.tamu.edu

ABSTRACT
We present two new leader election algorithms for mobile ad
hoc networks. The algorithms ensure that eventually each
connected component of the topology graph has exactly one
leader. The algorithms are based on a routing algorithm
called TORA [5], which in turn is based on an algorithm by
Gafni and Bertsekas [3]. The algorithms require nodes to

communicate with only their current neighbors, making it
well suited to the ad hoc environment. The �rst algorithm
is for a single topology change and is provided with a proof
of correctness. The second algorithm tolerates multiple con-
current topology changes.

1. INTRODUCTION
Amobile ad hoc network is a network wherein a pair of nodes
communicates by sending messages either over a direct wire-

less link, or over a sequence of wireless links including one
or more intermediate nodes. Only pairs of nodes that lie
within one another's transmission radius can directly com-
municate with each other. Wireless link \failures" occur
when previously communicating nodes move such that they
are no longer within transmission range of each other. Like-

wise, wireless link \formation" occurs when nodes that were
too far separated to communicate move such that they are
within transmission range of each other. Developing dis-
tributed algorithms for ad hoc networks is a very challeng-
ing task since the topology may change very frequently and
unpredictably. In this paper, we present a mobility aware

leader election algorithm.

Leader election is a useful building block in distributed sys-
tems, whether wired or wireless, especially when failures can
occur. For example, if a node failure causes the token to be
lost in a mutual exclusion algorithm, then the other nodes

can elect a new leader to hold a replacement token. Leader
election can also be used in group communication proto-
cols, to choose a new coordinator when the group member-

�Supported in part by NSF grant CCR-9972235.

ship changes. The standard de�nition of the leader election
problem for static networks [1] is that

1. eventually there is a leader and

2. there should never be more than one leader.

However, complications arise because partitions can occur
in an ad hoc network. In such a case, some applications

require that every component of the partition must have a
unique leader. Thus we consider a modi�ed de�nition of
the leader election problem: Any component whose topology
is static suÆciently long will eventually have exactly one
leader. There could be a period when a component has no
leader, occurring when a component is partitioned. How-

ever, the algorithm must guarantee that exactly one unique
node will be elected as a leader in the new component that
was separated from the old leader. Similarly, there could
be a period when there are two or more leaders, caused by
two or more components merging. But the algorithm must

guarantee that only one unique leader survives.

We present two leader election algorithms based on TORA
[5], which is a routing algorithm for mobile ad hoc networks.
TORA in turn is based on a loop-free routing algorithm of
Gafni and Bertsekas [3]. In the algorithms in [3], each node

keeps a value, called its height, from a totally ordered set
(typically, a tuple of integers), and links are logically consid-
ered to be directed from higher to lower heights. The heights
are manipulated when topology changes occur in such a
way that the graph converges to a directed acyclic graph
(DAG) in which the destination is the only sink (node with

no outgoing links). the resulting DAG is called destination-
oriented. TORA adds a clever mechanism to detect network
partitions such that nodes that no longer have a path to a
particular destination learn this fact and cease sending use-
less messages.

Our leader election algorithms modify these ideas in the
following ways.

1. Instead of having a single destination-oriented DAG,
we ensure that each component eventually forms a
leader-oriented DAG.

2. When a partition from the current leader is detected
(using the TORA mechanism), a new leader is elected

and its id is propagated throughout the component.

3. When two components merge, a contest takes place be-

tween the leaders so that the winner's id is propagated
and wipes out the loser's id.

4. When multiple topology changes occur, additional com-
plications arise. This is due to the fact that while a
new leader's id is being propagated changes could oc-
cur in the component and the process of electing a
leader may be repeated.

Although the leader election problem does not speci�cally
require any sort of DAG structure to be imposed on compo-
nents, our algorithms do so, as a byproduct of being based
on a routing algorithm.

We believe that the proof of correctness of our �rst algo-

rithm, under the assumption that only one topology change
occurs at a time, aids in understanding not only our algo-
rithm, but also TORA [5]. It should also provide a solid
basis for proving correctness in more complex situations.

The next section discusses related work. In section 3, we

describe our system assumptions and de�ne the problem in
more detail. Brief reviews of the GB algorithms and TORA
are presented in sections 4.1 and 4.2. We present our leader
election algorithm for a single topology change in sections
4.3 through 4.5. We sketch a proof of correctness of this algo-
rithm under simplifying assumptions in section 4.6. Section

5 presents modi�cations to the �rst algorithm for multiple
concurrent link failures and formations. Section 6 presents
our conclusions.

2. RELATED WORK
Leader election algorithms for mobile ad hoc networks are
presented in [4]. Compared to these algorithms, our al-
gorithm is simpler and more practical. The algorithms in
[4] are classi�ed into Non-Compulsory protocols, which do
not a�ect the motion of the nodes, and Compulsory proto-
cols, which determine the motion of some or all the nodes.

In both the protocol classes, it is assumed that the mo-
bile nodes move in a bounded three-dimensional space S,
where S is quantized by some regular polyhedron. In or-
der for these algorithms to work, the mobile nodes should
know in advance the type and dimensions of the polyhe-
dron that is used for the quantization of S; furthermore, the

nodes must be able to measure the distance that they cover
when they move. All this adds to the complexity of the al-
gorithm. Also, the Non-Compulsory protocols might never
elect a unique leader and the Compulsory protocols force the
nodes to perform a random walk. Neither of the protocol

classes addresses the issue of creation of new components
due to partitioning and merging of components

In our algorithm, the space S is not bounded and the nodes
need not keep track of their physical location in S. The al-
gorithm also does not impose any form of restricted motion

on the nodes. As stated before, the algorithm is capable of
handling formation of new components as well as merging
of two or more components. The algorithm will eventually
always elect a unique leader for each component.

The multicast operation of the Ad-hoc On-DemandDistance

Vector (AODV) routing protocol [6, 7] performs leader elec-

tion to elect a new multicast group leader when a partition

occurs. After the multicast tree becomes disconnected due
to a network partition, there are two group leaders. If the
components reconnect, the multicast operation of the AODV
protocol ensures that only one of the group leaders eventu-
ally becomes the leader of the reconnected tree. Thus we
see that the problem de�nition for leader election in [6, 7]

is quite similar to our problem de�nition. However, the ap-
proach that our algorithms take to solve this problem is very
di�erent.

The dynamic network model, which describes wired net-
works whose links are subject to frequent failures and re-

coveries, bears some important similarities to the mobile ad
hoc network model. Algorithms have been devised for the
dynamic network model to maintain a rooted spanning tree
(e.g., [2]). These algorithms can be viewed as maintaining a
leader (the root), but unlike our algorithm, which imposes a
DAG structure on the topology, they impose a spanning tree

structure on the topology. These algorithms do not handle
partitions as well.

3. DEFINITIONS
3.1 System Model and Assumptions
The system contains a set of n independent mobile nodes,
communicating by message passing over a wireless network.
The network is modeled as a dynamically changing, not nec-
essarily connected, undirected graph, with nodes as vertices
and edges between vertices corresponding to nodes that can

communicate. Assumptions on the mobile nodes and net-
work are:

1. The nodes have unique node identi�ers.

2. Communication links are bidirectional, reliable and
FIFO. Unidirectional links, if any, are not used and
ignored.

3. A link-level protocol ensures that each node is aware
of the set of nodes with which it can currently directly
communicate by providing indications of link forma-
tions and failures.

4. For the algorithm that we present in section 4, we as-
sume that only one change (either a link failure or a
link formation) can occur at a time. The next change
occurs only after the entire network has recovered from
the previous change. (The algorithm to handle multi-

ple changes occurring concurrently is presented in sec-
tion 5.)

3.2 Problem Statement
Each node i in the system must have a local variable lidi
that holds the identi�er of the node currently considered to
be the leader of i's component.

We require that in every execution with a �nite number of
topology changes, eventually it holds that:

� For every connected componentC of the topology graph,
there is a node l in C such that lidi = l for all nodes i

in C.

An additional requirement, which might be useful in some

applications, and is satis�ed by our algorithm, is that each
edge has a direction imposed on it by the endpoints such
that eventually (after all the topology changes)

� Each connected component is a directed acyclic graph
with the leader as the single sink (called a leader-
oriented or l-oriented DAG).

The assumption in the precise problem statement that there

is only a �nite number of changes is technically convenient.
However, it is equivalent to the more informal, and more
practical, assumption that topology changes cease \suÆ-
ciently" long.

4. LEADER ELECTION ALGORITHM FOR
A SINGLE TOPOLOGY CHANGE

Our algorithm is a modi�cation of the TORA [5] routing
algorithm, which in turn is based on a routing algorithm by
Gafni and Bertsekas (GB) [3]. In this section we �rst provide

informal descriptions of the GB algorithm, then TORA, and
�nally our algorithm. Detailed pseudocode of our algorithm
is presented and some examples of algorithm operation. Fi-
nally, a proof of correctness is given.

4.1 Overview of the GB Algorithm
Gafni and Bertsekas [3] describe two algorithms for con-
structing a destination-oriented DAG in a network subject
to link failures. Both algorithms work by assigning a unique
height to each node, which is drawn from a totally ordered
set; each link between two nodes is considered to be directed

from the node with the higher height to the node with the
lower height. The goal is for the directions on the links to
form a DAG in which the destination is the only sink. To
achieve the goal, whenever a node that is not the sink loses
all its outgoing links, either because of a failure or because
of a change in a neighbor's height, it calculates a new height

for itself.

The two algorithms di�er in the rule for calculating a new
height. Both algorithms are special cases of a generic algo-
rithm described in [3]. A correctness proof for the generic
algorithm is given, which is quite abstract.

We now describe the partial reversal algorithm in [3], upon
which both TORA and our algorithm are based. The height
of a node i is a triple (�i; �i; i) of integers; the last compo-
nent is the node's id in order to assure uniqueness. Triples

are compared lexicographically. If i loses all its outgoing
links, it chooses its new height to be (�0

i; �
0

i; i), where �
0

i is
one larger than than the smallest � component among all its
neighbors' heights. If i has a neighbor whose � height com-
ponent is equal to �0

i, then �0

i is set to be one less than the
smallest � value among all neighbors of i whose � height

component equals �0

i. Otherwise the � component of i's
height is unchanged.

The rule for setting �0

i ensures that node i will have at least
one outgoing link, i.e., that (�0

i; �
0

i; i) will be larger than the
height of at least one neighbor, the one with the smallest

height. The rule for setting �0

i tries to limit the number of

links incident on i that will have their direction reversed, by

keeping i's height smaller than that of any neighbors whose
� height component is not smaller than �0

i. Reducing the
number of links whose direction changes limits the propaga-
tion of height changes.

4.2 Overview of TORA
Park and Corson [5] adapted the GB algorithm for routing
in mobile ad hoc networks, calling the result TORA (for
Temporally Ordered Routing Algorithm). Their biggest ad-
dition was a mechanism for detecting when a piece of the

network has been partitioned so that the destination is no
longer reachable. The original GB algorithms would cause
an in�nite cycle of messages in that case. No correctness
proof of TORA is given; instead an appeal is made to the
generic proof in [3].

In TORA, the height of node i is a 5-tuple, (�i; oidi; ri; Æi; i).
As before, the last component is the node's id, in order to
ensure uniqueness.

The �rst three components form a reference level. A new
reference level is started by node i if it loses its last out-

going link due to a link failure. �i is set to the time when
this event occurs1 and oidi is set to i, the originator of this
reference level. The third component ri modi�es the refer-
ence level. Initially, it is equal to 0, the unre
ected reference
level. As we explain shortly, sometimes it can be changed to
1, indicating a re
ected reference level, which is instrumental

in detecting partitions.

The Æi components, together with the tie-breaking node ids,
induce the directions on the links among all the nodes with
the same reference level so as to help form a destination-

oriented DAG. The originator of a new reference level sets
its Æ value to 0.

When a new reference level is created, say by node i, it is
larger than any pre-existing reference level, since it is based
on the current time. The originator noti�es its neighbors

of its new height. As we prove below in section 4.6 in the
context of our leader election algorithm, this change even-
tually propagates among all nodes for whom i was on their
only path to the destination. These are the nodes that must
either form new paths to the destination or discover that,
due to partitioning, there is none.

A node i can lose all its outgoing links due to a neighbor's
height change under a number of di�erent circumstances,
which are now explained.

� If the neighbors of i do not all have the same reference

level, then i sets its reference level to the largest among
all its neighbors and sets its Æ to one less than the
minimum Æ value among all neighbors with the largest
reference level (a partial reversal).

� If all of i's neighbors do have the same reference level
and it is an unre
ected one, then i starts a re
ection

of this reference level by setting its reference level to

1See [5] for a detailed discussion concerning mechanisms for
measuring time and their impact on the algorithm.

the re
ected version of its neighbors' (with ri = 1) and

its Æ to 0.

� If all of i's neighbors have the same re
ected reference
level with i as the originator, then i has detected a

partition and takes appropriate action.

� If all of i's neighbors have the same re
ected reference
level with an originator other than i, then i starts a

new reference level. This situation only happens if a
link fails while the system is recovering from an earlier
link failure.

4.3 Overview of Leader Election Algorithm
We made the following changes to TORA.

The height of each node i in our algorithm is a 6-tuple,
(lidi; �i; oidi; ri; Æi; i). The �rst component is the id of a node
believed to the leader of i's component. The remaining �ve
components are the same as in TORA.

The reference level (�1;�1;�1) is used by the leader of a
component to ensure that it is a sink.

In TORA, once a partition has been detected, the node that
�rst detected the partition sends out indications to the other
nodes in its component so that they cease performing height

changes and sending useless messages. In our algorithm, the
node that detected the partition elects itself as the leader of
the new component. It then transmits this information to
its neighbors, who in turn propagate this information to
their neighbors and so on. Eventually all the nodes in the
new component will become aware of the change in leader.

When two or more components meet due to the formation
of new links, the leader of the component whose id is the
smallest will eventually become the sole leader of the entire
new component.

4.4 The Algorithm
Here we describe the code executed by node i. Each step is

triggered either by the noti�cation of the failure or forma-
tion of an incident link or by the receipt of a message from
a neighbor. Node i stores its neighbors' ids in local vari-
able Ni. When an incident link fails, i updates Ni. When
an incident link forms, i updates Ni and sends an Update
message over the link with its current height.

The only kind of message sent is an Update message, which
contains the sender's height. Immediately upon receipt of
an Update message, i updates a local data structure that
keeps track of the current height reported for each of its

neighbors. Node i uses this information to determine the
direction of its incident links. References in the pseudocode
below to variables lidj ; �j ; oidj ; rj ; and Æj for a neighbor j
of i actually refer to the information that i has stored about
j's height, in variable heighti[j].

At the end of each step, if i's height has changed, then
it sends an Update message with the new height to all its
neighbors.

The pseudocode below explains how and when node i's height
is changed. Parts B through D are executed only if the leader

id in the received Update message is the same as lidi.

A. When node i has no outgoing links due to a link failure:

1. if node i has no incoming links as well then
2. lidi := i

3. (�i; oidi; ri) := (�1;�1;�1)
4. Æi := 0
5. else
6. (�i; oidi; ri) := (t; i; 0) // t is the current time

7. Æi := 0

B. When node i has no outgoing links due to a link reversal
following reception of an Update message and the reference
levels (�j ; oidj ; rj) are not equal for all j 2 Ni:

1. (�i; oidi; ri) := maxf(�j ; oidj ; rj)jj 2 Nig
2. Æi := minfÆj jj 2 Ni and (�j ; oidj ; rj) = (�i; oidi; ri)g � 1

C. When node i has no outgoing links due to a link reversal
following reception of an Update message and the reference

levels (�j ; oidj ; rj) are equal with rj = 0 for all j 2 Ni:
1. (�i; oidi; ri) := (�j ; oidj ; 1) for any j 2 Ni

2. Æi := 0

D. When node i has no outgoing links due to a link reversal

following reception of an Update message and the reference
levels (�j ; oidj ; rj) are equal with rj = 1 for all j 2 Ni and
oidj = i:
1. lidi := i

2. (�i; oidi; ri) := (�1;�1;�1)
3. Æi := 0

E. When node i receives an Update message from neighbor-
ing node j such that lidj 6= lidi:
1. if lidi > lidj or (oidi = lidj and ri = 1) then

2. lidi := lidj
3. (�i; oidi; ri) := (0; 0; 0)
4. Æi := Æj + 1

In part E, if the new id is smaller than yours, then adopt it.

If the new id is larger than yours, then adopt it, but only if
it is the case that the originator of a new reference level has
detected a partition and elected itself.

4.5 Examples of Algorithm Operation
The example in �gure 1 shows the working of the algorithm
under 2 conditions:

1. When a node detects a partition, it declares itself as
the leader of the new component and propagates the
information to the other nodes in the new component.

2. When two components meet due to the formation of

a new link, the leader of one of the components which
has the lower identi�cation number eventually becomes
the sole leader of the new component.

The respective heights are shown adjacent to each node (re-
call that the last tuple entry is the node's id). Lexicograph-

ical ordering (where 0 < 1 < 2::: and A < B < C:::) is used

(c) Nodes B and E detect a link formation

(A,0,0,0,0,B)

(A,0,0,0,0,E)

Update
(A,0,0,0,1,F)

(A,0,0,0,0,B)

(A,0,0,0,−1,D)

(A,0,0,0,−1,D)

(d) Node F propagates the Leader Change

(A,0,0,0,0,E)

(A,0,0,0,1,F)

(f) Node G propagates the Leader Change

(A,0,0,0,2,H)
Update

(A,0,0,0,3,G)

(A,0,0,0,0,B)

(A,0,0,0,−1,D)

Update

Update

(A,0,0,0,0,E)

(A,0,0,0,1,F)

(A,0,0,0,0,B)

(A,0,0,0,−1,D)

Update

(A,0,0,0,2,H)Update

(e) Node H propagates the Leader Change

(a) Node A detects a partition
and elects itself as leader

(b) Nodes B and D update their heights

and node E changes its leader

(A,0,0,0,0,E)

(A,0,0,0,0,B)

(A,0,0,0,−1,D)

(A,−1,−1,−1,0,A)

(F,0,0,0,2,G) (F,0,0,0,1,H)

(A,−1,−1,−1,0,A)

(F,0,0,0,2,G)

(F,0,0,0,1,E)

(F,−1,−1,−1,0,F)

(A,−1,−1,−1,0,A)

(F,0,0,0,2,G) (F,0,0,0,1,H)

(F,−1,−1,−1,0,F)

(F,0,0,0,1,E)

(F,2,A,1,0,B)

(A,−1,−1,−1,0,A) (F,2,A,1,−1,D)

(F,0,0,0,2,G) (F,0,0,0,1,H)

(F,−1,−1,−1,0,F)

(A,−1,−1,−1,0,A)

(F,0,0,0,1,H)

(A,−1,−1,−1,0,A)

(F,0,0,0,2,G)

Figure 1: Operation of the Leader Election Algo-
rithm (last element of tuple is node id)

to direct links. In �gure 1(a), node A detects a partition and
declares itself as the leader of the new component. Figure
1(b) shows the propagation of the message about the new
leader to the other nodes in the new component. Figure
1(c)-(f) depicts the situation when two components meet

due to a new link formation. Node A, which is the leader of
one of the components, eventually becomes the sole leader
of the entire component, since A < F , F being the leader of
the other component.

4.6 Correctness
We assume that each connected component is a leader-oriented
DAG originally and that only one change (either a link fail-

ure or a link formation) can occur at a time. The next
change occurs only after the entire network has recovered
from the previous change. We also assume that the system
is synchronous, i.e., the execution occurs in lock step rounds.
Messages are sent at the beginning of each round and are
received by the nodes to whom they were sent before the

end of each round.

Theorem 1. The algorithm ensures that each component
eventually has exactly one unique leader.

Proof. We consider the following three cases (the re-
maining cases cause no changes):

Case 1: A link disappears at time t, causing node i to lose its

last outgoing link but not disconnecting the component.

Case 2: A link appears at time t, joining two formerly sepa-

rate components.

Case 3: A link disappears at time t, causing node i to lose
its last outgoing link and disconnecting the component.

In each case we show that eventually each component in the
resulting graph is a leader-oriented DAG.

Case 1: A link disappears at time t, causing node i to lose
its last outgoing link but not disconnecting the component.

��
��
��

��
��
��

Nodes in set V_l��

�
�
�
�

��

�
�
�
�

�� ��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

����
�
�
�
�

����

i j
l

G_i G_l

level = 5

level = 4
diff = 0

level = 4
level = 3

diff = 0 diff = 1
diff = 2

level = 2

level = 1

level = 3

level = 0

level = 5

level = 4

Nodes in set V_i

Link Failure

Frontier Node

Frontier Edge

Figure 2: Example for Case 1.

Let G be the directed graph representing the resulting topol-
ogy (of the component). Let l be the leader of the compo-
nent. Then the component was an l-oriented DAG before
the link was lost. Let Vl be the set of nodes that still have
a path to l. At time t, the remaining nodes have a path to

i; let this set be Vi. Let Gl be the graph induced by Vl and
Gi be the graph induced by Vi. See Figure 2.

Definition 1. The frontier nodes of Vi are nodes that
are adjacent to nodes in Vl; the edges between Vi and Vl are
the frontier edges.

Let k be any node in Vi.

Definition 2. level(k) is the length of the longest path
in Gi from k to i.

Note that level is de�ned with respect to the �xed Gi. Even
though the direction of edges changes as the algorithm exe-
cutes, the levels do not change.

Lemma 1. If k is on a path in Gi from a frontier node
to i, then k's �nal height is (l; t; i; 0;�level(k); k). Other-
wise, k's �nal height is (l; t; i; 1;�di�(k); k), where di�(k) =
maxflevel(h)jh 2 Vi and k is reachable from h in Gig �
level(k).

Proof. We will show by induction on the number of
rounds r after t that at the end of round r:

(a) If r < level(k), then k's height is the same as it was at
time t.

(b) If k is on a path from a frontier node to i and r �
level(k), then k's height is (l; t; i; 0;�level(k); k).

(c) If k is not on a path from a frontier node to i and

level(k) � r < level(k) + 2� di�(k), then k's height is
(l; t; i; 0;�level(k); k).

(d) If k is not on a path from a frontier node to i and r �
level(k)+2� di�(k), then k's height is (l; t; i; 1;�di�(k); k).

Basis: r = 0. At the end of round t, clearly property (a)

holds.

Induction: Assume the statement is true at the end of round
r � 1. We will show it is true at the end of round r.

(a) Suppose r < level(k).

Then k originally has an outgoing link to a node h whose
level is at least r. At the end of round r�1, by induction,
h still has its original height, as does k, so the edge
between k and h is still directed toward h. During round

r, h might receive a message causing it to change its
height, but even if this happens, h's Update message is
not received by k until round r + 1. So at the end of
round r, k still has its original height.

(b) Suppose k is on a path from a frontier node to i and
r � level(k).

When r = level(k), all outgoing neighbors of k have
level < r. By induction, by the beginning of round r,
all outgoing neighbors h of k will have reported their new
heights (l; t; i; 0;�level(h); h) to k, causing k to raise its

height to (l; t; i; 0;�level(k); k).

When r > level(k), the height of k will not change since

when r = level(h), where h is a frontier node, the direc-
tion of the frontier edge will change and a path from i

to l will be established and no messages will be re
ected
back.

(c) Suppose k is not on a path from a frontier node to i and
level(k) � r < level(k) + 2� di�(k).

When r = level(k), k gets the last Update message from
a (formerly) outgoing neighbor and thus k loses its last
outgoing link. Then it raises its height to
(l; t; i; 0;�level(k); k). This causes all the links that used
to come into k to go out from k. (If k is a frontier node,
that would include reversing the frontier edges, as seen
in the previous case).

When r > level(k) but still less than level(k)+2� di�(k),
there is no change in the level of k since node k has
at least one outgoing edge and it has not received any
Update messages from its outgoing neighbors.

Actually, there is a case when level(k) = level(k) + 2�
di�(k), when di�(k) = 0. In this case, no nodes of Vi

initially were incoming to k. Node k, on receiving the
last Update message from a (formerly) outgoing neigh-
bor, loses its last outgoing link. It now raises its height
to (l; t; i; 1; 0; k). In essence, node k starts the re
ection.

When di�(k) > 0, since r < level(k) + 2� di�(k), there
has not been enough time for k to receive re
ected mes-
sages from all its neighbors. Thus, the height of k re-

mains unchanged.

(d) Suppose k is not on a path from a frontier node to i and

r � level(k) + 2� di�(k).

When r = level(k) + 2� di�(k), k gets the last re
ected
message from its neighbors and updates its height to
(l; t; i; 1;�di�(k); k). When r > level(k)+2� di�(k), the
height of k remains unchanged since a path from i to l

has been or will be established as shown in case 2.

Thus, Lemma 1 implies that the resulting graph is an l-

oriented DAG, since all nodes in Gi now have paths to fron-
tier nodes. The frontier edges are now directed from Vi to
Vl because the � -component in the heights of nodes in Vi

is larger than for Vl (since the algorithm has access to syn-
chronized or at least logical clocks).

Case 2: A link appears at time t, joining two formerly sep-
arate components C1 and C2 into component C.

Let l1 be the leader of C1 and l2 the leader of C2. Assume
without loss of generality that l1 < l2. Suppose a link ap-
pears at time t between k1, a node in C1, and k2, a node in

C2.

Lemma 2. Eventually l1 becomes the leader of component
C and C is an l1-oriented DAG.

Proof. Let r be the number of rounds after t.

At r = 0, k1 and k2 send Update messages to each other.
Since k1's leader l1 is smaller than k2's leader l2, k2 updates
its height to (l1; 0; 0; 0; Æk1 + 1; k2) and obtains an outgoing
link to k1.

Let the value of dist(k) for any node k in partition2 be the
shortest path distance from that node to node k2 (the path
distance is in terms of number of links between them).

When r < dist(k), the height of k remains unchanged since

it has not yet received the Update message regarding the
change in leadership. When r = dist(k), k (including l2)
changes its height to (l1; 0; 0; 0; Æk1+ dist(k) + 1; k). Thus
k now has a route to k1 and its leader id has also changed
to indicate a change in leadership. When r > dist(k), the
height of k remains unchanged.

Thus we see that when r = dist(k), such that k is the farthest
node from k2, all the nodes in partition2 have updated their
heights and have a route to k1. The resultant graph (for the
merged component) will be an l1-oriented DAG, since k1 is

a node in partition1 which is an l1-oriented DAG.

Case 3: A link disappears at time t, causing node i to lose
its last outgoing link and disconnecting the component.

The proof for case 3 is very similar to case 1, except that

there will be no path from node i to a frontier node. The

following condition will arise which is di�erent from the con-

ditions in case 1.

Let r1 be equal to maxflevel(k)+2� di�(k)g for all k adjacent
to i. At round r1, the heights of all the adjacent nodes k
will be (l; t; i; 1;�di�(k); k) and node i will detect that a
partition has occurred and will elect itself as the leader.

Lemma 3. At round r1 a DAG with node i as the sink

has already been formed.

Proof. We know from the proof of case 1 that, when
r > level(k) + 2� di�(k) for any node k other than i, node
k has changed its height to (l; t; i; 1;�di�(k); k) and has no
outgoing link towards node i. This height of k will not
change when r > level(k) + 2� di�(k) and r < r1. Also

when r = r1 � 1, one of the nodes k which is adjacent to
i will change its height to (l; t; i; 1;�di�(k); k) and have on
outgoing link to node i. This node k will also be the last
adjacent node of i to do so.

Thus at r1, when node i detects the partition, it changes its
height to (i;�1;�1;�1; 0; i) and sends an Update message

to its neighbors. This message is propagated throughout the
new component. The resulting graph is an i-oriented DAG.
The proof for this is the same as the proof for Lemma 2.

Thus we see from all the three cases that our algorithm
will eventually ensure that each component has exactly one

unique leader.

5. LEADER ELECTION ALGORITHM FOR
CONCURRENT CHANGES

In this section we describe modi�cations to our algorithm
from Section 4 to handle concurrent topological changes. By
concurrent topological changes, we mean that after a change
(link failure or link formation) occurs, another change occurs
before the network has �nished recovering from the previous
change. In this algorithm we distinguish between a node

which knows its leader or is a leader from a node that may
not know its leader by checking the � value of the node.
If the � value of the node is -1 we know that the node is
a leader. If the � value of the node is 0 then that node
knows who its leader is and if the � value is neither -1 or 0
we presume that the node does not know who its leader is.

Case E is replaced by the code given below and a new case
(F) is introduced. In case E we have 4 possible conditions
between node i and node j whose lid values are di�erent.
The rules by which a node changes its height based on the
four conditions are given below:

1. When node i and node j have their � value equal to -1

or 0: In this case the node with the smaller lid value
wins and the other node changes its height.

2. When node i has its � value equal to -1 or 0 and node
j has its � value not equal to -1 or 0: In this case node
i wins and node j changes its height.

3. When node i has its � value not equal to -1 or 0 and
node j has its � value equal to -1 or 0: In this case

node j wins and node i changes its height.

K (K,−1,−1,−1,0,K)

L (K,0,0,0,2,L)

a) Node I changes its height as shown above.

L (K,0,0,0,2,L)D (F,2,C,1,−1,D)

a) Nodes D and I receive update messages about
the new leader from C.

L (K,0,0,0,2,L)D (C,0,0,0,1,D)

C (C,−1,−1,−1,0,C)

I (C,0,0,0,1,I)

K (K,−1,−1,−1,0,K)

J (K,0,0,0,1,J)

L (K,0,0,0,2,L)D (C,0,0,0,1,D)

a) Nodes J receives update message from I.

D (C,0,0,0,1,D)

C (C,−1,−1,−1,0,C)

J (C,0,0,0,2,J)

I (C,0,0,0,1,I)

K (C,0,0,0,3,K)

L (C,0,0,0,3,L)

d) Nodes L and K get Update messages from J
 and we get a C−oriented DAG.

D (F,2,C,1,−1,D)

C (C,−1,−1,−1,0,C)

J (K,0,0,0,1,J)

I (F,2,C,1,−1,I)

a) C elects itself as leader of component A
and there is a link formation between I and J

C (C,−1,−1,−1,0,C)

I (K,0,0,0,2,I)

K (K,−1,−1,−1,0,K)

J (K,0,0,0,1,J)

C (C,−1,−1,−1,0,C)

I (C,0,0,0,1,I)

K (K,−1,−1,−1,0,K)

J (C,0,0,0,2,J)

Figure 3: Example 1 for the second algorithm

4. When node i and node j have their � value not equal
to -1 or 0: In this case the node with the smaller lid
value wins and the other node changes its height.

5.1 Algorithm
E. When node i receives an Update message from neighbor-
ing node j such that lidj 6= lidi:

1. if (lidi > lidj and �i = 0or � 1 and �j = 0or � 1) or
(lidi > lidj and �iisneither0or � 1 and �j isneither0or� 1)
or (oidi = lidj and ri = 1) then
2. lidi := lidj
3. if lidj = j then
4. (�i; oidi; ri) := (0; 0; 0)

5. else
6. (�i; oidi; ri) := (�j ; oidj ; rj)
7. Æi := Æj + 1

F. When node i has no outgoing links due to a link reversal

following reception of an Update message and the reference
levels (�j ; oidj ; rj) are equal with rj = 1 for all j 2 Ni and
oidj 6= i:
1. (�i; oidi; ri) := (t; i; 0) // t is current time
2. Æi := 0

5.2 Example
An example for this is shown in �gure 3. Assume node I of
component A has not yet received the Update message about
the new leader of component A, but has a re
ected reference
level. Node I receives an Update message from node J of

component B. From condition 3 of 5, node I will change its
height as shown in �gure 3. Nodes D and I now receive the
leadership message from node C. Node D changes its height
according to the condition 2 of 5 (considering node C to be i)
and node I changes its height according to condition 1 of 5.
Node C now sends an Update message to node J and node

J propagates this message to nodes L and K. Eventually

we get a C � oriented DAG.

6. DISCUSSION
We have proposed two distributed and highly adaptive leader
election algorithms, based on TORA [5], designed for oper-
ation in ad hoc networks. Both leader election algorithms
guarantee that every connected component in the network

will eventually have a unique leader. The �rst algorithm
works when only a single topological change occurs. A
proof of correctness is provided for this algorithm, which
also provides insight into the workings of the TORA algo-
rithm. The second algorithm handles multiple concurrent
topological changes.

The initialization of our algorithms can be achieved by start-
ing each node as the leader of its own component, i.e., each
node i starts with its height to (i;�1;�1;�1; 0; i) and is
neighbor list Ni to empty.

For our algorithms to be tolerant to node failures, we assume
that when a node recovers from a node failure, it restarts
by declaring itself as the leader, i.e, setting its height to
(i;�1;�1;�1; 0; i).

Our future work will concentrate on simulating the algo-
rithm and evaluating its performance. We also plan to pro-
vide the proof of correctness for the case when multiple con-
current topological changes occur.

Clearly, other algorithms can be conceived for leader elec-

tion in mobile ad hoc networks. Di�erent algorithms are
expected to di�er in the ease of implementation, message
complexity, space usage, etc. Comparison of di�erent algo-
rithms is a topic for further work.

Acknowledgements
We thank Charles Perkins and Jennifer Walter for helpful
discussions.

7. REFERENCES
[1] H. Attiya and J. L. Welch. Distributed Computing:

Fundamentals, Simulations and Advanced Topics.

London, UK: McGraw-Hill, 1998.

[2] Chunhsiang Cheng and Srikanta P. R. Kumar. A
Loop-Free Spanning-Tree Protocol in Dynamic
Topology. Proc. 27th Annual Allerton Conference on
Communication, Control and Computing, Sept. 1989,
pp. 594-595.

[3] E. Gafni and D. Bertsekas. Distributed algorithms for
generating loop-free routes in networks with

frequently changing topology. IEEE Transactions on
Communications, C-29(1):11{18, 1981.

[4] Kostas P. Hatzis, George P. Pentaris, Paul G.
Spirakis, Vasilis T. Tampakas and Richard B. Tan.
Fundamental Control Algorithms in Mobile Networks.
Proc. 11th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 251-260, 1999.

[5] Vincent D. Park and M. Scott Corson. A Highly
Adaptive Distributed Routing Algorithm for Mobile

Wireless Networks. Proc. IEEE INFOCOM, April
7-11, 1997.

[6] Elizabeth M. Royer and Charles E. Perkins. Multicast
Operations of the Ad-hoc On-Demand Distance
Vector Routing Protocol. Proc. Fifth Annual
ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM), pages

207-218, August 15-20, 1999.

[7] Elizabeth M. Royer, Samir R. Das and Charles E.
Perkins. Ad Hoc On-Demand Distance Vector
(AODV) Routing (Internet-Draft). Mobile Ad Hoc
Network (MANET) Working Group, 10 March, 2000
(work in progress).

