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Abstract

The bandwidth of a grapfi onn vertices is the minimurhisuch that the vertices ¢f can be labeled
from 1 to n such that the labels of every pair of adjacent vertices diffeat mosb.

In this paper, we present2aapproximation algorithm for the Bandwidth problem thd¢es worst-
case0(1.9797") = O(3°-6217n) time and uses polynomial space. This improves both the pue\west
2- and3-approximation algorithms of Cygaet al. which have arO*(3™) andO* (2™) worst-case time
bounds, respectively. Our algorithm is based on constrgdiucket decompositions of the input graph.
A bucket decomposition partitions the vertex set of a graphérdered sets (calldalickets) of (almost)
equal sizes such that all edges are either incident on geriicthe same bucket or on vertices in two
consecutive buckets. The idea is to find the smallest bugkefar which there exists a bucket decom-
position. The algorithm uses a simple divide-and-conquiategyy along with dynamic programming to
achieve this improved time bound.

1 Introduction

Let G = (V, E) be a graph om vertices and be an integer. The Bandwidth problem asks whether the
vertices of G can be labeled from to n such that the labels of every pair of adjacent vertices mdiffe
at mostb. The Bandwidth problem is a special case of the Subgraphdgansm problem, as it can be
formulated as follows: I€ isomorphic to a subgraph @t2? Here,P? denotes the graph obtained frafy
(the path om vertices) by adding an edge between every pair of verticdsttnce at mostin P,.

A typical scenario in which the Bandwidth problem ariseshiattof minimizing the bandwidth of a
symmetric matrix)/ to allow for more efficient storing and manipulating procediu[11]. The bandwidth of
M isbifallits non-zero entries are at Hamming distance at rhérstm the diagonal. Applying permutations
on the rows and columns to reduce the bandwidth/aforresponds then to reordering the vertices of a graph
whose adjacency matrix corresponds\ioby replacing all non-zero entries dy

The Bandwidth problem is NP-hard 18], even for trees of nmaxin degree at most three [13] and
caterpillars with hair length at most thrée [16]. Even woeggproximating the bandwidth within a constant
factor is NP-hard, even for caterpillars of degree threg. [BQrther, it is known that the problem is hard for
every fixed level of the W-hierarchi/|[3] and unlikely to beadile inf(b)n°®) time [4].

Faced with this immense intractability, several approadie/e been proposed in the literature for the
Bandwidth problem. The first (polynomial time) approxinoatialgorithm with a polylogarithmic approx-
imation factor was provided by Feige |10]. Later, Dunagad ¥ampala gave a®(log® n+/loglogn)-
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approximation algorithm. The current best approximatitgodthm achieves a® (log? n(log log n)/4)-
approximation factor{ [15]. For largk the best approximation algorithm is the probabilisticoaitnm of
Blum et al. [2] which has arO(y/n/blog n)-approximation factor.

Super-polynomial time approximation algorithms for thenBaidth problem have also been widely
investigated([bl 8,19, 12]. Feige and Talwar|[12], and Cygad Rilipczuk [8] provided subexponential
time approximation schemes for approximating the bandwadtgraphs with small treewidth. For general
graphs, &-approximation algorithm with a running time 61*(3”)@ is easily obtained by combining ideas
from [11] and [12] (as noted in_[5]). Further, Cygahal. [5] provide a3-approximation algorithm with
a running time of0*(2"), which they generalize to @lr — 1)-approximation algorithm (for any positive
integerr) with a running time of0*(2"/7).

Concerning exact exponential time algorithms, the fagtelsthomial space algorithm is still the elegant
O*(10™) time algorithm of Feige[[11]. When allowing exponential spathis bound is improved in a
sequence of algorithms by Cygan and Pilipczuk; tidif5") time algorithm use®*(2") space([6], their
O(4.83") time algorithm use®*(4™) spacel[7], and thei®(4.473™) time algorithm use®)(4.473") space
[8]. The most practical of these algorithms is probably@ig5™) time algorithm as the space requirements
of the other ones seems forbiddingly large for practicaliapfions. The Bandwidth problem can also be
solved exactly irO(n®) time using dynamic programming [19,117].

Another recent approach to cope with the intractability ahBwidth is through the concept bybrid
algorithms, introduced by Vassilevskat al. [21]. They gave an algorithm that after a polynomial time,tes
either computes the minimum bandwidth of a graphin(4™+°(™) time, or provides a polylogarithmic
approximation ratio in polynomial time. This result waseaetty improved by Aminiet al. [1] who give
an algorithm which, after a polynomial time test, either pores the minimum bandwidth of a graph in
O*(4™) time, or provides al(D(log3/2 n)-approximation in polynomial time.

Our Results.  Our main result is &-approximation algorithm for the Bandwidth problem thadigts worst-
case0(1.9797™) time (Theoren 318). This improves tki¥ (3™) time bound achieved by Cygahal. [5] for
the same approximation ratio. Also, the previous Besgpproximation algorithm of Cygan and Pilipczuk [8]
has anO*(2") time bound. Therefore, o@-approximation algorithm is also faster than the previoestb
3-approximation algorithm.

Our algorithm is based on constructing bucket decompositad the input graph. A bucket decomposi-
tion partitions the vertex set of a graph into ordered sethbeg@buckets) of (almost) equal sizes such that all
edges are either incident on vertices in the same bucketwgrtines in two consecutive buckets. The idea is
to find the smallest bucket size for which there exists a bud&eomposition. This giveszapproximation
for the Bandwidth problem (LemmhAs B.2 dnd|3.1). The alguoritises a simple divide-and-conquer strategy
along with dynamic programming to achieve this improvedetinound.

2 Preiminaries

Let G = (V, E) be a graph om vertices. Alinear arrangement of GG is a bijective functionL : V' —
[n] = {1,...,n}, that is a numbering of its vertices frointo n. The stretch of an edge(u, v) is the
absolute difference between the numbers assigned to ipoens|L(u) — L(v)|. Thebandwidth of a linear
arrangement is the maximum stretch over all the edgé€s and thebandwidth of a graph is the minimum
bandwidth over all linear arrangements(of

1The ©* notation is similar to the usual big-Oh notation except faators polynomial im are ignored.



A bucket arrangement of G is a placement of its vertices into buckets such that for esde, its
endpoints are either in the same bucket or in two consechtigkets[12]. The buckets are linearly ordered
and numbered from left to right. apacity vector C is a vector of positive integers. Thength of a capacity
vectorC = (C[1],...,C[k]) is k and itssize is Zle C[i]. Given a capacity vectda? of sizen, aC-bucket
arrangement of GG is a bucket arrangement in which exadfly| vertices are placed in buckgtfor each.
For integers, and/? with ¢ < n/2, an(n, ¢)-capacity vector is a capacity vector

(a,0,0,....0,b)
——

[ 2] -2 times

of sizen such thata,b < ¢. We say that arin, ¢)-capacity vector igeft-packed if « = ¢ andbalanced if
la —b| = 1.

Let X C V be a subset of the vertices Gf We denote by~[X| the subgraph of7 induced onX, and
by G \ X the subgraph ofs induced onl” \ X. Theopen neighborhood of a vertexv is denoted byV¢ (v)
and theopen neighborhood of X is Ng(X) := (U,cx Na(v)) \ X.

3 Exponential Time Algorithmsfor Approximating Bandwidth

We first establish two simple lemmas that show that constryiet bucket arrangement can approximate the
bandwidth of a graph.

Lemma3.1. Let G beagraph onn vertices, and let C bean (n, ¢)-capacity vector. If there exists a C-bucket
arrangement for G then the bandwidth of GG isat most 2¢ — 1.

Proof. Given aC-bucket arrangement f@r, create a linear arrangement respecting the bucket amage
(if uw appears in a smaller numbered bucket thathenZ(u) < L(v)), where vertices in the same bucket are
numbered in an arbitrary order. As the capacity of each sk most/ and each edge spans at most two
consecutive buckets, the maximum edge stretch in the cmtst linear arrangement is at magt— 1. O

Lemma 3.2. Let G be a graph on n vertices, and let C be an (n, ¢)-capacity vector. If there exists no
C-bucket arrangement for G then the bandwidth of G isat least £ + 1.

Proof. Suppose there exists a linear arrangementf G of bandwidth at most. Construct a bucket ar-
rangement placing the fir€{1] vertices ofL into the first bucket, the nex}j2] vertices ofL into the second
bucket, and so on. In the resulting bucket arrangement, ge spgans more than two consecutive buckets.
Therefore, &-bucket arrangement exists faf, a contradiction. O

Note that both the Lemmas_B.2 ahd]3.1 are true even if we cedie vector to be left-packed or
balanced. We will use the previous fastesapproximation algorithm of Cygaet al. [5] as a subroutine.
For completeness, we describe this simple algorithm here.

Proposition 3.3 ([5]). Thereis a polynomial space 2-approximation algorithm for the Bandwidth problem
that takes worst-case O*(3™) time on connected graphs with n vertices.

Proof. Let G be a connected graph envertices. For increasing froml to [n/2], the algorithm does the
following. LetC be an(n, ¢)-capacity vector. The algorithm goes over all the- [% choices for assigning
the first vertex to some bucket. The algorithm then choosamaasigned vertex which has at least one
neighbor that has already been assigned to some bucketm&shiat a neighbor of is assigned to the
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bucketi. Now there are at most three choices of buckeéts (, 7, andi + 1) for assigning vertex.. Some

of these choices may be invalid either because of the cgpemitstraints of the bucket or because of the
previous assignments of (other) neighbors.ofif the choice is valid, the algorithm recurses by assigning
u to that bucket. Let’ be the smallest integer for which the algorithm succeedspine branch, to place
all vertices ofG into buckets in this way. Then, by Lemrhal3@,has bandwidth at mo&¥’ — 1 and by
Lemmal3.2.G has bandwidth at leagt. Thus, the algorithm output®’ — 1, which is a2-approximation
for the bandwidth of7. As the algorithm branches into at m@stases for each of the vertices (except
the first one), and all other computations only contributlympamially to the running time of the algorithm,
this algorithm runs in worst-cas@*(3™) time using only polynomial space. O

We now show another simple algorithm based on a divide-andieer strategy that given gn, ¢)-
capacity vectoC, decides whether @bucket arrangement exists for a connected gi@ph

Proposition 3.4. Let G be a connected graph on n verticesand C be an (n, ¢)-capacity vector with ¢ < n /2.
There exists an algorithm that can decide if G has a C-bucket arrangement in O* ((’g) - (?) 2. 3"/4>
time.

Proof. Letk = [% be the number of buckets in tliebucket arrangement. Number the buckets from
to k& from left to right according to the bucket arrangement. &edebucket index such that the sum of
the capacities of the buckets numbered strictly smaller trend the one for the buckets numbered strictly
larger thani are both at most /2.

The algorithm goes over all possib(@) choices of filling bucket with ¢ vertices. LetX be a set of
¢ vertices assigned to the buckietGiven a connected component Gf\ X, note that all the vertices of
this connected component must be placed either only in bsitke ¢ — 1 or bucketsi + 1 to k. Note that
each connected component®@f\ X contains at least one vertex that is adjacent to a vertex (asG is
connected). Therefore, for each connected componeHt\oX, at least one vertex is placed into the bucket
i — 1 ori+ 1. As the capacity of each bucket is at més& \ X has at mos2¢ connected components,
otherwise there is n6-bucket arrangement whepé is assigned to the buckétThus, there are at mogt’
choices for assigning connected components dfX to the bucketd toi — 1 andi + 1 to k. Some of these
assignments might be invalid as they might violate the aapaonstraints of the buckets. We discard these
invalid assignments.

For each choice oK and each valid assignment of the connected componer@s\aoX to the left or
right of bucketi, we have now obtained two independent subproblems: oneachibm for the buckets
{1,...,i — 1} and one subproblem for the buckdts+ 1, ..., k}. These subproblems have sizes at most
n/2. Consider the subproblem for the buckéts. .., i — 1} (the other one is symmetric) and Btbe the
set of vertices associated to these buckets. A&t Y be the set of vertices ilv that have at least one
neighbor inX. Now, add edges to the subgra@iiy’] such thatZ becomes a clique. This does not change
the problem, as all the vertices Hi must be assigned to the bucket 1, andG[Y'| becomes connected.
This subproblem can be solved recursively, ignoring thotgtisns where vertices i@ are not all assigned
to the bucket — 1.

The algorithm performs the above recursion until it reachdsproblems of size at mosay/4, which
corresponds to two levels in the corresponding search ®edanstances of size at masf4, the algorithm
invokes the algorithm of Propositién_8.3, which takes waesteO* (3"/4) time.

Let 7'(n) be the running time needed for the above procedure to cheekhetha graph with vertices



has a bucket arrangement for @n ¢)-capacity vector. Then,

T(n) < <Z> 222, (né2> 92937400 = o <(;‘> : (né2> 2 3”/4> .

This completes the proof of the proposition. O

Combining Proposition 314 with LemmiasB.1 3.2, we hawédhowing corollary for2-approximating
the bandwidth of a graph.

Corollary 3.5. Thereisan algorithm that, for a connected graph G on n vertices and an integer ¢ < n can
decide whether the bandwidth of G isat least £ + 1 or at most 2¢ — 1 in O* ((’l}) : (”f) 2% 3”/4> time.

Proof. If £ > n/2, the bandwidth of is at most2¢ — 1. Otherwise, use Propositign 8.4 withand some
(n, ¢)-capacity vectot to decide if there exists @bucket arrangement f@. If so, then the bandwidth of
G is at most2/ — 1 by Lemmd3.1L. If not, then the bandwidth Gfis at least + 1 by Lemmd3.P. O

The running time of the algorithm of Corollaky 3.5 is intefeg for small values of. For example if
¢ < n/26, the running time i€2(1.9737™). In the remainder of this section, we improve Proposifich 3.
We now concentrate on the cases whiere [n/¢] < 26.

LetC be an(n, ¢)-capacity vector. Apartial C-bucket arrangement of an induced subgrapf’ of G is a
placement of vertices @ into buckets such that: (a) each vertexGhis assigned to a bucket or to a union
of two consecutive buckets, (b) the endpoints of each edd® iare either in the same bucket or in two
consecutive buckets, and (c) at mG§ vertices are placed in each bucketLet B be a partialC-bucket
arrangement of an induced subgragh We say that a bucketis full in B if the number of vertices that
have been assigned to it equals its capacityC(i]). We say that two consecutive buckeétand: + 1 are
jointly full in B if a vertex subseY” of cardinality equal to the sum of the capacities ahdi + 1 have been
assigned to these buckets (i.e., each vertexY is restricted to belong to the union of bucketsr i + 1,
but which among these two bucket®elongs is not fixed). We say that a buckerigpty in 53 if no vertices
have been assigned to it.

Proposition 3.6. Let GG be a graph on n vertices and C be a capacity vector of size n and length k, where
k isan integer constant. Let B = B(G’) be a partial C-bucket arrangement of some induced subgraph G’
of G such that in B some buckets are full, some pairs of consecutive buckets are jointly full, and all other
buckets are empty. If in 3 no 3 consecutive buckets are empty, then it can be decided if B can be extended to
a C-bucket arrangement in polynomial time.

Proof Outline. LetG = (V, E) andG’ = (V', E'). Letr be the number of connected componenté&/afV’
(the graph induced of \ V), and letV; represent the set of vertices in ttth connected component of
G\ V"

If the bucketi is full in B, let X; denote the set of vertices assigned to it. If the buckersd: + 1 are
jointly full in B, let X; ;11 denote the set of vertices assigned to the union of buckatsli + 1. We use
dynamic programming to start from a partial bucket arrargrgsatisfying the above conditions to construct
aC-bucket arrangement. During its execution, the algoritlsgigns vertices to the buckets which are empty
in B. We only present an outline of the dynamic programming &ligar here. The dynamic programming
algorithm constructs a tablg|. . . ], which has the following indices.

e Anindexp, representing the subproblem on the firsonnected components 6f\ V.



e For every empty bucketin B such that both the buckets- 1 andi + 1 are full, it has an index;,
representing the number of vertices assigned to the bucket

e For every two consecutive empty bucketand: + 1 in B, it has indices; ; 1, z;, andz;1. The
indext; ;11 represents the total number of vertices assigned to theetsicindi + 1. The indexz;
represents the number of vertices assigned to the buckati + 1 that have at least one neighbor in
the bucket — 1. The indexz;,; represents the number of vertices assigned to the buckets + 1
that have at least one neighbor in the buaket2.

e For every two consecutive bucketsi + 1 which are jointly full in 53, it has indicesf; and f;;1
representing the number of vertices assigned to these tsuitied have at least one neighbor in the
bucketi — 1 (f;) or in the bucket + 2 (f;+1).

TableT’[...] is initialized tofalse everywhere, except for the entry corresponding to all-medaes, which
is initialized totrue. The rest of the table is built by increasing valuepafs described below. Here, we
only write those indices that differ in the looked-up tabigries and the computed table entry (i.e., indices
in the table that play no role in a given recursion are omjttéde also ignore the explicit checking of the
invalid indices in the following description. The algorithlooks at the vertices which are neighbors@hn
of the vertices in/, and have already been assigned.

If the vertices inV), have at least one neighbor in each of the full buckets1 and: + 1, have no
neighbors in any other buckets, and buckistempty inB3, then

Tlp,si,...]=Tlp— 1,5 — [V,..].

If the vertices inV, have at least one neighbor in the full buckéts 1 and: + 2, have no neighbors in any
other buckets, and the buckeétandi + 1 are both empty irB, then

false if NGf(XZ'_l) N NG(XZ‘+2) =+ @,
Tlpstiit1, iy Tig1, -] = S Tlp — Litiivr — |Vpl, 2 — [V, N Na(Xi-1)],
zit1 — |Vp N Ng(Xiy2)l, - -] otherwise

If the vertices inV/, have at least one neighbor in the jointly full buckets 2 and: — 1, and at least one
neighbor in the jointly full buckets+ 1 andi + 2, but have no neighbors in any other buckets, and buicket
is empty in3, then

Tp,sis fi1s fix1,--- ] =Tlp— 1,8 = |Vp|, fic1 — [Na(Vp) N Xi—oi—1], fir1 — [Na(Vp) N Xigt1i42], ...

The recursion for the other possibilities whéfghas neighbors in two distinct buckets can now easily be
deduced. We now consider the cases whgraas only neighbors in one bucket. Again, we only describe
some key-cases, from which all other cases can easily beddédu

If the vertices inV,, have only neighbors in the full buckét- 1, and the buckets — 2 and: are both
empty inB, but the buckets — 3 andi + 1 are either full or non-existing, then

T[p7 Si—2,Siy .- ] = T[p — 1,89 — ’%’7 Siy .- ] V T[p —1,8-9,8 — ’%’7 .. ]
If the vertices inV/, have only neighbors in the full buckét- 1, and the buckets— 3, i — 2, 4, andi + 1 are
all empty inj3, then
Tlp,ti-3i-2,%i—2,tiit1,%i,...] =Tp—1,ti 32— |Vp|, w2 — |V, N Na(Xi—1)l, tiit1, 74, .. ]
V Tlp—1,ti 32,22, tiiv1 — Vol s — [Vp N Na(Xi-1)], -]



If the vertices inV}, have only neighbors in the jointly full bucketsand: + 1, and the buckets — 1 and
1 + 2 are both empty i3, but the buckets$ — 2 andi + 3 are either full in3 or non-existing, then

T(p, Si—1, Si+2, fis fit1,--.] =Tp—1,8i-1 — [Vp|, site, fi — INa(Vp) N Xiit1l, fit1,- -]
V Tlp—1,si-1,8i42 — |Vpl, fis fir1 — [Na(Vp) N Xiiqa], .. ]

The final answertfue or false) produced by the algorithm is a disjunction over all tabl&iea whose
indices are as followsp = r, s; = C[i] for every indexs;, t; ;11 = C[i] + C[i + 1] for every indext; ; 1,
x; < C[i] for every indexz;, and f; < C[i] for every indexf;. O

Remark: The dynamic programming algorithm in Propositlon] 3.6 casilgde modified to construct @-
bucket arrangement (from any partial bucket arrangeresutisfying the stated conditions), if one exists.

If the number of buckets is a constant, the following proposiwill be crucial in speeding up the
procedure for assigning connected components to the righedeft of a bucket filled with a vertex séf.
Denote bysc(G) the set of all connected components(ofvith at most,/n vertices and byc(G) the set
of all connected components 6fwith more than,/n vertices. LetV (sc(G)) andV (Ic(G)) denote the set
of all vertices which are in the connected components bétonim sc(G) andlc(G), respectively. We now
make use of the fact that if there are many small components\inX, several of the assignments of the
vertices inV (sc(G \ X)) to the buckets are equivalent.

LetC be a capacity vector of size(i.e., ), C[i] = n) and letB3 be a partial-bucket arrangement of an
induced subgrapt’ of G. LetC’ be the capacity vector obtained frafrby decreasing the capacityi|] of
each bucket by the number of vertices assigned to the buckat5. We say thai3 produces the capacity
vector(’.

Proposition 3.7. Let G = (V, E') be a graph on n vertices. Let C be a capacity vector of size n and length
k, where k is an integer constant. Let j be a bucket and X C V be a subset of C[j] vertices. Consider
all capacity vectors which are produced by the partial C-bucket arrangements of G[V (sc(G \ X)) U X]|
where the vertices in X are always assigned to the bucket j. Then, there exists an algorithm which runs
in O*(3vV") time and takes polynomial space, and enumerates all (distinct) capacity vectors produced by
these partial C-bucket arrangements.

Proof. LetV; be the vertex set of thith connected component sa(G \ X). Let £, denote the list of all
capacity vectors produced by the partiabucket arrangements d}f[Ulngp V; U X] where the vertices in
X are always assigned to the buckeiNote that sincé: is a constant, the number of distinct vectorin
is polynomial (at most*). Then,£; can be obtained by executing the algorithm of Proposii@wo8. the
graphG|[V;] with a capacity vecto€’ which is the same as except that’[i] = 0. In general,C, can be
obtained fromZ,_; by executing the algorithm of Proposition 3.3 on the gr&fi,] for every capacity
vector inL,_;. As the size of each connected componenti&Z \ X) is at most,/n, the resulting running
time isO*(3v™). O

3.1 Exponential Time 2-Approximation Algorithm for Bandwidth

Let G = (V, E) be the input graph. Our algorithm tests all bucket sizé®m 1 to [n/2] until it finds
an (n, ¢)-capacity vectoC such thatG has aC-bucket arrangement. For a givénlet & = [%1 denote the
number of buckets. Our algorithm uses various strategipsriéng on the value df. The case ok = 1is
trivial. If £ = [n/2], we have at most two buckets and any partition of the vertegfsg into sets of sizes
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¢ andn — (is a validC-bucket arrangement. k > 27, Corollary[3.% gives a running time & (1.9737").
For all other values of, we will obtain the running times displayed in Table 1.

Let I}, be the set of all integers lying betweeri(k — 1) andn/k. The basic idea (as illustrated in
Propositio_3.4) is quite simple. The algorithm tries alkgible ways of assigning vertices to the middle
bucket. Once the vertex s&t assigned to the middle bucket is fixed and the algorithm heisleleé for each
connected component ¢f \ X if the connected component is to be assigned to the buckete teft or
to the right of the middle bucket, the problem breaks into imaependent subproblems on buckets which
are to the left and to right of the middle bucket. To get thénotal running time, we build upon this idea
to design individualized techniques for differérg (betweer8 and26). For each case, @ has at least one
C-bucket arrangement for gm, ¢)-capacity vectot, then one such arrangement is constructed. We know
that if G has noC-bucket arrangement for gm, ¢)-capacity vectoC then the bandwidth ofr is at least
¢+ 1 (Lemmal3.2), and if it has one then its bandwidth is at n2dst 1 (Lemmal3.1). Ifk = 8,10, or
12, the algorithm uses a left-packéd, ¢)-capacity vectoC, and otherwise, the algorithm uses a balanced
(n, ¢)-capacity vector.

k = 3. The algorithm goes over all subsetsC V' of cardinality| X| = C[3] < [(n — ¢)/2] with £ € I5.
X is assigned to the buckat If the remaining vertices can be assigned to the buckatsl2 in a way such
that all vertices which are neighbors of the verticeXitiin ) are assigned to the buckgtthenG has aC-
bucket arrangement whefehas lengti8. The worst-case running time for this casenisx ¢z, O*((anl))'

k =4 o0or k=5. The algorithm goes over all subseftsC V with | X| = ¢and/ € I;. X is assigned to
the buckeB. Then, we can conclude using the dynamic programming dlgoroutlined in Proposition 3.6
(see also the remark following it). The worst-case runningetfor these cases aneax ;c;, O*((’g)).

k =6. |If k = 6, the algorithm goes through all subséfsC V' with | X| = 2¢ and? € Is. X is assigned
to the union of bucket8 and4 (i.e., some non-specifiedvertices fromX are assigned to the buck&tand
the remaining vertices ak are assigned to the buckét Then, we can again conclude by the algorithm
outlined in Proposition 3]6. The worst-case running tinrettiis case isnax ¢, O ((5;))-

k = 7. The algorithm goes through all subseétsC V with | X| = ¢ and? € I;. X is assigned to the
bucket4. For each suchX, the algorithm uses Propositibn 3.7 to enumerate all pless#pacity vectors
produced by the partial-bucket arrangements 6f[V (sc(G \ X)) U X] (with X assigned to the buckej.
This step can be done '(ﬁ*(?)\/ﬁ) time. There are only polynomially many such (distinct) aafyavectors.
For each of these capacity vectdr, the algorithm goes through all choices of assigning eacimected
component inc(G \ X) to the bucketd to 3 or to the bucket$ to 7. Thus, we obtain two independent
subproblems on the bucketgo 3 and on the buckets to 7. As the number of number of components in
Ic(G\ X) is at mosty/n (as each connected component has at lgastertices), going through all possible
ways of assigning each connected componemd(i@ \ X) to the buckets numbered smaller or larger than
4 takesO*(Z\/ﬁ) time. Some of these assignments may turn out to be invalid e&ch valid assignment,
let V7 denote the vertex set assigned to the buckets 3. Then, the vertices of; are assigned to the
bucketsl to 3 as described in the case wittbuckets with the capacity vect¢€’(1],C’[2],C’[3]) and with
the additional restriction that all vertices i which are neighbors of the vertices ¥ need to be assigned
to the bucke3. The number of vertices ii; is at most[(n — ¢)/2] (asC is balanced). Now the size of
bucketl is C'[1] < [(n — 5¢)/2]. Letny; = [(n —¥¢)/2] and¢; = [(n — 5¢)/2]. If V; has at least one
valid bucket arrangement in®buckets (with vertices if¥; neighboring the vertices iX assigned to the
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k  Runningtime  Expression

k<2 poly(n)

F=3  O(18899")  max
k=4 O(1.8899")  max
k=5 O(L7548") max

k=26 0(1.9602™) max

k=7 O(1.9797")  max

k=8 O(1.9797")  max

n n
k=10  O(1.8473") maxq (1 )-20vm . (2) L= (") (2] . 90(/®
tel, |\ /¢ 14 5 5
n (n—0) n In
k=11  O(1.7568")  max . 20(/n) = 20 ). 20(v)
fel 12 10 15

k=12  O(1.8415")  max

{
{
{
{
{
{
k=9  O(1.8937") max{
{
{
{
{
{
{

2 4 n n
13<k<23  O1957") max <”> . <”/ ) . (”/ > .Qowﬁ)} _ <Z (g) , (3) 5O
LE T 14 V4 14 15 19 19
n n/2 n/4 n/8 2o
24<k<26 O(1.6869") max - : - 200/ =90V TT (2
Lely, L 14 L / by 35
k>2r 0oy maxd (") (M) asgxl o (M) (3 0% g2
(€T}, 12 / 36 36

Table 1: Running time of the-approximation algorithm for Bandwidth according to themher of buckets
k = [n/l]. I} is the set of all integers lying betweeri(k—1) andn/k. The final running time is dominated
by the cases of = 7 andk = 8 (when/ is close ton /7).



bucket3), then the above step will construct one in worst-o@é(a(;fll)) time. The algorithm uses a similar
approach fol, = V' \ (V4 U X) with the buckets to 7. Since, the algorithm tries out every subdefor
bucket4, the worst-case running time for this case is

maxO* [ (") (3vr L ovn. (™ —max OF [ (™) 00w (™M
lely 12 /q lely 4 /1

k = 8. The algorithm uses a left-packéd, ¢)-capacity vecto€ for this case. The algorithm goes through
all subsetsX C V with | X| = ¢and/ € I5. X is assigned to the buckét The remaining analysis is similar
to the case witlt buckets. Bucket$ to 3 have a joint capacity a3/ (asC is left-packed) and the buckeis
to 8 have a joint capacity af — 4¢. The worst-case running time for this case is

e () -2 mac{ (7). ("1) ):

The terms in the max expression come from the running timethécases witl3 and4 buckets.

k =9o0r k=11. The algorithm goes through all subséfsC V" with | X| = ¢and/ € Ij.. X is assigned
to the bucke{k/2]. As in the previous two cases, Proposifion 3.7 is invokedfidf (sc(G \ X)) U X ] (with
X assigned to the buckeék /2]). For each capacity vector generated by Propodition 3e7aliorithm looks
at every possible way of assigning each connected compaméi{tz \ X) to the bucketd to [k/2] — 1
or to the bucketgk/2] + 1 to k. Each assignment gives rise to two independent subproblerose on
verticesV; assigned to the bucketdo (k—1)/2, and one on verticels, assigned to the buckets+3)/2 to
k (with vertices inV; andV; neighboring the vertices iX assigned to the buckets — 1) /2 and(k +3)/2,
respectively). The algorithm solves these subproblemsrsaely as in the cases withor 5 buckets. Let
n1 = [(n — ¢)/2]. Then, the worst-case running times atex 7, O*((}) - 290/ . ().

k =10 or k =12. The algorithm uses a left-packéd, ¢)-capacity vectolC for these cases. The al-
gorithm goes through all subsed C V with | X| = ¢and?¢ € I;. X is assigned to the buckét/2.
The remaining analysis is similar to the previous cases. ket 10, the worst-case running time is
max ger,, O*((}) - 200/ . ("2)). Fork = 12, the worst-case running timeisax s, O*( () - 200/™) -

max{(%), ("5")})-

13 <k < 26. The algorithm enumerates all subséfsC V" with |X| = ¢ and? € I;. X is assigned to
the bucket{k/2]. As in the previous cases, Proposition] 3.7 is invokedpr (sc(G \ X)) U X]. For each
capacity vector generated by Proposition 3.7, the algorittoks at every possible way of assigning each
connected component In(G \ X) to the bucketd to [k/2] — 1 or to the bucket§k/2] + 1 to k. Each
assignment gives rise to two independent subproblems. dabr @& these two subproblems, the algorithm
proceeds recursively until reaching subproblems with astrAa@onsecutive empty buckets, which can be
solved by Proposition 3.6 in polynomial time. #f< 23, this recursion has depth giving a running time

of
max 0 [ (1) . 200@ . (M2 g0 . (M4 qowm
LETy, 14 l 14

If 24 < k < 26, the recursion has depth giving a running time of
max 0 () 000 . (M2Y sowm . (M4 sowm . (7/BY  yowm
(eI}, 1 l 14 14
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k > 27. By Propositior 3.4 the running time of the algorithm is boedh this case by

max OF n . n/2 . 24€ . 3n/4
Lely, 14 14

Main Result. Putting together all the above arguments (and using the ricamhgalues from Tablgl1) we
get our main result (Theoren_8.8). The running time is doteihdy the cases df = 7 andk = 8. The
algorithm output2/ — 1, where/ is the smallest integer such th@thas a bucket arrangement with an
(n, £)-capacity vector. The algorithm requires only polynomjzce.

If G is disconnected, then the algorithm finds for each connexisgonenty; the smallest; such that
G; has a bucket arrangement corresponding torarv; )-capacity vector and outpu®,,, — 1, wheren; is
the number of vertices i&v; and/,,, = max;{¢;}.

Theorem 3.8 (Main Theorem) There is a polynomial space 2-approximation algorithm for the Bandwidth
problem that takes worst-case O(1.9797™) time on graphs with n vertices.

4 Conclusion

For finding exact solutions, it is known that many problemgsgbbexponential time preserving reductions)
do not admit subexponential time algorithms under the Egpbal Time Hypothesis [14] (a stronger hy-
pothesis than B NP). The Exponential Time Hypothesis supposes that thereasstant such that 3-8t
cannot be solved in tim&(2¢"), wheren is the number of variables of the input formula. We conjeztur
that the Bandwidth problem has no subexponential #ra@proximation algorithm, unless the Exponential
Time Hypothesis fails.
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