
An Exponential Time 2-Approximation Algorithm for Bandwidth

Martin Fürer∗ Serge Gaspers† Shiva Prasad Kasiviswanathan‡

Abstract

The bandwidth of a graphG onn vertices is the minimumb such that the vertices ofG can be labeled
from 1 to n such that the labels of every pair of adjacent vertices differ by at mostb.

In this paper, we present a2-approximation algorithm for the Bandwidth problem that takes worst-
caseO(1.9797n) = O(30.6217n) time and uses polynomial space. This improves both the previous best
2- and3-approximation algorithms of Cyganet al. which have anO∗(3n) andO∗(2n) worst-case time
bounds, respectively. Our algorithm is based on constructing bucket decompositions of the input graph.
A bucket decomposition partitions the vertex set of a graph into ordered sets (calledbuckets) of (almost)
equal sizes such that all edges are either incident on vertices in the same bucket or on vertices in two
consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket decom-
position. The algorithm uses a simple divide-and-conquer strategy along with dynamic programming to
achieve this improved time bound.

1 Introduction

Let G = (V,E) be a graph onn vertices andb be an integer. The Bandwidth problem asks whether the
vertices ofG can be labeled from1 to n such that the labels of every pair of adjacent vertices differ by
at mostb. The Bandwidth problem is a special case of the Subgraph Isomorphism problem, as it can be
formulated as follows: IsG isomorphic to a subgraph ofP b

n? Here,P b
n denotes the graph obtained fromPn

(the path onn vertices) by adding an edge between every pair of vertices atdistance at mostb in Pn.
A typical scenario in which the Bandwidth problem arises is that of minimizing the bandwidth of a

symmetric matrixM to allow for more efficient storing and manipulating procedures [11]. The bandwidth of
M is b if all its non-zero entries are at Hamming distance at mostb from the diagonal. Applying permutations
on the rows and columns to reduce the bandwidth ofM corresponds then to reordering the vertices of a graph
whose adjacency matrix corresponds toM by replacing all non-zero entries by1.

The Bandwidth problem is NP-hard [18], even for trees of maximum degree at most three [13] and
caterpillars with hair length at most three [16]. Even worse, approximating the bandwidth within a constant
factor is NP-hard, even for caterpillars of degree three [20]. Further, it is known that the problem is hard for
every fixed level of the W-hierarchy [3] and unlikely to be solvable inf(b)no(b) time [4].

Faced with this immense intractability, several approaches have been proposed in the literature for the
Bandwidth problem. The first (polynomial time) approximation algorithm with a polylogarithmic approx-
imation factor was provided by Feige [10]. Later, Dunagan and Vempala gave anO(log3 n

√
log log n)-

∗Computer Science and Engineering, Pennsylvania State University, furer@cse.psu.edu. Visiting EPFL Lausanne and Univer-
sität Zürich. Research supported in part by NSF Grant CCF-0728921.

†LIRMM – University of Montpellier 2, CNRS, Montpellier, France, gaspers@lirmm.fr. Partially supported by the Research
Council of Norway (NFR) and by the GRAAL project ANR-06-BLAN-0148 of the French National Research Agency (ANR).

‡Los Alamos National Laboratory, kasivisw@gmail.com.

1

approximation algorithm. The current best approximation algorithm achieves anO(log3 n(log log n)1/4)-
approximation factor [15]. For largeb, the best approximation algorithm is the probabilistic algorithm of
Blum et al. [2] which has anO(

√

n/b log n)-approximation factor.
Super-polynomial time approximation algorithms for the Bandwidth problem have also been widely

investigated [5, 8, 9, 12]. Feige and Talwar [12], and Cygan and Pilipczuk [8] provided subexponential
time approximation schemes for approximating the bandwidth of graphs with small treewidth. For general
graphs, a2-approximation algorithm with a running time ofO∗(3n)1 is easily obtained by combining ideas
from [11] and [12] (as noted in [5]). Further, Cyganet al. [5] provide a3-approximation algorithm with
a running time ofO∗(2n), which they generalize to a(4r − 1)-approximation algorithm (for any positive
integerr) with a running time ofO∗(2n/r).

Concerning exact exponential time algorithms, the fastestpolynomial space algorithm is still the elegant
O∗(10n) time algorithm of Feige [11]. When allowing exponential space, this bound is improved in a
sequence of algorithms by Cygan and Pilipczuk; theirO∗(5n) time algorithm usesO∗(2n) space [6], their
O(4.83n) time algorithm usesO∗(4n) space [7], and theirO(4.473n) time algorithm usesO(4.473n) space
[8]. The most practical of these algorithms is probably theO∗(5n) time algorithm as the space requirements
of the other ones seems forbiddingly large for practical applications. The Bandwidth problem can also be
solved exactly inO(nb) time using dynamic programming [19, 17].

Another recent approach to cope with the intractability of Bandwidth is through the concept ofhybrid
algorithms, introduced by Vassilevskaet al. [21]. They gave an algorithm that after a polynomial time test,
either computes the minimum bandwidth of a graph inO∗(4n+o(n)) time, or provides a polylogarithmic
approximation ratio in polynomial time. This result was recently improved by Aminiet al. [1] who give
an algorithm which, after a polynomial time test, either computes the minimum bandwidth of a graph in
O∗(4n) time, or provides anO(log3/2 n)-approximation in polynomial time.

Our Results. Our main result is a2-approximation algorithm for the Bandwidth problem that takes worst-
caseO(1.9797n) time (Theorem 3.8). This improves theO∗(3n) time bound achieved by Cyganet al. [5] for
the same approximation ratio. Also, the previous best3-approximation algorithm of Cygan and Pilipczuk [8]
has anO∗(2n) time bound. Therefore, our2-approximation algorithm is also faster than the previous best
3-approximation algorithm.

Our algorithm is based on constructing bucket decompositions of the input graph. A bucket decomposi-
tion partitions the vertex set of a graph into ordered sets (calledbuckets) of (almost) equal sizes such that all
edges are either incident on vertices in the same bucket or onvertices in two consecutive buckets. The idea is
to find the smallest bucket size for which there exists a bucket decomposition. This gives a2-approximation
for the Bandwidth problem (Lemmas 3.2 and 3.1). The algorithm uses a simple divide-and-conquer strategy
along with dynamic programming to achieve this improved time bound.

2 Preliminaries

Let G = (V,E) be a graph onn vertices. Alinear arrangement of G is a bijective functionL : V →
[n] = {1, . . . , n}, that is a numbering of its vertices from1 to n. The stretch of an edge(u, v) is the
absolute difference between the numbers assigned to its endpoints|L(u)−L(v)|. Thebandwidth of a linear
arrangement is the maximum stretch over all the edges ofG and thebandwidth of a graph is the minimum
bandwidth over all linear arrangements ofG.

1TheO∗ notation is similar to the usual big-Oh notation except thatfactors polynomial inn are ignored.

2

A bucket arrangement of G is a placement of its vertices into buckets such that for eachedge, its
endpoints are either in the same bucket or in two consecutivebuckets [12]. The buckets are linearly ordered
and numbered from left to right. Acapacity vector C is a vector of positive integers. Thelength of a capacity
vectorC = (C[1], . . . , C[k]) is k and itssize is

∑k
i=1 C[i]. Given a capacity vectorC of sizen, a C-bucket

arrangement of G is a bucket arrangement in which exactlyC[i] vertices are placed in bucketi, for eachi.
For integersn and` with ` < n/2, an(n, `)-capacity vector is a capacity vector

(a, `, `, . . . , `,
︸ ︷︷ ︸

d n

`
e−2 times

b)

of sizen such thata, b ≤ `. We say that an(n, `)-capacity vector isleft-packed if a = ` andbalanced if
|a − b| = 1.

Let X ⊆ V be a subset of the vertices ofG. We denote byG[X] the subgraph ofG induced onX, and
by G \X the subgraph ofG induced onV \ X. Theopen neighborhood of a vertexv is denoted byNG(v)
and theopen neighborhood of X is NG(X) := (

⋃

v∈X NG(v)) \ X.

3 Exponential Time Algorithms for Approximating Bandwidth

We first establish two simple lemmas that show that constructing a bucket arrangement can approximate the
bandwidth of a graph.

Lemma 3.1. Let G be a graph on n vertices, and let C be an (n, `)-capacity vector. If there exists a C-bucket
arrangement for G then the bandwidth of G is at most 2` − 1.

Proof. Given aC-bucket arrangement forG, create a linear arrangement respecting the bucket arrangement
(if u appears in a smaller numbered bucket thanv, thenL(u) < L(v)), where vertices in the same bucket are
numbered in an arbitrary order. As the capacity of each bucket is at most̀ and each edge spans at most two
consecutive buckets, the maximum edge stretch in the constructed linear arrangement is at most2`− 1.

Lemma 3.2. Let G be a graph on n vertices, and let C be an (n, `)-capacity vector. If there exists no
C-bucket arrangement for G then the bandwidth of G is at least ` + 1.

Proof. Suppose there exists a linear arrangementL of G of bandwidth at most̀. Construct a bucket ar-
rangement placing the firstC[1] vertices ofL into the first bucket, the nextC[2] vertices ofL into the second
bucket, and so on. In the resulting bucket arrangement, no edge spans more than two consecutive buckets.
Therefore, aC-bucket arrangement exists forG, a contradiction.

Note that both the Lemmas 3.2 and 3.1 are true even if we restrict the vector to be left-packed or
balanced. We will use the previous fastest2-approximation algorithm of Cyganet al. [5] as a subroutine.
For completeness, we describe this simple algorithm here.

Proposition 3.3 ([5]). There is a polynomial space 2-approximation algorithm for the Bandwidth problem
that takes worst-case O∗(3n) time on connected graphs with n vertices.

Proof. Let G be a connected graph onn vertices. For̀ increasing from1 to dn/2e, the algorithm does the
following. LetC be an(n, `)-capacity vector. The algorithm goes over all thek =

⌈
n
`

⌉
choices for assigning

the first vertex to some bucket. The algorithm then chooses anunassigned vertexu which has at least one
neighbor that has already been assigned to some bucket. Assume that a neighbor ofu is assigned to the

3

bucketi. Now there are at most three choices of buckets (i − 1, i, andi + 1) for assigning vertexu. Some
of these choices may be invalid either because of the capacity constraints of the bucket or because of the
previous assignments of (other) neighbors ofu. If the choice is valid, the algorithm recurses by assigning
u to that bucket. Let̀ ′ be the smallest integer for which the algorithm succeeds, insome branch, to place
all vertices ofG into buckets in this way. Then, by Lemma 3.1,G has bandwidth at most2`′ − 1 and by
Lemma 3.2,G has bandwidth at least`′. Thus, the algorithm outputs2`′ − 1, which is a2-approximation
for the bandwidth ofG. As the algorithm branches into at most3 cases for each of then vertices (except
the first one), and all other computations only contribute polynomially to the running time of the algorithm,
this algorithm runs in worst-caseO∗(3n) time using only polynomial space.

We now show another simple algorithm based on a divide-and-conquer strategy that given an(n, `)-
capacity vectorC, decides whether aC-bucket arrangement exists for a connected graphG.

Proposition 3.4. Let G be a connected graph on n vertices and C be an (n, `)-capacity vector with ` < n/2.

There exists an algorithm that can decide if G has a C-bucket arrangement in O∗
((n

`

)
·
(n/2

`

)
· 24` · 3n/4

)

time.

Proof. Let k =
⌈

n
`

⌉
be the number of buckets in theC-bucket arrangement. Number the buckets from1

to k from left to right according to the bucket arrangement. Select a bucket indexi such that the sum of
the capacities of the buckets numbered strictly smaller than i and the one for the buckets numbered strictly
larger thani are both at mostn/2.

The algorithm goes over all possible
(n

`

)
choices of filling bucketi with ` vertices. LetX be a set of

` vertices assigned to the bucketi. Given a connected component ofG \ X, note that all the vertices of
this connected component must be placed either only in buckets 1 to i − 1 or bucketsi + 1 to k. Note that
each connected component ofG \ X contains at least one vertex that is adjacent to a vertex inX (asG is
connected). Therefore, for each connected component ofG \X, at least one vertex is placed into the bucket
i − 1 or i + 1. As the capacity of each bucket is at most`, G \ X has at most2` connected components,
otherwise there is noC-bucket arrangement whereX is assigned to the bucketi. Thus, there are at most22`

choices for assigning connected components ofG\X to the buckets1 to i−1 andi+1 to k. Some of these
assignments might be invalid as they might violate the capacity constraints of the buckets. We discard these
invalid assignments.

For each choice ofX and each valid assignment of the connected components ofG \ X to the left or
right of bucketi, we have now obtained two independent subproblems: one subproblem for the buckets
{1, . . . , i − 1} and one subproblem for the buckets{i + 1, . . . , k}. These subproblems have sizes at most
n/2. Consider the subproblem for the buckets{1, . . . , i − 1} (the other one is symmetric) and letY be the
set of vertices associated to these buckets. LetZ ⊆ Y be the set of vertices inY that have at least one
neighbor inX. Now, add edges to the subgraphG[Y] such thatZ becomes a clique. This does not change
the problem, as all the vertices inZ must be assigned to the bucketi − 1, andG[Y] becomes connected.
This subproblem can be solved recursively, ignoring those solutions where vertices inZ are not all assigned
to the bucketi − 1.

The algorithm performs the above recursion until it reachessubproblems of size at mostn/4, which
corresponds to two levels in the corresponding search tree.On instances of size at mostn/4, the algorithm
invokes the algorithm of Proposition 3.3, which takes worst-caseO∗(3n/4) time.

Let T (n) be the running time needed for the above procedure to check whether a graph withn vertices

4

has a bucket arrangement for an(n, `)-capacity vector. Then,

T (n) ≤
(

n

`

)

· 22` · 2 ·
(

n/2

`

)

· 22` · 2 · 3n/4 · nO(1) = O∗
((

n

`

)

·
(

n/2

`

)

· 24` · 3n/4

)

.

This completes the proof of the proposition.

Combining Proposition 3.4 with Lemmas 3.1 and 3.2, we have the following corollary for2-approximating
the bandwidth of a graph.

Corollary 3.5. There is an algorithm that, for a connected graph G on n vertices and an integer ` ≤ n can

decide whether the bandwidth of G is at least ` + 1 or at most 2` − 1 in O∗
((n

`

)
·
(n/2

`

)
· 24` · 3n/4

)

time.

Proof. If ` ≥ n/2, the bandwidth ofG is at most2` − 1. Otherwise, use Proposition 3.4 withG and some
(n, `)-capacity vectorC to decide if there exists aC-bucket arrangement forG. If so, then the bandwidth of
G is at most2` − 1 by Lemma 3.1. If not, then the bandwidth ofG is at least̀ + 1 by Lemma 3.2.

The running time of the algorithm of Corollary 3.5 is interesting for small values of̀ . For example if
` ≤ n/26, the running time isO(1.9737n). In the remainder of this section, we improve Proposition 3.4.
We now concentrate on the cases wherek = dn/`e ≤ 26.

Let C be an(n, `)-capacity vector. Apartial C-bucket arrangement of an induced subgraphG′ of G is a
placement of vertices ofG′ into buckets such that: (a) each vertex inG′ is assigned to a bucket or to a union
of two consecutive buckets, (b) the endpoints of each edge inG′ are either in the same bucket or in two
consecutive buckets, and (c) at mostC[i] vertices are placed in each bucketi. Let B be a partialC-bucket
arrangement of an induced subgraphG′. We say that a bucketi is full in B if the number of vertices that
have been assigned to it equals its capacity (= C[i]). We say that two consecutive bucketsi andi + 1 are
jointly full in B if a vertex subsetY of cardinality equal to the sum of the capacities ofi andi + 1 have been
assigned to these buckets (i.e., each vertexv ∈ Y is restricted to belong to the union of bucketsi or i + 1,
but which among these two bucketsv belongs is not fixed). We say that a bucket isempty in B if no vertices
have been assigned to it.

Proposition 3.6. Let G be a graph on n vertices and C be a capacity vector of size n and length k, where
k is an integer constant. Let B = B(G′) be a partial C-bucket arrangement of some induced subgraph G′

of G such that in B some buckets are full, some pairs of consecutive buckets are jointly full, and all other
buckets are empty. If in B no 3 consecutive buckets are empty, then it can be decided if B can be extended to
a C-bucket arrangement in polynomial time.

Proof Outline. Let G = (V,E) andG′ = (V ′, E′). Let r be the number of connected components ofG \V ′

(the graph induced onV \ V ′), and letVl represent the set of vertices in thelth connected component of
G \ V ′.

If the bucketi is full in B, let Xi denote the set of vertices assigned to it. If the bucketsi andi + 1 are
jointly full in B, let Xi,i+1 denote the set of vertices assigned to the union of bucketsi andi + 1. We use
dynamic programming to start from a partial bucket arrangement satisfying the above conditions to construct
aC-bucket arrangement. During its execution, the algorithm assigns vertices to the buckets which are empty
in B. We only present an outline of the dynamic programming algorithm here. The dynamic programming
algorithm constructs a tableT [. . .], which has the following indices.

• An indexp, representing the subproblem on the firstp connected components ofG \ V ′.

5

• For every empty bucketi in B such that both the bucketsi − 1 andi + 1 are full, it has an indexsi,
representing the number of vertices assigned to the bucketi.

• For every two consecutive empty bucketsi and i + 1 in B, it has indicesti,i+1, xi, andxi+1. The
index ti,i+1 represents the total number of vertices assigned to the bucketsi andi + 1. The indexxi

represents the number of vertices assigned to the bucketsi andi+ 1 that have at least one neighbor in
the bucketi− 1. The indexxi+1 represents the number of vertices assigned to the bucketsi andi + 1
that have at least one neighbor in the bucketi + 2.

• For every two consecutive bucketsi, i + 1 which are jointly full in B, it has indicesfi and fi+1

representing the number of vertices assigned to these buckets that have at least one neighbor in the
bucketi − 1 (fi) or in the bucketi + 2 (fi+1).

TableT [. . .] is initialized tofalse everywhere, except for the entry corresponding to all-zeroindices, which
is initialized totrue. The rest of the table is built by increasing values ofp as described below. Here, we
only write those indices that differ in the looked-up table entries and the computed table entry (i.e., indices
in the table that play no role in a given recursion are omitted). We also ignore the explicit checking of the
invalid indices in the following description. The algorithm looks at the vertices which are neighbors (inG)
of the vertices inVp and have already been assigned.

If the vertices inVp have at least one neighbor in each of the full bucketsi − 1 and i + 1, have no
neighbors in any other buckets, and bucketi is empty inB, then

T [p, si, . . .] = T [p − 1, si − |Vp|, . . .].

If the vertices inVp have at least one neighbor in the full bucketsi − 1 andi + 2, have no neighbors in any
other buckets, and the bucketsi andi + 1 are both empty inB, then

T [p, ti,i+1, xi, xi+1, . . .] =







false if NG(Xi−1) ∩ NG(Xi+2) 6= ∅,
T [p − 1, ti,i+1 − |Vp|, xi − |Vp ∩ NG(Xi−1)|,

xi+1 − |Vp ∩ NG(Xi+2)|, . . .] otherwise.

If the vertices inVp have at least one neighbor in the jointly full bucketsi− 2 andi− 1, and at least one
neighbor in the jointly full bucketsi + 1 andi + 2, but have no neighbors in any other buckets, and bucketi
is empty inB, then

T [p, si, fi−1, fi+1, . . .] = T [p − 1, si − |Vp|, fi−1 − |NG(Vp) ∩ Xi−2,i−1|, fi+1 − |NG(Vp) ∩ Xi+1,i+2|, . . .].

The recursion for the other possibilities whereVp has neighbors in two distinct buckets can now easily be
deduced. We now consider the cases whereVp has only neighbors in one bucket. Again, we only describe
some key-cases, from which all other cases can easily be deduced.

If the vertices inVp have only neighbors in the full bucketi − 1, and the bucketsi − 2 andi are both
empty inB, but the bucketsi − 3 andi + 1 are either full or non-existing, then

T [p, si−2, si, . . .] = T [p − 1, si−2 − |Vp|, si, . . .] ∨ T [p − 1, si−2, si − |Vp|, . . .].

If the vertices inVp have only neighbors in the full bucketi− 1, and the bucketsi− 3, i− 2, i, andi + 1 are
all empty inB, then

T [p, ti−3,i−2, xi−2, ti,i+1, xi, . . .] = T [p − 1, ti−3,i−2 − |Vp|, xi−2 − |Vp ∩ NG(Xi−1)|, ti,i+1, xi, . . .]

∨ T [p − 1, ti−3,i−2, xi−2, ti,i+1 − |Vp|, xi − |Vp ∩ NG(Xi−1)|, . . .].

6

If the vertices inVp have only neighbors in the jointly full bucketsi andi + 1, and the bucketsi − 1 and
i + 2 are both empty inB, but the bucketsi − 2 andi + 3 are either full inB or non-existing, then

T [p, si−1, si+2, fi, fi+1, . . .] = T [p − 1, si−1 − |Vp|, si+2, fi − |NG(Vp) ∩ Xi,i+1|, fi+1, . . .]

∨ T [p − 1, si−1, si+2 − |Vp|, fi, fi+1 − |NG(Vp) ∩ Xi,i+1|, . . .].

The final answer (true or false) produced by the algorithm is a disjunction over all table entries whose
indices are as follows:p = r, si = C[i] for every indexsi, ti,i+1 = C[i] + C[i + 1] for every indexti,i+1,
xi ≤ C[i] for every indexxi, andfi ≤ C[i] for every indexfi.

Remark: The dynamic programming algorithm in Proposition 3.6 can easily be modified to construct aC-
bucket arrangement (from any partial bucket arrangementB satisfying the stated conditions), if one exists.

If the number of buckets is a constant, the following proposition will be crucial in speeding up the
procedure for assigning connected components to the right or the left of a bucket filled with a vertex setX.
Denote bysc(G) the set of all connected components ofG with at most

√
n vertices and bylc(G) the set

of all connected components ofG with more than
√

n vertices. LetV (sc(G)) andV (lc(G)) denote the set
of all vertices which are in the connected components belonging to sc(G) andlc(G), respectively. We now
make use of the fact that if there are many small components inG \ X, several of the assignments of the
vertices inV (sc(G \ X)) to the buckets are equivalent.

Let C be a capacity vector of sizen (i.e.,
∑

i C[i] = n) and letB be a partialC-bucket arrangement of an
induced subgraphG′ of G. Let C′ be the capacity vector obtained fromC by decreasing the capacityC[i] of
each bucketi by the number of vertices assigned to the bucketi in B. We say thatB produces the capacity
vectorC′.

Proposition 3.7. Let G = (V,E) be a graph on n vertices. Let C be a capacity vector of size n and length
k, where k is an integer constant. Let j be a bucket and X ⊆ V be a subset of C[j] vertices. Consider
all capacity vectors which are produced by the partial C-bucket arrangements of G[V (sc(G \ X)) ∪ X]
where the vertices in X are always assigned to the bucket j. Then, there exists an algorithm which runs
in O∗(3

√
n) time and takes polynomial space, and enumerates all (distinct) capacity vectors produced by

these partial C-bucket arrangements.

Proof. Let Vl be the vertex set of thelth connected component insc(G \ X). Let Lp denote the list of all
capacity vectors produced by the partialC-bucket arrangements ofG[

⋃

1≤l≤p Vl ∪ X] where the vertices in
X are always assigned to the bucketj. Note that sincek is a constant, the number of distinct vectors inLp

is polynomial (at mostnk). Then,L1 can be obtained by executing the algorithm of Proposition 3.3 on the
graphG[V1] with a capacity vectorC′ which is the same asC except thatC′[i] = 0. In general,Lp can be
obtained fromLp−1 by executing the algorithm of Proposition 3.3 on the graphG[Vp] for every capacity
vector inLp−1. As the size of each connected component insc(G \X) is at most

√
n, the resulting running

time isO∗(3
√

n).

3.1 Exponential Time 2-Approximation Algorithm for Bandwidth

Let G = (V,E) be the input graph. Our algorithm tests all bucket sizes` from 1 to dn/2e until it finds
an(n, `)-capacity vectorC such thatG has aC-bucket arrangement. For a given`, let k =

⌈
n
`

⌉
denote the

number of buckets. Our algorithm uses various strategies depending on the value ofk. The case ofk = 1 is
trivial. If ` = dn/2e, we have at most two buckets and any partition of the vertex set of G into sets of sizes

7

` andn− ` is a validC-bucket arrangement. Ifk ≥ 27, Corollary 3.5 gives a running time ofO∗(1.9737n).
For all other values ofk, we will obtain the running times displayed in Table 1.

Let Ik be the set of all integers lying betweenn/(k − 1) andn/k. The basic idea (as illustrated in
Proposition 3.4) is quite simple. The algorithm tries all possible ways of assigning vertices to the middle
bucket. Once the vertex setX assigned to the middle bucket is fixed and the algorithm has decided for each
connected component ofG \ X if the connected component is to be assigned to the buckets tothe left or
to the right of the middle bucket, the problem breaks into twoindependent subproblems on buckets which
are to the left and to right of the middle bucket. To get the claimed running time, we build upon this idea
to design individualized techniques for differentks (between3 and26). For each case, ifG has at least one
C-bucket arrangement for an(n, `)-capacity vectorC, then one such arrangement is constructed. We know
that if G has noC-bucket arrangement for an(n, `)-capacity vectorC then the bandwidth ofG is at least
` + 1 (Lemma 3.2), and if it has one then its bandwidth is at most2` − 1 (Lemma 3.1). Ifk = 8, 10, or
12, the algorithm uses a left-packed(n, `)-capacity vectorC, and otherwise, the algorithm uses a balanced
(n, `)-capacity vectorC.

k = 3. The algorithm goes over all subsetsX ⊆ V of cardinality|X| = C[3] ≤ d(n − `)/2e with ` ∈ I3.
X is assigned to the bucket3. If the remaining vertices can be assigned to the buckets1 and2 in a way such
that all vertices which are neighbors of the vertices inX (in G) are assigned to the bucket2, thenG has aC-
bucket arrangement whereC has length3. The worst-case running time for this case ismax `∈I3 O∗(

(n
|X|

)
).

k = 4 or k = 5. The algorithm goes over all subsetsX ⊆ V with |X| = ` and` ∈ Ik. X is assigned to
the bucket3. Then, we can conclude using the dynamic programming algorithm outlined in Proposition 3.6
(see also the remark following it). The worst-case running time for these cases aremax `∈Ik

O∗(
(
n
`

)
).

k = 6. If k = 6, the algorithm goes through all subsetsX ⊆ V with |X| = 2` and` ∈ I6. X is assigned
to the union of buckets3 and4 (i.e., some non-specified̀vertices fromX are assigned to the bucket3, and
the remaining vertices ofX are assigned to the bucket4). Then, we can again conclude by the algorithm
outlined in Proposition 3.6. The worst-case running time for this case ismax `∈I6 O∗ ((n

2`

))
.

k = 7. The algorithm goes through all subsetsX ⊆ V with |X| = ` and` ∈ I7. X is assigned to the
bucket4. For each suchX, the algorithm uses Proposition 3.7 to enumerate all possible capacity vectors
produced by the partialC-bucket arrangements ofG[V (sc(G \X))∪X] (with X assigned to the bucket4).
This step can be done inO∗(3

√
n) time. There are only polynomially many such (distinct) capacity vectors.

For each of these capacity vectorC′, the algorithm goes through all choices of assigning each connected
component inlc(G \ X) to the buckets1 to 3 or to the buckets5 to 7. Thus, we obtain two independent
subproblems on the buckets1 to 3 and on the buckets5 to 7. As the number of number of components in
lc(G \X) is at most

√
n (as each connected component has at least

√
n vertices), going through all possible

ways of assigning each connected component inlc(G \ X) to the buckets numbered smaller or larger than
4 takesO∗(2

√
n) time. Some of these assignments may turn out to be invalid. For each valid assignment,

let V1 denote the vertex set assigned to the buckets1 to 3. Then, the vertices ofV1 are assigned to the
buckets1 to 3 as described in the case with3 buckets with the capacity vector(C′[1], C′[2], C′[3]) and with
the additional restriction that all vertices inV1 which are neighbors of the vertices inX need to be assigned
to the bucket3. The number of vertices inV1 is at mostd(n − `)/2e (asC is balanced). Now the size of
bucket1 is C′[1] ≤ d(n − 5`)/2e. Let n1 = d(n − `)/2e and`1 = d(n − 5`)/2e. If V1 has at least one
valid bucket arrangement into3 buckets (with vertices inV1 neighboring the vertices inX assigned to the

8

k Running time Expression

k ≤ 2 poly(n)

k = 3 O(1.8899n) max
`∈I3

{(
n

n−`

2

)}

=

(
n
n

3

)

k = 4 O(1.8899n) max
`∈I4

{(
n

`

)}

=

(
n
n

3

)

k = 5 O(1.7548n) max
`∈I5

{(
n

`

)}

=

(
n
n

4

)

k = 6 O(1.9602n) max
`∈I6

{(
n

2`

)}

=

(
n
2n

5

)

k = 7 O(1.9797n) max
`∈I7

{(
n

`

)

· 2O(
√

n) ·
((n−`)

2
(n−5`)

2

)}

=

(
n
n

7

)

·
(3n

7
n

7

)

· 2O(
√

n)

k = 8 O(1.9797n) max
`∈I8

{(
n

`

)

· 2O(
√

n) · max

{(
3`

`

)

,

(
n − 4`

`

)}}

=

(
n
n

7

)

·
(3n

7
n

7

)

· 2O(
√

n)

k = 9 O(1.8937n) max
`∈I9

{(
n

`

)

· 2O(
√

n) ·
((n−`)

2

`

)}

=

(
n
n

8

)

·
(7n

18
n

8

)

· 2O(
√

n)

k = 10 O(1.8473n) max
`∈I10

{(
n

`

)

· 2O(
√

n) ·
(

n

2

`

)}

=

(
n
n

9

)

·
(

n

2
n

9

)

· 2O(
√

n)

k = 11 O(1.7568n) max
`∈I11

{(
n

`

)

· 2O(
√

n) ·
((n−`)

2

`

)}

=

(
n
n

10

)

·
(9n

20
n

10

)

· 2O(
√

n)

k = 12 O(1.8415n) max
`∈I12

{(
n

`

)

· 2O(
√

n) · max

{(
5`

`

)

,

(
n − 6`

2`

)}}

=

(
n
n

11

)

·
(5n

11
2n

11

)

· 2O(
√

n)

13 ≤ k ≤ 23 O(1.9567n) max
`∈Ik

{(
n

`

)

·
(

n/2

`

)

·
(

n/4

`

)

· 2O(
√

n)

}

=

(
n
n

12

)

·
(

n

2
n

12

)

·
(

n

4
n

12

)

· 2O(
√

n)

24 ≤ k ≤ 26 O(1.6869n) max
`∈Ik

{(
n

`

)

·
(

n/2

`

)

·
(

n/4

`

)

·
(

n/8

`

)

· 2O(
√

n)

}

= 2O(
√

n) ·
3∏

i=0

(
n

2i

n

23

)

k ≥ 27 O(1.9737n) max
`∈Ik

{(
n

`

)

·
(

n/2

`

)

· 24` · 3 n

4

}

=

(
n
n

26

)

·
(

n

2
n

26

)

· 2 2n

13 · 3 n

4

Table 1: Running time of the2-approximation algorithm for Bandwidth according to the number of buckets
k = dn/`e. Ik is the set of all integers lying betweenn/(k−1) andn/k. The final running time is dominated
by the cases ofk = 7 andk = 8 (when` is close ton/7).

9

bucket3), then the above step will construct one in worst-caseO∗(
(n1

`1

)
) time. The algorithm uses a similar

approach forV2 = V \ (V1 ∪ X) with the buckets5 to 7. Since, the algorithm tries out every subsetX for
bucket4, the worst-case running time for this case is

max
`∈I7

O∗
((

n

`

)

·
(

3
√

n + 2
√

n ·
(

n1

`1

)))

= max
`∈I7

O∗
((

n

`

)

· 2O(
√

n) ·
(

n1

`1

))

.

k = 8. The algorithm uses a left-packed(n, `)-capacity vectorC for this case. The algorithm goes through
all subsetsX ⊆ V with |X| = ` and` ∈ I8. X is assigned to the bucket4. The remaining analysis is similar
to the case with7 buckets. Buckets1 to 3 have a joint capacity of3` (asC is left-packed) and the buckets5
to 8 have a joint capacity ofn − 4`. The worst-case running time for this case is

max
`∈I8

O∗
((

n

`

)

· 2O(
√

n) · max

{(
3`

`

)

,

(
n − 4`

`

)})

.

The terms in the max expression come from the running times for the cases with3 and4 buckets.

k = 9 or k = 11. The algorithm goes through all subsetsX ⊆ V with |X| = ` and` ∈ Ik. X is assigned
to the bucketdk/2e. As in the previous two cases, Proposition 3.7 is invoked forG[V (sc(G\X))∪X] (with
X assigned to the bucketdk/2e). For each capacity vector generated by Proposition 3.7, the algorithm looks
at every possible way of assigning each connected componentin lc(G \ X) to the buckets1 to dk/2e − 1
or to the bucketsdk/2e + 1 to k. Each assignment gives rise to two independent subproblems— one on
verticesV1 assigned to the buckets1 to (k−1)/2, and one on verticesV2 assigned to the buckets(k+3)/2 to
k (with vertices inV1 andV2 neighboring the vertices inX assigned to the buckets(k−1)/2 and(k +3)/2,
respectively). The algorithm solves these subproblems recursively as in the cases with4 or 5 buckets. Let
n1 = d(n − `)/2e. Then, the worst-case running times aremax `∈Ik

O∗(
(n

`

)
· 2O(

√
n) ·

(n1

`

)
).

k = 10 or k = 12. The algorithm uses a left-packed(n, `)-capacity vectorC for these cases. The al-
gorithm goes through all subsetsX ⊆ V with |X| = ` and ` ∈ Ik. X is assigned to the bucketk/2.
The remaining analysis is similar to the previous cases. Fork = 10, the worst-case running time is
max `∈I10 O∗(

(n
`

)
· 2O(

√
n) ·

(n/2
`

)
). Fork = 12, the worst-case running time ismax `∈I12 O∗(

(n
`

)
· 2O(

√
n) ·

max{
(5`

`

)
,
(n−6`

2`

)
}).

13 ≤ k ≤ 26. The algorithm enumerates all subsetsX ⊆ V with |X| = ` and` ∈ Ik. X is assigned to
the bucketdk/2e. As in the previous cases, Proposition 3.7 is invoked forG[V (sc(G \ X)) ∪ X]. For each
capacity vector generated by Proposition 3.7, the algorithm looks at every possible way of assigning each
connected component inlc(G \ X) to the buckets1 to dk/2e − 1 or to the bucketsdk/2e + 1 to k. Each
assignment gives rise to two independent subproblems. For each of these two subproblems, the algorithm
proceeds recursively until reaching subproblems with at most 2 consecutive empty buckets, which can be
solved by Proposition 3.6 in polynomial time. Ifk ≤ 23, this recursion has depth3, giving a running time
of

max
`∈Ik

O∗
((

n

`

)

· 2O(
√

n) ·
(

n/2

`

)

· 2O(
√

n) ·
(

n/4

`

)

· 2O(
√

n)

)

.

If 24 ≤ k ≤ 26, the recursion has depth4, giving a running time of

max
`∈Ik

O∗
((

n

`

)

· 2O(
√

n) ·
(

n/2

`

)

· 2O(
√

n) ·
(

n/4

`

)

· 2O(
√

n) ·
(

n/8

`

)

· 2O(
√

n)

)

.

10

k ≥ 27. By Proposition 3.4 the running time of the algorithm is bounded in this case by

max
`∈Ik

O∗
((

n

`

)

·
(

n/2

`

)

· 24` · 3n/4

)

.

Main Result. Putting together all the above arguments (and using the numerical values from Table 1) we
get our main result (Theorem 3.8). The running time is dominated by the cases ofk = 7 andk = 8. The
algorithm outputs2` − 1, where` is the smallest integer such thatG has a bucket arrangement with an
(n, `)-capacity vector. The algorithm requires only polynomial space.

If G is disconnected, then the algorithm finds for each connectedcomponentGi the smallest̀ i such that
Gi has a bucket arrangement corresponding to an(ni, `i)-capacity vector and outputs2`m − 1, whereni is
the number of vertices inGi and`m = maxi{`i}.

Theorem 3.8 (Main Theorem). There is a polynomial space 2-approximation algorithm for the Bandwidth
problem that takes worst-case O(1.9797n) time on graphs with n vertices.

4 Conclusion

For finding exact solutions, it is known that many problems (by subexponential time preserving reductions)
do not admit subexponential time algorithms under the Exponential Time Hypothesis [14] (a stronger hy-
pothesis than P6= NP). The Exponential Time Hypothesis supposes that there isa constantc such that 3-SAT

cannot be solved in timeO(2cn), wheren is the number of variables of the input formula. We conjecture
that the Bandwidth problem has no subexponential time2-approximation algorithm, unless the Exponential
Time Hypothesis fails.

References

[1] O. Amini, F. V. Fomin, and S. Saurabh, Counting Subgraphsvia Homomorphisms, Proceedings of ICALP 2009,
to appear.

[2] A. Blum, G. Konjevod, R. Ravi, and S. Vempala, Semi-Definite Relaxations for Minimum Bandwidth and other
Vertex-Ordering problems,Theor. Comput. Sci. 235(1), 25–42 (2000).

[3] H. L. Bodlaender, M. R. Fellows, and M. T. Hallett, BeyondNP-completeness for Problems of Bounded Width:
Hardness for the W-hierarchy, Proceedings of STOC 1994, 449–458 (1994).

[4] J. Chen, X. Huang, I. A. Kanj, and G. Xia, Linear FPT Reductions and Computational Lower Bounds, Proceed-
ings of STOC 2004, 212–221 (2004).

[5] M. Cygan, L. Kowalik, M. Pilipczuk, and M. Wykurz, Exponential-time Approximation of Hard Problems,
Technical Report abs/0810.4934, arXiv, CoRR (2008).

[6] M. Cygan and M. Pilipczuk, Faster Exact Bandwidth, Proceedings of WG 2008, 101–109 (2008).

[7] M. Cygan and M. Pilipczuk, Even Faster Exact Bandwidth, Technical Report abs/0902.1661, arXiv, CoRR
(2009).

[8] M. Cygan and M. Pilipczuk, Exact and approximate Bandwidth, Proceedings of ICALP 2009, to appear.

[9] J. Dunagan and S. Vempala, On Euclidean Embeddings and Bandwidth Minimization, Proceedings of
RANDOM-APPROX 2001, 229–240 (2001).

11

[10] U. Feige, Approximating the Bandwidth via Volume Respecting Embeddings, J. Comput. Syst. Sci. 60(3),
510–539 (2000).

[11] U. Feige, Coping with the NP-Hardness of the Graph Bandwidth Problem, Proceedings of SWAT 2000, 10–19
(2000).

[12] U. Feige and K. Talwar, Approximating the Bandwidth of Caterpillars, Proceedings of APPROX-RANDOM
2005, 62–73 (2005).

[13] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth, Complexity Results for Bandwidth Minimization,
SIAM J. on Applied Mathematics 34(3), 477-495 (1978).

[14] R. Impagliazzo and R. Paturi, On the Complexity of k-SAT, J. Comput. Syst. Sci. 62(2), 367–375 (2001).

[15] J. R. Lee, Volume Distortion for subsets of Euclidean Spaces,Discrete Comput. Geom. 41(4), 590–615 (2009).

[16] B. Monien, The Bandwidth Minimization Problem for Caterpillars with Hair Length 3 is NP-complete,SIAM J.
on Algebraic and Discrete Methods 7(4), 505-512 (1986).

[17] B. Monien and I. H. Sudborough, Bandwidth Problems in Graphs, Proceedings of Allerton Conference on
Communication, Control, and Computing 1980, 650–659 (1980).

[18] C. Papadimitriou, The NP-completeness of the Bandwidth Minimization Problem, Computing 16, 263–270
(1976).

[19] J. Saxe, Dynamic Programming Algorithms for Recognizing Small-bandwidth Graphs in Polynomial Time,
SIAM J. Algebraic Methods 1, 363–369 (1980).

[20] W. Unger, The Complexity of the Approximation of the Bandwidth Problem, Proceedings of FOCS 1998, 82–91
(1998).

[21] V. Vassilevska, R. Williams, and S. L. M. Woo, Confronting Hardness using a Hybrid Approach, Proceedings
of SODA 2006, 1-10 (2006).

12

	Introduction
	Preliminaries
	Exponential Time Algorithms for Approximating Bandwidth
	Exponential Time 2-Approximation Algorithm for Bandwidth

	Conclusion

