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Abstract. We study the Hospitals/Residents with Couples problem, a
variant of the classical Stable Marriage problem. This is the extension
of the Hospitals/Residents problem where residents are allowed to form
pairs and submit joint rankings over hospitals. We use the framework of
parameterized complexity, considering the number of couples as a param-
eter. We also apply a local search approach, and examine the possibili-
ties for giving FPT algorithms applicable in this context. Furthermore,
we also investigate the matching problem containing couples that is the
simplified version of the Hospitals/Residents problem modeling the case
when no preferences are given.

1 Introduction

The classical Hospitals/Residents problem (which is a generalization of the well-
known Stable Marriage problem) was introduced by Gale and Shapley [6] to
model the following situation. We are given a set of hospitals, each having a
number of open positions, and a set of residents applying for jobs in the hospitals.
Each resident has a ranking over the hospitals, and conversely, each hospital
has a ranking over the residents. Our aim is to assign as many residents to a
hospital as possible, with the restrictions that the capacities of the hospitals are
not exceeded and the resulting assignment is stable (no hospital-resident pair
would benefit from rejecting the assignment and contracting each other).

The original version of the Hospitals/Residents problem is well understood: a
stable assignment always exists, and every stable assignment has the same size.
(The size of an assignment is the number of residents that have a job.) Moreover,
the classical Gale-Shapley algorithm [6] can find a stable assignment in linear
time. However, several practical applications motivate some kind of extension or
modification of the problem (see e.g. the NRMP program for assigning medical
residents in the USA [17, 18]), and in the recent decade various versions have been
investigated. We study an extension of this problem, called Hospitals/Residents
with Couples (or HRC), where residents may form couples, and thus have joint
rankings over the hospitals. This extension models a situation that arises in
many real world applications [18], and was introduced by Roth [17] who also
discovered that a stable assignment need not exist when couples are involved.



Later, Ronn [16] proved that it is NP-hard to decide whether a stable assignment
exists in such a setting. There have been investigations of different assumptions
on the preferences of couples that guarantee some kind of tractability [10, 14].

Algorithmic approaches. In the Hospitals/Residents problem, practical
scenarios usually involve much fewer couples than singles, e.g. the ratio of couples
to singles participating in the NRMP program is around 2.5 percent1. Thus, the
number of couples in the HRC problem is a natural parameter. Investigating the
parameterized complexity of HRC with this parameter is our first goal.

Local search is a basic technique that has been widely applied in heuristics
for practical optimization problems for several decades [1]. However, investiga-
tions considering the connection of local search and parameterized algorithms
have only been started a few years ago, and research in this area has been gain-
ing increasing attention lately [12]. The basic idea of local search is to find an
optimal solution by an iteration in which we improve the current solution step
by step through local modifications. Local search can become more efficient if we
can decide whether there exists a better solution S ′ that is ` modification steps
away from a given solution S. Typically, the `-neighborhood of a solution S can
be explored in nO(`) time by examining all possibilities to find those parts of S
that should be modified. (Here n is the input size.) The question whether an
FPT algorithm with parameter ` can be found for the neighborhood exploration
problem has already been studied in connection with different optimization prob-
lems ([9, 13, 4]). Our second goal is to investigate this approach for assignment
problems.

We also contribute to the framework of parameterized local search algorithms
by distinguishing between “strict” algorithms that perform the local search step
in some neighborhood of a solution as described above, and “permissive” algo-
rithms whose task is the following: given some problem with an initial solution
S, find any better solution, provided that a better solution exists in the local
neighborhood of S. Our motivation for this distinction is that finding an im-
proved solution in the neighborhood of a given solution may be hard, even for
problems where an optimal solution is easily found.

Most of the questions examined here are also worth studying in a simplified
model that does not involve preferences. In the Maximum Matching with Couples
problem, or shortly MMC, no stability requirement is given, and we aim for an
assignment of maximum size.

Results. For lack of space, we stated some of our results without proof, see
Appendix for these proofs. Our main results are outlined below (see Table 1).
We denote by C the set of couples in a problem instance, and we denote by `
the neighborhood size in a given local search problem.

– Theorem 1 gives a randomized FPT algorithm with parameter |C| for Max-
imum Matchig with Couples. The presented algorithm uses an FPT result
from matroid theory.

– Theorem 3 shows that no permissive local search FPT algorithm exists for
MMC, where the parameter is `, unless W[1] = FPT.

1 http://www.nrmp.org/data/resultsanddata2008.pdf
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Task: Existence Maximum Local search algorithm
problem problem with FPT running time

Parameter: |C| ` (|C|, `)

MMC P randomized FPT No permissive alg. Permissive alg.
(no pref’s) (trivial) (Theorem 1) (Theorem 3) (Theorem 1)

HRC W[1]-hard W[1]-hard No permissive alg. Strict alg.
(with pref’s) (Theorem 4) (Theorem 4) (Theorem 5) (Theorem 7)

Table 1. Summary of our results (assuming W[1] 6= FPT).

– Theorem 4 proves that the existence version of the HRC problem is W[1]-
hard with parameter |C|.

– Theorem 5 shows that no permissive local search FPT algorithm exists for
the maximization version of HRC with parameter `, unless W[1] = FPT.

– Theorem 7 presents a strict local search FPT algorithm for the maximization
version of HRC, with combined parameters |C| and `. The algorithm uses
color coding and a set of non-trivial reduction rules.

2 Preliminaries

For some integer k, we use [k] = {1, 2, . . . , k}, and
(

[k]
2

)

= {(i, j)|1 ≤ i < j ≤ k}.
If a matching M in a graph contains an edge xy, then we write M(x) = y
and M(y) = x. For other graph theoretic concepts, we use standard notation.
We assume basic knowledge of matroid theory in Sect. 4. We also assume that
the reader is familiar with the framework of parameterized complexity. For an
introduction, see [15] or [5].

To formalize the task of a local search algorithm, let Q be an optimization
problem with an objective function T which we want to maximize. To define
the concept of neighborhoods, we suppose there is some distance d(x, y) defined
for each pair (x, y) of solutions for some instance I of Q. A strict local search
algorithm for Q has the following task:

Strict local search for Q

Input: (I, S0, `) where I is an instance of Q, S0 is a solution for I , and ` ∈ N.
Task: If there exists a solution S for I such that d(S, S0) ≤ ` and T (S) >

T (S0), then output such an S.

In contrast, a permissive local search algorithm for Q is allowed to output a
solution that is not close to S0, provided that it is better than S0. In local search
methods, such an algorithm is as useful as its strict version.
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Permissive local search for Q

Input: (I, S0, `) where I is an instance of Q, S0 is a solution for I , and ` ∈ N.
Task: If there exists a solution S for I such that d(S, S0) ≤ ` and T (S) >

T (S0), then output any solution S ′ for I with T (S′) > T (S).

Note that if an optimal solution can be found by some algorithm, then this
yields a permissive local search algorithm for the given problem. On the other
hand, finding a strict local search algorithm might be hard even if an optimal
solution is easily found. An example for such a case is the Minimum Vertex
Cover problem for bipartite graphs [9]. Besides, proving that no permissive
local search algorithm exists for some problem is clearly harder than it is for
strict local search algorithms. We also present results of this kind.

3 Hospitals/Resident with Couples

A couples’ market with preference, or shortly cmp, consists of the sets S, C and H
representing singles, couples and hospitals, respectively, a capacity f(h) for each
h ∈ H , and a preference list L(a) for each a ∈ S∪C ∪H . The set A = S∪C ∪H
is called the set of agents. Each couple c is a pair (c(1), c(2)), and we call the
elements of the set R =

⋃

c∈C{c(1), c(2)}∪S residents. For a hospital h, L(h) is
a list of residents, for a single s, L(s) is a list of hospitals, and for a couple c, L(c)
is a list containing pairs of hospitals, or more precisely, a list containing elements
from (H ∪ {u}) × (H ∪ {u}) \ {(u, u)} where u is a special symbol indicating
that someone is unemployed. The preference lists can be incomplete, but cannot
involve ties, so these lists are strictly ordered.

The set of elements appearing in the list L(a) is AL(a), and some x is con-
sidered acceptable for a if x ∈ AL(a). Clearly, we may assume that acceptance is
mutual, so h ∈ AL(s) holds if and only if s ∈ AL(h) for each s ∈ S and h ∈ H ,
and (h1, h2) ∈ AL(c) implies c(i) ∈ AL(hi) or hi = u for both i ∈ {1, 2}, for
each c ∈ C. For some x ∈ AL(a), the rank of x w.r.t. a, denoted by ρ(a, x), is
r ∈ N if x is the r-th element in L(a). If x /∈ AL(a), then we let ρ(a, x) = ∞ for
all meaningful x. We say that the cmp is f0-uniform if f ≡ f0 for some f0 ∈ N.

An assignment is a function M : R → H ∪{u} such that M(s) ∈ AL(s)∪{u}
for each s ∈ S, M(c) ∈ AL(c) ∪ {(u, u)} for each c ∈ C, and |M(h)| ≤ f(h)
holds for each hospital h. Here, M(c) denotes the pair (M(c(1)), M(c(2))), and
M(h) = {r|r ∈ R, M(r) = h} is the set of residents assigned to h in M . We say
that an assignment M covers a resident r if M(r) 6= u, and M covers a couple
c, if it covers c(1) or c(2). We define the size of M , denoted by |M |, to be the
number of residents covered by M . The distance d(M, M ′) of two assignments
M and M ′ is the number of residents r for which M(r) 6= M ′(r).

We say that x is beneficial for the agent a with respect to an assignment M
if x ∈ AL(a) and one of the following cases holds: (1) a ∈ S ∪ C and either a is
not covered by M or ρ(a, x) < ρ(a, M(a)), (2) a ∈ H and either |M(a)| < f(a)
or there exists a resident r′ ∈ M(a) such that ρ(a, x) < ρ(a, r′). A blocking pair
for M can be of three types:
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– it is either a pair formed by a single s and a hospital h such that both s and
h are beneficial for each other w.r.t. M ,

– or a pair formed by a couple c and a pair (h1, h2) with h1 6= h2 such that
(h1, h2) is beneficial for c w.r.t. M , and for both i ∈ {1, 2} it holds that if
hi 6= u then either c(i) is beneficial for hi w.r.t. M or c(i) ∈ M(hi),

– or a pair formed by a couple c and a hospital h such that (h, h) is beneficial
for c w.r.t. M , and the couple c is beneficial for h. If h prefers c(1) to c(2),
this latter means that either |M(h)| ≤ f(h) − 2, or |M(h)| ≤ f(h) − 1
and ρ(h, c(1)) < ρ(h, r) for some r ∈ M(h), or ρ(h, c(1)) < ρ(h, r1) and
ρ(h, c(2)) < ρ(h, r2) for some r1 6= r2 in M(h). 2

An assignment M for I is stable if there is no blocking pair for M .
The input of the Hospitals/Residents with Couples problem is a cmp

I , and the task is to determine a stable assignment for I , if such an assignment
exists. If no couples are involved, then a stable assignment can always be found
in linear time with the Gale-Shapley algorithm [6]. In the case when couples
are present, a stable assignment may not exist, as first proved by Roth [17].
Ronn proved that deciding whether a stable assignment exists for a cmp is NP-
complete [16]. Moreover, an instance of the Hospitals/Residents with Cou-
ples problem may admit stable assignments of different sizes, see the Appendix
for an example. In the optimization problem Maximum Hospitals/Residents
with Couples, the task is to determine a stable assignment of maximum size
for a given cmp. This problem is trivially NP-hard, as it contains the Hospi-
tals/Residents with Couples problem. We study these problems in Sect. 5.

We also study a version of the Hospitals/Residents with Couples prob-
lem that does not contain preferences and only deals with the notion of accept-
ability. To describe the input of this problem, we define a couples’ market with
acceptance, or shortly cma, as a quintuple (S, C, H, f, A) where S, C, H and f
are defined analogously as in a cmp, but A(a) defines only the set of acceptable
elements for an agent a, without any ordering. Each concept described above
that does not rely on the preference lists (and thus on stability) is inherited also
for cmas in the straightforward way. In Sect. 4, we investigate the optimization
problem Maximum Matching with Couples, where given a cma I , the task
is to find an assignment for I of maximum size.

4 Matching without preferences

First, we investigate a slightly modified version of Maximum Matching with
Couples, denoted as (k, n)-Matching with Couples: given a cma I and two
integers k and n, find an assignment for I that covers at least k couples and
n singles, if possible. Such an assignment is called a (k, n)-assignment. Clearly,
if there are no couples in a given instance, then the problem is equivalent to
finding a maximum matching in a bipartite graph, and can be solved by standard
techniques. If couples are involved, the problem becomes hard. More precisely,

2 We thank David Manlove for pointing out this case.
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the decision version of this problem is NP-complete [8, 3], even in the following
special case: each hospital has capacity 2, and the acceptable hospital pairs for a
couple are always of the form (h, h) for some h ∈ H . However, if the number of
couples is small, which is a reasonable assumption in many practical applications,
(k, n)-Matching with Couples becomes tractable, as shown by Theorem 1.

Theorem 1. (k, n)-Matching with Couples can be solved in randomized
FPT time with parameter |C|.

To prove Theorem 1, we need a variant of a result from [11] concerning
matroids.

Theorem 2. Let M(U, I) be a linear matroid and let X = {X1, X2, . . .Xn} be
a collection of subsets of U , each of size b. Given a linear representation A of
M, it can be determined in f(k, b) · ||A||O(1) randomized time whether there is
an independent set that is the union of k disjoint sets in X .

Proof (of Theorem 1). Let (S, C, H, f, A) be the cma for which we have to find
a (k, n)-assignment. W.l.o.g. we can assume that each hospital has capacity 1 as
otherwise we can “clone” the hospitals, i.e. for each h ∈ H we can substitute h
with the newly introduced hospitals h1, . . . , hf(h), also modifying A(p) for each
p ∈ S ∪ C appropriately. (As f(h) ≤ |S| + 2|C| can be assumed, this increases
the input size only polynomially.) Note that the case k < |C| can be solved by
finding a (k, n)-assignment for (S, C ′, H, f, A′) for every C ′ ⊆ C where |C ′| = k
and A′ is the restriction of A on S ∪C ′. As this increases the running time only
with a factor of at most 2|C|, it is sufficient to give an FPT algorithm for the
case |C| = k. Moreover, we can assume A(c) ⊆ H × H , since for each c ∈ C we
can eliminate each pair of the form (h, u) or (u, h) (h ∈ H) in A(c) by adding a
new hospital uc to H with capacity 1 and substituting u with uc.

Now, let G(H, S; E) be the bipartite graph where a single s ∈ S is connected
with a hospital h ∈ H if and only if h ∈ A(s). We can assume w.l.o.g. that G
has a matching of size at least n as otherwise no solution may exist, and this
case can be detected easily in polynomial time. We define M(H, I) to be the
matroid where a set X ⊆ H is independent if and only if there is a matching in
G that covers at least n singles but covers no hospitals from X . Observe that M
is exactly the dual of the n-truncation of the transversal matroid of G, and thus
it is indeed a matroid. By a lemma in [11], we can find a linear representation
A of M in randomized polynomial time.

We define the matroid M′(U, I ′) with ground set U = H ∪ C such that
X ⊆ U is independent in M′ if X ∩H is independent in M. A representation of
M′ can be obtained by taking the direct sum of the matrices A and Ek where
Ek is the unit matrix of size k × k. Let X be the collection of the sets that are
of the form {c, h1, h2} where c ∈ C and (h1, h2) ∈ A(c).

Observe that if X1, X2, . . . , Xk are k disjoint sets in X whose union is inde-
pendent in M′, then we can construct a (k, n)-assignment as follows. For each
{c, h1, h2} ∈ {X1, . . . , Xk} we choose M(c) from {(h1, h2), (h2, h1)} ∩ A(c) ar-
bitrarily. The disjointness of the sets X1, . . . , Xk guarantees that this way we
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assign exactly one resident to each hospital in X =
⋃

i∈[k] Xi ∩ H . Now, let N
be a matching in G that covers at least n singles, but no hospitals from X . Such
a matching exists, as X is independent in M. Thus letting M(s) to be N(s)
if s is covered by N and u otherwise for each s ∈ S yields that M is a (k, n)-
assignment. Conversely, if M is a (k, n)-assignment then the sets {c, h1, h2} for
each c ∈ C and M(c) = (h1, h2) form a collection of k disjoint sets in X whose
union is independent in M′. By Theorem 2, such a collection can be found in
randomized FPT time when k is the parameter, yielding a solution if exists. ut

We remark that Theorem 1 also applies to the following cases.

– Markets containing groups of fixed size instead of couples.
– Maximization (or minimization) of an arbitrary function f(k, n), where k

and n are the number of covered couples and singles, respectively.
– Minimizing the makespan in the scheduling problem containing parallel ma-

chines and independent jobs with job assignment restrictions, if the process-
ing time is p ∈ N for k jobs, and 1 for the others, and k is the parameter.

Considering the parameterized complexity of the local search approach for
the MMC problem with parameter ` denoting the neighborhood size, Theorem 3
shows that no FPT local search algorithm is likely to exists. We omit the proof.

Theorem 3. No permissive local search algorithm for 2-uniform Maximum
Matching with Couples runs in FPT time with parameter `, if W[1] 6= FPT.

5 Matching with preferences

In this section, we investigate several versions of the Hospitals/Residents prob-
lem, where couples are involved and preferences play an important role.

After presenting some hardness results, Theorem 7 gives an FPT time strict
local search algorithm for the Maximum Hospitals/Residents with Cou-
ples problem, where |C| and ` are parameters. In contrast, Theorem 4 shows
the W[1]-hardness of the Hospitals/Residents with Couples problem with
parameter |C|, which clearly implies that Maximum Hospitals/Residents
with Couples is also W[1]-hard with parameter |C|.

However, supposing that a stable assignment has already been determined
by some method, it is a valid question whether we can increase its size. We will
denote this problem Increase Hospitals/Residents with Couples. For-
mally, its input is a cmp I and a stable assignment M0 for I , and the task
is to find a stable assignment with size at least |M0|+1. If no couples are in-
volved, then all stable assignments for the instance have the same size, so this
problem is trivially polynomial-time solvable. Theorem 4 shows that Increase
Hospitals/Residents with Couples is also W[1]-hard with parameter |C|.

Theorem 4. (1) The decision version of Hospitals/Residents with Cou-
ples is W[1]-hard with parameter |C|, even in the 1-uniform case.
(2) The decision version of Increase Hospitals/Residents with Couples
is W[1]-hard with parameter |C|, even in the 1-uniform case.
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Considering the applicability of the local search approach for the Maximum
Hospitals/Residents with Couples problem, Theorem 5 shows that no per-
missive local search algorithm is likely to run in FPT time with parameter `.
However, if we regard |C| as a parameter as well, then even a strict local search
algorithm with FPT running time can be given, as presented in Theorem 7.

Theorem 5. No permissive local search algorithm for the 1-uniform Maximum
Hospitals/Residents with Couples runs in FPT time with parameter `, if
W[1] 6= FPT.

To prove Theorems 4 and 5, we give FPT-reductions from the parameterized
Clique problem, both reductions relying on the same idea. Although we omit
the proofs, we describe the key structure used, whose main properties are stated
in Lemma 6. For a graph G and some k ∈ N, we introduce a cmp IG,k =
(S, C, H, f, L) as follows (see Fig. 1).

Let V (G) = {vi|i ∈ [n]}, |E(G)| = m and let ν be a bijection from [m] into
the set {(x, y)|vxvy ∈ E(G), x < y}. First, we construct a node-gadget Gi for each

i ∈ [k] and an edge-gadget Gi,j for each pair (i, j) ∈
(

[k]
2

)

. The node-gadget Gi

contains hospitals H i ∪ Gi ∪ {f i}, singles Si ∪ T i and a couple ai. Analogously,
the edge-gadget Gi,j contains hospitals H i,j ∪ Gi,j ∪ {f i,j}, singles Si,j ∪ T i,j

and a couple ai,j . Here T i = {tij |j ∈ [n − 1]} and T i,j = {ti,je |e ∈ [m − 1]},

H i = {hi
j |j ∈ [n]} and H i,j = {hi,j

e |e ∈ [m]}, and we define Gi, Si and Gi,j , Si,j

similarly to H i and H i,j . Observe that |C| = k +
(

k
2

)

.
We let f ≡ 1, so IG,k is 1-uniform. The precedence lists for each agent in

IG,k are defined below. The notation [X ] for some set X in a preference list
denotes an arbitrary ordering of the elements of X . We write Qi

x for the set
{si,j

e |i < j ≤ k, ∃y :ν(e) = (x, y)}∪{sj,i
e |1 ≤ j < i, ∃y :ν(e) = (y, x)} and Qi,j

e for
{hi

x, hj
y} where ν(e) = (x, y). The indices in the precedence lists take all possible

values if not stated otherwise, and the symbol α can be any index in [k] or a pair

of indices in
(

[k]
2

)

. If α takes a value in [k] then N(α) = n, otherwise N(α) = m.

L(gα
x ) : tαx−1, a

α(2), tαx if 1 < x < N(α) L(hi
x) : ai(1), [Qi

x], si
x

L(gα
1 ) : aα(2), tα1 L(hi,j

e ) : ai,j(1), si,j
e

L(gα
N(α)) : tαN(α)−1, a

α(2), aα(1) L(si
x) : hi

x, f i

L(tαx) : gα
x , gα

x+1 L(si,j
e ) : hi,j

e , [Qi,j
e ], f i,j

L(fα) : sα
1 , sα

2 , . . . , sα
N(α), a

α(2)

L(aα) : (gα
N(α), f

α), (hα
1 , gα

N(α)), (h
α
2 , gα

N(α)−1), . . . , (h
α
N(α), g

α
1 )

Lemma 6. For a graph G and k ∈ N, IG,k has a stable assignment MG,k
0 that

covers each resident. Moreover, statements (1), (2), and (3) are equivalent:

(1) There is a clique in G of size k.
(2) There is a stable assignment M for IG,k with the following property, which

we will call property π: M(f i,j) ⊆ Si,j for each (i, j) ∈
(

[k]
2

)

.
(3) There is a stable assignment for IG,k with property π covering each resident.
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Fig. 1. A node- and an edge-gadget of IG,k. Hospitals, singles, and couples are repre-
sented by rectangles, black, and double circles, resp. We connect h ∈ H and r ∈ R if
r ∈ AL(h). Numbers show ranks, bold edges represent M

G,k
0 , and di

x = |Qi
x| + 2.

Proof. To see the first claim, we define an assignment M0 by letting M0(a
α) =

(gα
N(α), f

α), M0(t
α
x ) = gα

x , and M0(s
α
x) = hα

x for all possible α and x. As each
resident is assigned to his best choice, M0 is stable and covers each resident.

To prove (2) ⇒ (1), suppose that IG,k has a stable assignment M with prop-

erty π. Let us define σ(i, j) for each (i, j) ∈
(

[k]
2

)

such that M(f i,j) = {si,j

σ(i,j)}.

Since si,j

σ(i,j) prefers hi,j

σ(i,j) to f i,j , the stability of M implies M(hi,j

σ(i,j)) =

{ai,j(1)}. From this, we get that M(si,j
e ) = hi,j

e must hold for each e ∈ [m] \
{σ(i, j)} as otherwise (si,j

e , hi,j
e ) would be a blocking pair. Note that each single

in Si,j is assigned to a hospital in H i,j∪{f i,j}. As this holds for each (i, j) ∈
(

[k]
2

)

,
we get that M(hi

x) ⊆ Si ∪ {ai(1)} holds for each i ∈ [k], x ∈ [n].

Let ν(σ(i, j)) = (x, y) for some (i, j) ∈
(

[k]
2

)

. Since si,j

σ(i,j) prefers the hospitals

in Qi,j

σ(i,j) = {hi
x, hj

y} to f i,j , M can only be stable if both hi
x and hj

y prefer their

partner in M to si,j

σ(i,j). This implies M(hi
x) = {ai(1)} and M(hj

y) = {aj(1)}.

Thus, by defining σ(i) to be x if M(ai) = (hi
x, gi

n+1−x) for each i ∈ [k], we
obtain ν(σ(i, j)) = (σ(i), σ(j)). From the definition of ν, this implies that vσ(i)

and vσ(j) are adjacent in G. As this holds for every (i, j) ∈
(

[k]
2

)

, we get that
{vσ(i)|i ∈ [k]} is a clique in G.

Now we prove (1) ⇒ (3). If vσ(1), vσ(2), . . . , vσ(k) form a clique in G, then
define σ(i, j) such that σ(i, j) = ν−1(σ(i), σ(j)). We define a stable assignment
M fulfilling property π and covering every resident as follows.

M(aα) = (hα
σ(α), g

i
N(α)+1−σ(α)) M(tαx) = gα

x if x ∈ [N(α) − σ(α)]

M(sα
σ(α)) = fα M(tαx) = gα

x+1 otherwise

M(sα
x) = hα

x if x ∈ [N(α)] \ {σ(α)}

The stability of M can be verified by simply checking all possibilities to find a
blocking pair. (We note that many agents are only contained in IG,k to assure
that M is indeed stable.) As (3) ⇒ (2) is trivial, this finishes the proof. ut

Theorem 7. There is an FPT time strict local search algorithm for Maximum
Hospitals/Residents with Couples with combined parameter (`, |C|).

9
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Fig. 2. A possible component of Gδ. Winners and losers are marked by ’+’ and ’−’
signs, respectively. Bold edges represent M0, normal edges represent M .

Proof. Let I = (S, C, H, f, L) be given with the stable assignment M0 and the
integer `. Although the case f ≡ 1 is different from the general case in many
aspects, the trick of cloning the hospitals is applicable in our case (see the Ap-
pendix). Therefore, w.l.o.g. we may assume f ≡ 1. Thus, if M(r) = h for some
r ∈ R, then we will write M(h) = r instead of M(h) = {r}.

Before describing the strict local search algorithm for Maximum Hospi-
tals/Residents with Couples, we introduce some notation to capture the
structure of the solution. The bipartite graph G underlying I has vertex set
H ∪R and edge set E = {hr|h ∈ H, r ∈ AL(h)}. Clearly, an assignment M for I
determines a matching E(M) in G in the natural way: hr ∈ E(M) if and only if
M(r) = h for some resident r and hospital h. Suppose that M is a closest solu-
tion, i.e. a stable assignment for I with |M | > |M0| and d(M, M0) ≤ ` that is the
closest to M0 among all such assignments. Let Aδ = {a ∈ R∪H |M(a) 6= M0(a)},
and Eδ be the symmetric difference of E(M0) and E(M). Note that Eδ covers
exactly the vertices of Aδ , and Gδ = (Aδ , Eδ) is the union of paths and cycles
which contain edges from M0 and M in an alternating manner. It is well-known
that for a cmp not containing couples every stable assignment covers exactly the
same agents [7]. Thus, it is easy to see that the stability of M and M0 imply that
if a component of Gδ contains only single residents, then it must be a cycle. Let
K0 denote the set of such cycles, and K1 the set of the remaining components
of Gδ . We write Cδ for (R \ S) ∩Aδ , and we define B(a) = {b|a is beneficial for
b w.r.t. M0} for every a ∈ S ∪ H . We also let S+ = {s ∈ S|M(s) is beneficial
for s w.r.t. M0}, and S− = {s ∈ S|M0(s) is beneficial for s w.r.t. M}. Note
that S+ ∪ S− = S ∩ Aδ. We define H+ and H− analogously. We call agents
in A+ = S+ ∪ H+ winners and agents in A− = S− ∪ H− losers. For a simple
illustration see Fig. 2.

Now, we describe an algorithm that finds vertices of Aδ . The algorithm
first branches on guessing |Aδ | and a copy Ḡ of the graph Gδ. Let ϕ denote
an isomorphism from Ḡ to Gδ . The algorithm also guesses the vertex sets
ϕ−1(Cδ), ϕ−1(H+), ϕ−1(H−), ϕ−1(S+), ϕ−1(S−), and edge sets ĒM0

and ĒM

denoting ϕ−1(E(M0) ∩Eδ) and ϕ−1(E(M) ∩Eδ), respectively. Since |Aδ | ≤ 2`,
it can be achieved by careful implementation that the algorithm branches into at
most (2`)·62` directions in this phase. Now, let Γ be an ordering of V (Ḡ), i.e. a bi-
jection from V (Ḡ) to [|Aδ |]. The algorithm colors the vertices of G with |Aδ | ≤ 2`
colors randomly with uniform and independent distribution, γ(a) denotes the
color of a. The coloring γ is nice, if γ(ϕ(a)) = Γ (a) for each a ∈ V (Ḡ). We

suppose that γ is nice, which clearly holds with probability |Aδ|−|Aδ | ≥ (2`)−2`.
Given a coloring, the algorithm grows a subset X ⊆ V (Ḡ) on which ϕ is

already known. It applies the following extension rules repeatedly (see Fig. 3),
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Fig. 3. Subgraphs of Gδ illustrating the rules of Theorem 7. Agents of ϕ(X) are shown
in a rectangular box. Bold edges represent ĒM0

, normal edges represent ĒM .

until none of them applies. When Rule 1 is applied, the algorithm branches into
at most 2|C| branches, but no other branchings happen. We write X̄ = V (Ḡ)\X .

Rule 1 [guessing a member of a couple]: applicable if rc ∈ X̄∩ϕ−1(Cδ).
In this case we simply branch on the vertices of (R \ S) ∩ {a|γ(a) = Γ (c)} to
choose ϕ(rc). Note that this means at most 2|C| branches.

Rule 2 [finding pairs by M0]: applicable if x ∈ X, y ∈ X̄ and xy ∈ ĒM0

for some x and y. By ϕ(y) = M0(ϕ(x)), we can extend ϕ by adding y to X .

Rule 3 [finding pairs by M for losers]: applicable if x ∈ X ∩ ϕ−1(A−),
y ∈ X̄ ∩ϕ−1(A+) and xy ∈ ĒM for some x and y. Let y∗ be the first element in
the list L(ϕ(x)) contained in B(ϕ(x)) having color Γ (y). We claim y∗ = ϕ(y).
Clearly, ϕ(y) ∈ B(ϕ(x)) holds because ϕ(y) is a winner, and its color must
be Γ (y) as γ is nice. Now, suppose for contradiction that y∗ precedes ϕ(y) in
L(ϕ(x)). Since the only vertex in Aδ having color Γ (y) is ϕ(y), we get M(y∗) =
M0(y

∗) implying that y∗ and ϕ(x) form a blocking pair for M . Thus, ϕ(y) = y∗

can be found in linear time, so we can extend ϕ by adding y to X .

Rule 4 [finding pairs by M for couples with one winner hospital]:
applicable if c(i) ∈ Cδ∩ϕ(X), y ∈ ϕ−1(H+)∩X̄ , ϕ−1(c(i))y ∈ ĒM , and M(c(i′))
is already known for some c ∈ C, i 6= i′ and y. W.l.o.g. we assume i = 1. Let h be
defined such that (h, M(c(2))) is the first element in L(c) for which h ∈ B(c(1))
and h has color Γ (y). We claim ϕ(y) = h. Observe that ϕ(y) ∈ B(c(1)) must
hold because ϕ(y) is a winner. As γ is nice, ϕ(y) indeed has color Γ (y). Thus,
if h 6= ϕ(y) then (h, M(c(2))) precedes (ϕ(y), M(c(2))) in L(c), but this implies
that the couple c and (h, M(c(2))) form a blocking pair for M . Therefore, we
get ϕ(y) = h, and we can extend ϕ in linear time by adding y to X .

Rule 5 [finding pairs by M for couples with two winner hospitals]:
applicable if c(i) ∈ Cδ ∩ ϕ(X), yi ∈ ϕ−1(H+) ∩ X̄, and ϕ−1(c(i))yi ∈ ĒM holds
for both i ∈ {1, 2}, for some c ∈ C, y1 and y2. We let (h1, h2) be the first element
in L(c) such that hi ∈ B(c(i)) and γ(hi) = Γ (yi) for both i ∈ {1, 2}. Using the
same arguments as in the previous case, we can show ϕ(y1) = h1 and ϕ(y2) = h2.
Thus, we can extend ϕ in linear time by adding both y1 and y2 to X .

Rule 6 [dissolving a blocking pair]: applicable if M(a) ∈ ϕ(X) if and only
if a ∈ ϕ(X) for all a ∈ Aδ , and xy is a blocking pair for the actual assignment
MX . We define MX by setting MX(a) = M0(a) if a /∈ ϕ(X) and MX(a) = M(a)
if a ∈ ϕ(X), for each agent a. Note that by our first condition, MX is indeed an
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assignment. Now, as xy cannot be a blocking pair for M or M0, either x ∈ ϕ(X)
and y ∈ Aδ \ ϕ(X), or vice versa. W.l.o.g. we suppose the former. By defining
ȳ ∈ V (Ḡ) such that Γ (ȳ) = γ(y), it can be seen that ϕ(ȳ) = y must hold because
γ is nice. Thus, ϕ can be extended by adding ȳ to X .

Lemma 8. If none of the rules is applicable, then ϕ(X) = Aδ.

If no extension rule is applicable, then we can obtain the solution M by
Lemma 8. Each step takes linear time, the number of steps is at most 2`, and
the algorithm branches into at most (2`)62`(2|C|)` branches in total, thus the
overall running time is O(`(72|C|)`|I |). The output is correct if the coloring γ is
nice, which holds with probability at least (2`)−2`. 3 ut
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Appendix

A.1 HRC can admit stable assignments of different sizes

The following example by David Manlove shows that an instance of the Hos-
pitals/Residents with Couples problem may admit stable assignments of
different sizes. The example contains a single s, a couple c = (c1, c2) and hospitals
h1 and h2 with f(h1) = 2 and f(h2) = 1. The preferences are the following:

L(s) : h2, h1 L(h1) : s, c1, c2

L(c) : (h1, h1), (u, h2) L(h2) : c2, s

In this instance, assigning s to h1 and c to (u, h2) yields a stable assignment of
size 2, whilst assigning s to h2 and c to (h1, h1) results in a stable assignment of
size 3.

A.2 Comments on the proof of Theorem 1

In Section 4, we stated Theorem 2 as a result in [11], to prove Theorem 1.
However, the result that appeared in [11] is the following.

Theorem 9 ([11]). Let M(U, I) be a linear matroid where the ground set U is
partitioned into blocks of size b. Given a linear representation A of M, it can be
determined in f(k, b) · ||A||O(1) randomized time whether there is an independent
set that is the union of k blocks. (||A|| denotes the length of A in the input.)

Using this result, Theorem 2 easily follows as a consequence.

Proof (of Theorem 2). First, let us make n(u) copies for each u ∈ U , where n(u)
is the number of sets in X containing u, i.e. let U ′ = {ui|u ∈ U, n(u) > 0, i ∈
[n(u)]}. Let M′(U ′, I ′) be the matroid where I ′ contains those sets which can
be obtained from some set I ∈ I by replacing each u ∈ I with an arbitrary
element from {ui|i ∈ [n(u)]}. A representation A′ of M′ can be obtained from
A by putting n(u) copies of the column representing u into A′ for each u ∈ U .
For each i ∈ [n], let X ′

i ⊆ U ′ be obtained by replacing each element u in Xi with
uj if Xi is the j-th set in X containing u. Clearly, by letting X ′

i to be a block
(having size b) for each i ∈ [n], we get a partition of U ′.

The sets {Xij
|j ∈ [k]} satisfy the requirements (being disjoint and having an

independent union in M) if and only if the sets {X ′
ij

)|j ∈ [k]} are k blocks whose

union is independent in M′, and thus the algorithm of Theorem 9 provides the
solution. ut

We remark that in the proof of Theorem 1 we also made use of the following
lemma concerning matroid representations.

Lemma 10 ([11]). (1) Given a representation A over a field F of a matroid
M, a representation of the dual matroid M∗ over F can be found in polynomial
time. (2) Given a representation A over N of a matroid M and an integer k, a
representation of the k-truncation of Mk can be found in randomized polynomial
time. (3) Given a bipartite graph G(A, B; E), a representation of its transversal
matroid over N can be constructed in randomized polynomial time.
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A.3 Proof of Theorem 3

In most proofs that consider the local search version of a problem, the following
definition is convenient. Given two assignments M and M ′ for a cma or a cmp,
we say that M is `-close to M ′ if d(M, M ′) ≤ `.

Proof (of Theorem 3). Let G be the input graph for the Clique problem and k
be the parameter given. We denote the vertices of G by v1, v2, . . . , vn. We claim
that if there is a permissive local search algorithm A for Maximum Matching
with Couples running in FPT time with parameter `, then we can use A to
solve Clique in FPT time. To prove this, we construct an input Λ = (I, M0, `)
of A with the following properties: every assignment for I with size at least
|M0|+ 1 is `-close to M0, and there is such an assignment for I if and only if G
has a clique of size k. Thus, G has a clique of size k if and only if A outputs an
assignment for I with size at least |M0| + 1.

To construct Λ, we first define the cma I together with the assignment M0

for it. Let the set H of hospitals be the union of D = B ∪
⋃

{H i,j |i, j ∈ [k]},
D′ = B′ ∪

⋃

{H ′i,j |i, j ∈ [k]} and F = {fi|i ∈ [k]}, where B = {bi|i ∈ [2k − 1]},
H i,i = {hi,i

j,j |j ∈ [n]} for each i ∈ [k], H i,j = {hi,j
x,y|vxvy ∈ E(G)} for each

i 6= j, {i, j} ⊆ [k], and for each hospital h in B (H i,j , respectively) we also
define a hospital h′ to be in B′ (H ′i,j , respectively). For brevity, we will use the
notation H i,j

z,• = {h|∃y : h = hi,j
z,y ∈ H i,j} and H i,j

•,z = {h|∃x : h = hi,j
x,z ∈ H i,j}.

The capacity of each hospital is 2. For each hospital h ∈ D we define a couple
denoted by c(h), and for each h′ ∈ D′ we define two singles s1(h

′) and s2(h
′).

Let C = {c(h)|h ∈ D} and let S = {s0} ∪ {si(h
′)|h′ ∈ D′, i ∈ {1, 2}}.

Before defining A(p) for each p ∈ S ∪ C, we define the assignment M0 for
I , as this will not cause any confusion. Let M0(s0) = u, and let M0(p) = h
where either h ∈ D and p is a member of the couple c(h), or h ∈ D′ and
p ∈ {s1(h), s2(h)}. Now, for each p ∈ S ∪ C, we define the set of acceptable
hospitals or pairs of hospitals A(p) to be the union of {M0(p)} and the set A′(p)
of hospitals, defined below, that can be assigned to p besides M0(p). We define
A′(p) for each p ∈ S ∪ C as follows.

A′(c(h)) = {(h′, h′)} for each h ∈ D
A′(s0) = {b1}
A′(s1(b

′
i)) = H1,i for each i ∈ [k]

A′(s2(b
′
i)) = {bi+1} for each i ∈ [k]

A′(s1(b
′
k+i)) = H i,1 for each i ∈ [k − 1]

A′(s2(b
′
k+i)) = {bk+i+1} for each i ∈ [k − 2]

A′(s2(b
′
2k−1)) = Hk,1

A′(s1(h
′i,j
x,y)) = H i,j+1

x,• for each i ∈ [k], j ∈ [k − 1] and every possible x and y

A′(s1(h
′i,k
x,y )) = {fi} for each i ∈ [k] and every possible x and y

A′(s2(h
′i,j
x,y)) = H i+1,j

•,y for each i ∈ [k − 1], j ∈ [k] and every possible x and y

A′(s2(h
′k,i
x,y )) = {fi} for each i ∈ [k] and every possible x and y

This completes the definition of the cma I = (S, C, H, f, A). Observe that M0

indeed is an assignment for I . Finally, setting ` = 4k2 + 8k − 3 finishes the
definition of the instance Λ = (I, M0, `). Figure 4 shows an illustration.
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Fig. 4. A block diagram showing the hospitals in the proof of Theorem 3. For two sets
H1, H2 of hospitals, (H1, H2) is an arc if A′(s) ⊆ H2 for some s ∈ S with M0(s) ∈ H1.

First, suppose that M is an assignment for I such that |M | > |M0|. We do
not require M to be (4k2 + 8k − 3)-close to M0, but we will actually prove that
this is necessary. Observe that M0 covers each resident except for s0, so M must
cover all residents to satisfy |M | > |M0|. As A(s0) = {b1}, M must assign s0 to
b1. This implies M(c(b1)) = (b′1, b

′
1), and therefore we also have M(s2(b

′
1)) = b2,

implying M(c(b2)) = (b′2, b
′
2), and so on. Following this argument, it can be seen

that M(c(bi)) = (b′i, b
′
i) for every i ∈ [2k − 1], and M(s2(b

′
i)) = bi+1 for every

i ∈ [2k − 2].

We say that a single s enters H i,j if M(s) ∈ H i,j but M0(s) /∈ H i,j , and leaves
H ′i,j if M0(s) ∈ H ′i,j but M(s) /∈ H ′i,j . A couple c moves from a hospital h if
M0(c) = (h, h) 6= M(c), and we say that c moves from a set J ⊆ H of hospitals if
it moves from a hospital in J . Observe that if c moves from H i,j , then two singles
leave H ′i,j , one of them entering H i+1,j if i 6= k, and the other entering H i,j+1 if
j 6= k. If a single s leaves H ′i,j but does not enter H i+1,j or H i,j+1, then M(s) ∈
F must hold, and therefore there can exist at most 2k such single s. Moreover,
if a set of m singles enter H i,j then at least dm/2e couples have to move from
H i,j . For each i ∈ [k], exactly one single from {s1(b

′
1), s1(b

′
2), . . . , s1(b

′
k)} enters

H1,i, and exactly one single from {s1(b
′
k+1), s1(b

′
k+2), . . . , s1(b

′
2k−1), s2(b

′
2k−1)}

enters H i,1. These altogether imply that exactly one couple moves from H i,j for
each i, j ∈ [k], and that if s and s′ enter H i,j then M(s) = M(s′) must hold.

Suppose that c moves from the hospital hi,j
x,y. Observe that if j < k then a

couple must move from H i,j+1
x,• , and similarly, if i < k then a couple must move

from H i+1,j
•,y . For each i ∈ [k], letting σh(i) to be x if for some j a couple moves

from H i,j
x,•, and σv(i) to be y if for some j a couple moves from H j,i

•,y, we obtain
that σh(i) and σv(i) are well-defined. Observe that by the definition of H i,i we
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get σh(i) = σv(i) := σ(i), and from the definition of H i,j we get that if σ(i) = x
and σ(j) = y for some i 6= j, then vxvy must be an edge in G. Thus, the set
{vσ(i)|i ∈ [k]} forms a clique of size k in G.

Remember that exactly one couple moves from H i,j for each i, j ∈ [k], which
(considering also the size of F ) forces exactly two singles to leave H ′i,j for each
i, j ∈ [k]. Taking into account the couples c(bi) and the singles s1(b

′
i), s2(b

′
i) for

each i ∈ [2k − 1] and the single s0, we get that M is 4k2 + 4(2k − 1) + 1 =
(4k2 + 8k − 3) = `-close to M0.

On the other hand, suppose vσ(1), vσ(2), . . . , vσ(k) form a clique in G. By
defining M as below, it is straightforward to verify that M is an assignment for
(S, C, H, f, A) which covers every resident, and is `-close to M0.

M(c(bi)) = (b′i, b
′
i) for each i ∈ [2k − 1]

M(c(hi,j

σ(i),σ(j))) = (h′i,j
σ(i),σ(j) , h

′i,j
σ(i),σ(j)) for each i, j ∈ [k]

M(s0) = b1

M(s1(b
′
i)) = h1,i

σ(1),σ(i) for each i ∈ [k]

M(s1(b
′
k+i)) = hi,1

σ(i),σ(1) for each i ∈ [k − 1]

M(s2(b
′
2k−1)) = hk,1

σ(k),σ(1)

M(s2(b
′
i)) = bi+1 for each i ∈ [2k − 2]

M(s1(h
′i,j
σ(i),σ(j))) = hi,j+1

σ(i),σ(j+1) for each i ∈ [k], j ∈ [k − 1]

M(s2(h
′i,j
σ(i),σ(j))) = hi+1,j

σ(i+1),σ(j) for each i ∈ [k − 1], j ∈ [k]

M(s1(h
′i,k
σ(i),σ(k))) = fi for each i ∈ [k]

M(s2(h
′k,i

σ(k),σ(i))) = fi for each i ∈ [k]

M(p) = M0(p) for every p ∈ S ∪ C where M(p) was not defined above.
ut

A.4 Proofs of Theorem 4 and 5

In the proof of Theorem 4, we will use the following simple cmp I0 = (S, C, H, f, L)
having no stable assignments. Let H = {h1, h2, h3}, S = ∅, C = {(a, b), (c, d)}
and f ≡ 1. The preference lists are defined below. It is easy to verify that
no stable assignment exists for I0. For example, M(a) = h1, M(b) = h2 and
M(c) = M(d) = u is not stable, because (c, d) and (h1, h3) form a blocking pair.

L((a, b)) : (h1, h2), (h2, h3), (h3, h1) L(h1) = L(h2) = L(h3) : c, a, b, d
L((c, d)) : (h1, h3), (h2, h1), (h3, h2)

Proof (of Theorem 4). Let G be an arbitrary graph and k ∈ N. We construct
two 1-uniform cmps I1 and I2, together with a stable assignment M2 for I2 such
that the following three statements are equivalent:

(a) G has a clique of size k,
(b) I1 has a stable assignment,
(c) I2 has a stable assignment of size greater than |M2|.
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Fig. 5. The path-gadget P in I2. Bold edges represent M2.

Furthermore, the construction will take FPT time, and there will be k + 3
(

k
2

)

couples in I1, and k +
(

k
2

)

+ 1 couples in I2. Thus, (a) ⇐⇒ (b) yields an FPT-
reduction from Clique to Hospitals/Residents with Couples, and (a) ⇐⇒
(c) yields an FPT-reduction from Clique to Increase Hospitals/Residents
with Couples.

To get I1, we simply combine the cmp I0 having no stable assignment with
the cmp IG,k. This is done by introducing new couples bi,j and ci,j , and new
hospitals f̄ i,j

1 and f̄ i,j
2 for each (i, j) ∈

(

[k]
2

)

, and adding these agents to IG,k. We

preserve the preference lists of IG,k, except for hospitals {f i,j |(i, j) ∈
(

[k]
2

)

}, and
we give the missing preference lists below.

L(bi,j) : (f i,j , f̄ i,j
1 ), (f̄ i,j

1 , f̄ i,j
2 ), (f̄ i,j

2 , f i,j)

L(ci,j) : (f i,j , f̄ i,j
2 ), (f̄ i,j

1 , f i,j), (f̄ i,j
2 , f̄ i,j

1 )

L(f̄ i,j
1 ) = L(f̄ i,j

2 ) : ci,j(1), bi,j(1), bi,j(2), ci,j(2)

L(f i,j) : si,j
1 , si,j

2 , . . . , si,j
m , ci,j(1), bi,j(1), bi,j(2), ci,j(2)

Observe that if we restrict I1 to contain only the hospitals f i,j , f̄ i,j
1 and f̄ i,j

2

and the couples bi,j and ci,j for some (i, j) ∈
(

[k]
2

)

, we obtain a cmp isomorphic
to I0, having no stable assignment. Therefore, any stable assignment M must
assign a single in Si,j to f i,j for each (i, j) ∈

(

[k]
2

)

, so M has property π. The
restriction of such an M on the agents of IG,k must also be stable, because agents
of IG,k cannot be assigned by M to agents outside IG,k. Thus, by Lemma 6, G
has a k-clique.

On the other hand, if there is a k-clique in G, then we can construct a stable
assignment M1 for I1 by setting M1(b

i,j) = (f̄ i,j
1 , f̄ i,j

2 ), M1(c
i,j) = (u, u) for each

(i, j) ∈
(

[k]
2

)

, and M1(r) = MG,k
π (r) for the residents in IG,k. Here, Mπ(G, k)

is the stable assignment for IG,k with property π and covering each resident of
IG,k, guaranteed by Lemma 6. It is easy to see that M1 is stable, by using the
stability of Mπ(G, k). This finishes the proof of the first claim.

To construct I2, we add a path-gadget P to IG,k that contains the newly
introduced hospitals {pi|i ∈ [

(

k
2

)

+ 2]}, singles {qi|i ∈ [
(

k
2

)

]} and a couple b.
See Fig. 5 for an illustration. As before, we only modify the preferences of the
hospitals {f i,j |(i, j) ∈

(

[k]
2

)

}, and we give the missing preference lists below. The

notation ρ used there denotes a bijection from [
(

k
2

)

] into
(

[k]
2

)

.
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Fig. 6. The modified node-gadget in the proof of Theorem 5. Bold edges represent M3.

L(p1) : b(1), q1 L(pi) : qi−1, qi if 1 < i ≤
(

k
2

)

L(p(k

2)+1) : q(k

2)
, b(2) L(p(k

2)+2) : b(2)

L(qi) : pi, f
ρ(i), pi+1 L(f i,j) : si,j

1 , si,j
2 , . . . , si,j

m , qρ−1(i,j), a
i,j(2)

L(b) : (u, p(k

2)+1), (p1, p(k

2)+2)

We also let M2(qi) = pi for each i ∈ [
(

k
2

)

], M2(b) = (u, p(k
2)+1), and M2(r) =

MG,k
0 (r) for the residents in IG,k, where MG,k

0 is the stable assignment for IG,k,
provided by Lemma 6. Note that M2 is indeed stable.

Suppose, there is a stable assignment M for I2 with |M | > |M2|. Observe
that M2 covers each resident except for b(1), so M must cover every resident,
implying M(b) = (p1, p(k

2)+2). Also, since M(h) cannot be empty for any hospital

h, we get M(pi) = {qi−1} for each i =
(

k
2

)

+1,
(

k
2

)

, . . . , 2. Thus, fρ(i) is beneficial

for qi for each i ∈ [
(

k
2

)

], so by the stability of M we obtain M(f i,j) ⊆ Si,j for

each (i, j) ∈
(

[k]
2

)

. Again, the restriction of M on the agents of IG,k must be
stable, and so Lemma 6 implies that G has a clique of size k.

Conversely, if there is a k-clique in G, then we can define a stable assignment
M ′

2 for I2 covering each resident as follows. We let M ′
2(qi) = pi+1 for each

i ∈ [
(

k
2

)

], M ′
2(b) = (p1, p(k

2)+2), and M ′
2(r) = MG,k

π (r) for the residents in IG,k.

Again M ′
2 is stable, and has size greater than |M2|, proving the second claim. ut

Proof (of Theorem 5). Let G be a graph and k an integer. First, recall the cmp
I2 defined in the proof of Theorem 4, and observe that the assignment M2 and
the assignment M ′

2, constructed when a k-clique is present in G, may not be
close to each other. Thus, in order to present an FPT-reduction here, we need
to modify the node- and edge-gadgets of I2. We are going to construct a cmp I3

together with a stable assignment M3 for it such that the following statements
are equivalent:

(a) G has a clique of size k.
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(b) There is a stable assignment for I3 with size at least |M3| + 1.
(c) There is a stable assignment for I3 with size at least |M3|+ 1 that is `-close

to M3 where ` = 8
(

k
2

)

+ 7k + 2.

The construction will take FPT time, hence a permissive local search algorithm
for Maximum Hospitals/Residents with Couples that runs in FPT time
with parameter ` can be used to solve Clique in FPT time.

See Fig. 6 for an illustration of the modifications applied to I2 in order
to get I3. For each node- or edge-gadget Gα, we take new singles {uα

x |x ∈
[N(α)]} and the single tα

N(α), new couples {cα
x |x ∈ [N(α)]}, and new hospitals

⋃

x∈[N(α)]{ḡ
α
x , eα

x , ēα
x}∪{f̄α}. For most of the agents we preserve the preferences

originally defined for I2. The modifications and the preference lists of the newly
defined agents are as follows.

L(gα
x ) : cα

x (1), aα(2) L(tαx) : ḡα
x , f̄α

L(eα
x) : uα

x , cα
x(1) L(uα

x) : ēα
x , eα

x

L(ēα
x) : cα

x (2), uα
x L(cα

x) = (eα
x , ḡα

x ), (gα
x , ēα

x)
L(ḡα

x ) : cα
x (2), tαx L(f̄α) : tα1 , tα2 , . . . , tα

N(α), a
α(1)

L(aα) : (f̄α, fα), (hα
1 , gα

N(α)), (h
α
2 , gα

N(α)−1), ,̇(h
α
N(α), g

α
1 )

We also define M3(a
α) = (f̄α, fα), M3(c

α
x ) = (gα

x , ēα
x), M3(u

α
x) = eα

x and
M3(t

α
x) = ḡα

x for all possible values of α and x, and for each remaining resident
r let M3(r) = M2(r). It is easy to observe that M3 is stable, and covers each
resident except for b(1).

Supposing that there is a stable assignment M with size greater than |M3|
and using exactly the same arguments as in the proof of Theorem 4, we get
M(b) = (p1, p(k

2)+2), M(qi) = (pi+1) for each i ∈ [
(

k
2

)

], and M(f i,j) ⊆ Si,j for

each (i, j) ∈
(

[k]
2

)

. By following the argument proving (2) ⇒ (1) in Lemma 6, we
again obtain that G must have a k-clique. (The modifications of the gadgets in
I3 to do not affect that reasoning.) This proves (b) ⇒ (a).

Clearly, (c) ⇒ (b) is trivial, so we only have to prove (a) ⇒ (c). Suppose
that G has a clique {vσ(i)|i ∈ [k]}. We again let σ(i, j) = ν−1(σ(i), σ(j)), and
we write σ′(α) for N(α) + 1 − σ(α). We define a stable assignment M ′

3 for I in
a very similar fashion as in the previous proofs:

M ′
3(b) = (p1, p(k

2)+2) M ′
3(u

α
σ′(α)) = ēα

σ′(α)

M ′
3(qi) = pi+1 for each i ∈ [

(

k
2

)

] M ′
3(s

α
σ(α)) = fα

M ′
3(a

α) = (hα
σ(α), g

α
σ′(α)) M ′

3(t
α
σ′(α)) = f̄α

M ′
3(c

α
σ′(α)) = (eα

σ′(α), ḡ
α
σ′(α))

For each remaining resident r we let M ′
3(r) = M3(r). It is straightforward to

verify that M ′
3 is stable, and it is `-close to M0. ut

A.5 Comments on the proof of Theorem 7

In Section 5, we mentioned the trick of cloning the hospitals for a cmp with
capacity f 6≡ 1, which we now describe in more detail.

For each hospital h ∈ H in a given cmp, we take f(h) copies of h by replacing
h with new hospitals h1, . . . , hf(h), each having capacity 1. The preference lists
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of these hospitals agree with the original preference list of h. For each single
s containing h in its preference list, we replace h in the list L(s) by the series
h1, . . . , hf(h). For a couple c containing a pair (h, g) of two hospitals in L(c),
we replace (h, g) by a series formed by the elements of {(hi, gj) : i ∈ [f(h)], j ∈
[f(g)]} such that (hi, gj) precedes (hi′ , gj′) if i < i′, or i = i′ and j < j′. (We
hope that the cases h = u and g = u are also clear.)

Now, if M is an assignment for the original cmp I , then it defines an assign-
ment M c for the cmp Ic obtained by the above cloning process, as follows. If M
assigns r to h and there are i− 1 residents in M(h) that h prefers to r, then let
M c(r) = hi. If M(r) = u for some r, then we let M c(r) = u as well. Observe
that if M is stable, then M c is also stable. Conversely, it is not hard to see that
a stable assignment for Ic can be transformed in the straightforward way into a
stable assignment for I .

To prove Theorem 7, we used Lemma 8 whose proof is the following.

Proof (of Lemma 8). First, ϕ(X) ⊇ Cδ is trivial, as Rule 1 is not applicable.
Claim 1: ϕ(X) ⊇ (H−∪S+)∩V (K1). Suppose a ∈ (H−∪S+)∩V (K1)\ϕ(X)

is chosen such that the distance dC(a) is minimal, where dC(a) is the minimum
length of a path P in Gδ from a to some c ∈ Cδ such that the first edge of P is
in E(M0) if a ∈ H and it is in E(M) if a ∈ S. If no such path exists, then let
dC(a) = ∞.

First, if a is a winner single, then M(a) exists, and since a and M(a) cannot
be a blocking pair for M0, M(a) must be a loser hospital. Now, if M(a) ∈ ϕ(X)
then Rule 3 is applicable, a contradiction. Thus M(a) /∈ ϕ(X), but as M(a)
is on the path defining dC(a), we get dC(M(a)) < dC(a) contradicting to the
choice of a. (Note that dC(a) 6= ∞ as a ∈ V (K1).) On the other hand, if a is a
loser hospital, then M0(a) exists. Observe that if M0(a) ∈ ϕ(X), then Rule 2 is
applicable, which cannot be the case, so M0(a) can only be a single in S \ϕ(X).
If M0(a) were a loser, then a and M0(a) would form a blocking pair for M , so we
obtain M0(a) ∈ S+\ϕ(X). But this implies dC(M0(a)) < dC(a), a contradiction.
Thus, ϕ(X) indeed contains (H− ∪ S+) ∩ V (K1).

Claim 2: ϕ(X) ⊇ V (K1). By Claim 1, we only have to prove that (H+ ∪
S−) ∩ V (K1) \ ϕ(X) is empty. Analogously as in Claim 1, we choose a ∈ (H+ ∪
S−) ∩ V (K1) \ ϕ(X) such that the distance d′C(a) is minimal, where d′C(a) is
the minimum length of a path P in Gδ from a to some c ∈ Cδ such that the first
edge of P is in E(M) if a ∈ H and it is in E(M0) if a ∈ S. If no such path exists
then let d′C(a) = ∞. Note that d′C 6= dC , as the requirements for the first edge
of the path P are different.

First, if a is a loser single, then M0(a) exists, and since a and M0(a) cannot be
a blocking pair for M , M0(a) must be a winner hospital. Now, if M0(a) ∈ ϕ(X)
then Rule 2 is applicable, a contradiction. Thus M0(a) /∈ ϕ(X), but as M0(a)
is on the path defining d′C(a), we get d′C(M0(a)) < d′C(a) contradicting to the
choice of a. Again, d′C(a) 6= ∞ as a ∈ V (K1).

On the other hand, if a is a winner hospital, then M(a) exists. Observe that
if M(a) is a member of some couple c, then if M(c(i)) is not known for some
i ∈ {1, 2}, then M(c(i)) can only be a winner hospital by Claim 1, so Rule 4 or
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5 is applicable. Thus, M(a) ∈ S. If M(a) were a winner, then a and M(a) would
form a blocking pair for M0, so we obtain M(a) ∈ S−. Now, if M(a) ∈ S−∩ϕ(X),
then Rule 3 is applicable. Thus, only M(a) ∈ S− \ ϕ(X) is possible. But this
implies d′C(M(a)) < d′C(a), which is a contradiction proving Claim 2.

Claim 3: ϕ(X) ⊇ V (K0). As already mentioned, each component of K0 is
a cycle, and it easy to see that it must contain vertices from A+ and A− in an
alternating manner. Thus, if neither Rule 2 nor Rule 3 is applicable, then each
component of K0 is totally contained in either Aδ \ ϕ(X) or in ϕ(X). Thus, the
first condition of Rule 6 must hold. Now, if ϕ(X) 6= Aδ then clearly MX 6= M for
the actual assignment MX . As MX is closer to M0 than M , and M is a closest
solution, MX cannot be stable. Thus, Rule 6 is applicable, a contradiction.

Now, Claims 1, 2, and 3 together imply the lemma. ut
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