
On �nding directed trees with many leavesJean Daligault and Stéphan ThomasséJune 5, 2009AbstractThe ROOTED MAXIMUM LEAF OUTBRANCHING problem consistsin �nding a spanning directed tree rooted at some prescribed vertex of adigraph with the maximum number of leaves. Its parameterized versionasks if there exists such a tree with at least k leaves. We use the notion of
s − t numbering studied in [18], [5], [19] to exhibit combinatorial boundson the existence of spanning directed trees with many leaves. These com-binatorial bounds allow us to produce a constant factor approximationalgorithm for �nding directed trees with many leaves, whereas the bestknown approximation algorithm has a √

OPT -factor [10]. We also showthat ROOTED MAXIMUM LEAF OUTBRANCHING admits a quadratickernel, improving over the cubic kernel given by Fernau et al [12].1 IntroductionAn outbranching of a digraph D is a spanning directed tree in D. We considerthe following problem:ROOTED MAXIMUM LEAF OUTBRANCHING:Input: A digraph D, an integer k, a vertex r of D.Output: TRUE if there is an outbranching of D rooted at r with at least
k leaves, otherwise FALSE.This problem is equivalent to �nding a Connected Dominating Set of size atmost |V (D)|−k, connected meaning in this setting that every vertex is reachableby a directed path from r. Indeed, the set of internal nodes in an outbranchingcorrespond to a connected dominating set.Finding undirected trees with many leaves has many applications in the areaof communication networks, see [7] or [23] for instance. An extensive litteratureis devoted to the paradigm of using a small connected dominating set as abackbone for a communication network.ROOTED MAXIMUM LEAF OUTBRANCHING is NP-complete, even restrictedto acyclic digraphs [2], and MaxSNP-hard, even on undirected graphs [15].1



Two natural ways to tackle such a problem are, on the one hand, polynomial-time approximation algorithms, and on the other hand, parameterized complex-ity. Let us give a brief introduction on the parameterized approach.An e�cient way of dealing with NP-hard problems is to identify a parameterwhich contains its computational hardness. For instance, instead of asking fora minimum vertex cover in a graph - a classical NP-hard optimization question- one can ask for an algorithm which would decide, in O(f(k).nd) time for some�xed d, if a graph of size n has a vertex cover of size at most k. If such analgorithm exists, the problem is called �xed-parameter tractable, or FPT forshort. An extensive literature is devoted to FPT, the reader is invited to read[9], [13] and [20].Kernelization is a natural way of proving that a problem is FPT. Formally, akernelization algorithm receives as input an instance (I, k) of the parameterizedproblem, and outputs, in polynomial time in the size of the instance, anotherinstance (I ′, k′) such that: k′ ≤ k, the size of I ′ only depends of k, and theinstances (I, k) and (I ′, k′) are both true or both false.The reduced instance (I ′, k′) is called a kernel. The existence of a kerneliza-tion algorithm clearly implies the FPT character of the problem since one cankernelize the instance, and then solve the reduced instance G′, k′ using bruteforce, hence giving an O(f(k) + nd) algorithm. A classical result asserts thatbeing FPT is indeed equivalent to having kernelization. The drawback of thisresult is that the size of the reduced instance G′ is not necessarily small withrespect to k. A much more constrained condition is to be able to reduce toan instance of polynomial size in terms of k. Consequently, in the zoologyof parameterized problems, the �rst distinction is done between three classes:W[1]-hard, FPT, polykernel.A kernelization algorithm can be used as a preprocessing step to reduce thesize of the instance before applying some other parameterized algorithm. Beingable to ensure that this kernel has actually polynomial size in k enhances theoverall speed of the process. See [16] for a recent review on kernelization.An extensive litterature is devoted to �nding trees with many leaves in undi-rected and directed graphs. The undirected version of this problem, MAXIMUMLEAF SPANNING TREE, has been extensively studied. There is a factor 2 ap-proximation algorithm for the MAXIMUM LEAF SPANNING TREE problem [21],and a 3.75k kernel [11]. An O∗(1, 94n) exact algorithm was designed in [14].Other graph theoretical results on the existence of trees with many leaves canbe found in [8] and [22].The best approximation algorithm known for MAXIMUM LEAFOUTBRANCHING isa factor √OPT algorithm [10]. From the Parameterized Complexity viewpoint,Alon et al showed that MAXIMUM LEAF OUTBRANCHING restricted to a wideclass of digraphs containing all strongly connected digraphs is FPT [1], andBonsma and Dorn extended this result to all digraphs and gave a faster pa-rameterized algorithm [4]. Very recently, Kneis, Langer and Rossmanith [17]obtained an O∗(4k) algorithm for MAXIMUM LEAF OUTBRANCHING, which is2



also an improvement for the undirected case over the numerous FPT algorithmsdesigned for MAXIMUM LEAF SPANNING TREE. Fernau et al [12] proved thatROOTEDMAXIMUM LEAF OUTBRANCHING has a polynomial kernel, exhibitinga cubic kernel. They also showed that the unrooted version of this problem ad-mits no polynomial kernel, unless polynomial hierarchy collapses to third level,using a breakthrough lower bound result by Bodlaender et al [3]. A linear ker-nel for the acyclic subcase of ROOTED MAXIMUM LEAF OUTBRANCHING andan O∗(3, 72k) algorithm for ROOTED MAXIMUM LEAF OUTBRANCHING wereexhibited in [6].This paper is organized as follows. In Section 2 we exhibit combinatorialbounds on the problem of �nding an outbranching with many leaves. We usethe notion of s− t numbering introduced in [18]. We next present our reductionrules, which are independent of the parameter, and in the following sectionwe prove that these rules give a quadratic kernel. We �nally present a constantfactor approximation algorithm in Section 5 for �nding directed trees with manyleaves.2 Combinatorial BoundsLet D be a directed graph. For an arc (u, v) in D, we say that u is an in-neighbour of v, that v is an outneighbour of u, that (u, v) is an in-arc of v andan out-arc of u. The outdegree of a vertex is the number of its outneighbours,and its indegree is the number of its in-neighbours. An outbranching with amaximum number of leaves is said to be optimal. Let us denote by maxleaf(D)the number of leaves in an optimal outbranching of D.Without loss of generality, we restrict ourselves to the following. We ex-clusively consider loopless digraphs with a distinguished vertex of indegree 0,denoted by r. We assume that there is no arc (u, r) in D with u ∈ V (D), andno arc (x, y) with x 6= r and y an outneighbour of r, and that r has outdegreeat least 2. Throughout this paper, we call such a digraph a rooted digraph.De�nitions will be made exclusively with respect to rooted digraphs, hence thenotions we present, like connectivity and resulting concepts, do slightly di�erfrom standard ones. Let D be a rooted digraph with a speci�ed vertex r.The rooted digraph D is connected if every vertex of D is reachable by adirected path starting at r in D. A cut of D is a set S ⊆ V (D) − r such thatthere exists a vertex z /∈ S endpoint of no directed path from r in D − S. Wesay that D is 2-connected if D has no cut of size at most 1. A cut of size1 is called a cutvertex. Equivalently, a rooted digraph is 2-connected if thereare two internally vertex-disjoint paths from r to any vertex besides r and itsoutneighbours.We will show that the notion of s− t numbering behaves well with respect tooutbranchings with many leaves. It has been introduced in [18] for 2-connectedundirected graphs, and generalized in [5] by Cheriyan and Reif for digraphswhich are 2-connected in the usual sense. We adapt it in the context of rooted3



digraphs.Let D be a 2-connected rooted digraph. An r − r numbering of D is alinear ordering σ of V (D) − r such that, for every vertex x 6= r, either x isan outneighbour of r or there exist two in-neighbours u and v of x such that
σ(u) < σ(x) < σ(v). An equivalent presentation of an r − r numbering of
D is an injective embedding f of the graph D where r has been duplicatedinto two vertices r1 and r2, into the [0, 1]-segment of the real line, such that
f(r1) = 0, f(r2) = 1, and such that the image by f of every vertex besides r1and r2 lies inside the convex hull of the images of its in-neighbours. Such convexembeddings have been de�ned and studied in general dimension by Lovász, Linialand Wigderson in [19] for undirected graphs, and in [5] for directed graphs.Given a linear order σ on a �nite set V , we denote by σ̄ the linear order on
V which is the reverse of σ. An arc uv of D is a forward arc if u = r or if uappears before v in σ; uv is a backward arc if u = r or if u appears after v in σ.A spanning out-tree T is forward if all its arcs are forward. Similar de�nitionfor backward out-tree.The following result and proof is just an adapted version of [5], given herefor the sake of completeness.Lemma 1 Let D be a 2-connected rooted digraph. There exists an r − r num-bering of D.Proof : By induction over D. We �rst reduce to the case where the indegree ofevery vertex besides r is exactly 2. Let x be a vertex of indegree at least 3 in
D. Let us show that there exists an in-neighbour y of x such that the rooteddigraph D − (y, x) is 2-connected. Indeed, there exist two internally vertexdisjoint paths from r to x. Consider such two paths intersecting N−(x) onlyonce each, and denote by D′ the rooted digraph obtained from D by removingone arc (y, x) not involved in these two paths. There are two internally disjointpaths from r to x in D′. Consider z ∈ V (D) − r − x. Assume by contradictionthat there exists a vertex t which cuts z from r in D′. As t does not cut z from
r in D and the arc (y, x) alone is missing in D′, t must cut x and not y from rin D′. Which is a contradiction, as there are two internally disjoint paths from
r to x in D′. By induction, D′ has an r − r numbering, which is also an r − rnumbering for D.Hence, let D be a rooted digraph, where every vertex besides r has indegree
2. As r has indegree 0, there exists a vertex v with outdegree at most 1 in Dby a counting argument. If v has outdegree 0, then let σ be an r− r numberingof D − v, let u1 and u2 be the two in-neighbours of v. Insert v between u1 and
u2 in σ to obtain an r − r numbering of D. Assume now that v has a singleoutneighbour u. Let w be the second in-neighbour of u. Let D′ be the graphobtained from D by contracting the arc (v, u) into a single vertex uv. As D′ is2-connected, consider by induction an r − r numbering σ of D′. Replace uv by
u. It is now possible to insert v between its two in-neighbours in order to makeit so that u lies between v and w. Indeed, assume without loss of generalitythat w is after uv in σ. Consider the in-neighbour t of v smallest in σ. As σ4



is an r − r numbering of D′, t lies before uv in σ. We insert v just after t toobtain an r − r numbering of D. �Note that an r − r numbering σ of D naturally gives two acyclic coveringsubdigraphs of D, the rooted digraph D|σ consisting of the forward arcs of
D, and the rooted digraph D|σ̄ consisting of the backward arcs of D. Theintersection of these two acyclic digraphs is the set of out-arcs of r.Corollary 1 Let D be a 2-connected rooted digraph. There exists an acyclicconnected spanning subdigraph A of D which contains at least half of the arcsof D − r.Let G be an undirected graph. A vertex cover of G is a set of vertices coveringall edges of G. A dominating set of G is a set S ⊆ V such that for every vertex
x /∈ S, x has a neighbour in S. A strongly dominating set of G is a set S ⊆ Vsuch that every vertex has a neighbour in S.Let D be a rooted digraph. A strongly dominating set of D is a set S ⊆ Vsuch that every vertex besides r has an in-neighbour in S. We need the followingfolklore result:Lemma 2 Any undirected graph G on n vertices and m arcs has a vertex coverof size n+m

3 .Proof : By induction on n + m. If there exists a vertex of degree at least 2 in
G, choose it in the vertex cover, otherwise choose any non-isolated vertex. �Lemma 3 Let G be a bipartite graph over A∪B, with d(a) = 2 for every a ∈ A.There exists a subset of B dominating A with size at most |A|+|B|

3 .Proof : Let G′ be the graph which vertex set is B, and where (b, b′) is an arc if band b′ share a common neighbour in A. The result follows from Lemma 2 since
G′ has |A| arcs and |B| vertices. �Corollary 2 Let D be an acyclic rooted digraph with l vertices of indegree atleast 2 and with a root of outdegree d(r) ≥ 2. Then D has an outbranching withat least l+d(r)−1

3 + 1 leaves.Proof : Denote by n the number of vertices of D. For every vertex v of indegreeat least 3, delete incoming arcs until v has indegree exactly 2. Since D is acyclic,it has a vertex s with outdegree 0.Let Z be the set of vertices of indegree 1 in D, of size n − 1 − l. Let Ybe the set of in-neighbours of vertices of Z, of size at most n − 1 − l. Let A′be the set of vertices of indegree 2 dominated by Y . Let B = V (D) − Y − s.Let A be the set of vertices of indegree 2 not dominated by Y . Note that Ycannot have the same size as Z ∪ A′. Indeed, Z contains the outneighboursof r, and hence Y contains r, which has outdegree at least 2. More precisely,
|Y | + d(r) − 1 ≤ |Z ∪ A′|. As B = V (D) − Y − s and A = V (D) − A′ − Z − r,5



Figure 1: The "boloney" graph D6we have that |B| ≥ |A|+ d(r)− 1. Moreover, as Y has size at most n− 1− l, wehave that |B| ≥ l. Consider a copy A1 of A and a copy B1 of B. Let G be thebipartite graph with vertex bipartition (A1, B1), and where (b, a), with a ∈ A1and b ∈ B1, is an edge if (b, a) is an arc in D. By Lemma 3 applied to G, thereexists a set X ⊆ B of size at most |A|+|B|
3 ≤ 2|B|−(d(r)−1)

3 which dominates A in
D. The set C = X ∪Y strongly dominates V (D)− r in D, and has size at most
|X | + |Y | ≤ 2|B|−(d(r)−1)

3 + |Y | = |B| + |Y | − |B|+d(r)−1
3 . As |Y | + |B| = n − 1and |B| ≥ l, this yields |X ∪ Y | ≤ n − 1 − l+d(r)−1

3 . As D is acyclic, any setstrongly dominating V − r contains r and is a connected dominating set. Hencethere exists an outbranching T of D having a subset of C as internal vertices.
T has at least l+d(r)−1

3 + 1 leaves.
�This bound is tight up to one leaf. The rooted digraph Dk depicted inFigure 1 is 2-connected, has 3k − 2 vertices of indegree at least 2, d(r) = 3 andmaxleaf(Dk) = k + 2.Finally, the following combinatorial bound is obtained:Theorem 1 Let D be a 2-connected rooted digraph with l vertices of indegreeat least 3. Then maxleaf(D) ≥ l

6 .Proof : Apply Corollary 2 to the rooted digraph with the larger number of ver-tices of indegree 2 among Dσ and Dσ̄. �An arc is simple if does not belong to a 2-circuit. A vertex v is nice if it isincident to a simple in-arc.The second combinatorial bound is the following:Theorem 2 Let D be 2-connected rooted digraph. Assume that D has l nicevertices. Then D has an outbranching with at least l
24 leaves.Proof : By Lemma 1, we consider an r − r numbering σ of D. For every nicevertex v (incident to some in-arc a) with indegree at least three, delete incomingarcs of v di�erent from a until v has only one incoming forward arc and oneincoming backward arc. For every other vertex of indegree at least 3 in D, delete6



incoming arcs of v until v has only one incoming forward arc and one incomingbackward arc. At the end of this process, σ is still an r − r numbering of thedigraph D, and the number of nice vertices has not decreased.Denote by Tf the set of forward arcs of D, and by Tb the set of backwardarcs of D. As σ is an r − r numbering of D, Tf and Tb are spanning trees of Dwhich partition the arcs of D − r.The crucial de�nition is the following: say that an arc uv of Tf (resp. of
Tb), with u 6= r, is transverse if u and v are incomparable in Tb (resp. in Tf ),that is if v is not an ancestor of u in Tb (resp. in Tf ). Observe that u cannot bean ancestor of v in Tb (resp. in Tf ) since Tb is backward (resp. Tf is forward)while uv is forward (resp. backward) and u 6= r.Assume without loss of generality that Tf contains more transverse arcs than
Tb. Consider now any planar drawing of the rooted tree Tb. We will make useof this drawing to de�ne the following: if two vertices u and v are incomparablein Tb, then one of these vertices is to the left of the other, with respect to ourdrawing. Hence, we can partition the transverse arcs of Tf into two subsets:the set Sl of transverse arcs uv for which v is to the left of u, and the set Srof transverse arcs uv for which v is to the right of u. Assume without loss ofgenerality that |Sl| ≥ |Sr|.The digraph Tb ∪ Sl is an acyclic digraph by de�nition of Sl. Moreover, ithas |Sl| vertices of indegree two since the heads of the arcs of |Sl| are pairwisedistinct. Hence, by Corollary 2, Tb ∪ Sl has an outbranching with at least
|Sl|+d(r)−1

3 + 1 leaves, hence so does D.We now give a lower bound on the number of transverse arcs in D to bound
|Sl|. Consider a nice vertex v in D, which is not an outneighbour of r, and witha simple in-arc uv belonging to, say, Tf . If uv is not a transverse arc, then v isan ancestor of u in Tb. Let w be the outneighbor of v on the path from v to uin Tb. Since uv is simple, the vertex w is distinct from u. No path in Tf goesfrom w to v, hence vw is a transverse arc. Therefore, we proved that v (andhence every nice vertex) is incident to a transverse arc (either an in-arc, or anout-arc). Thus there are at least l−d(r)

2 transverse arcs in D.Finally, there are at least l−d(r)
4 transverse arcs in Tf , and thus |Sl| ≥ l−d(r)

8 .In all, D has an outbranching with at least l
24 leaves.�As a corollary, the following result holds for oriented graphs (digraphs withno 2-circuit):Corollary 3 Every 2-connected rooted oriented graph on n vertices has an out-branching with at least n−1

24 leaves.3 Reduction RulesWe say that P = {x1, . . . , xl}, with l ≥ 3, is a bipath of length l − 1 if theset of arcs adjacent to {x2, . . . , xl−1} in D is exactly {(xi, xi+1), (xi+1, xi)|i ∈
{1, . . . , l − 1}}. 7



To exhibit a quadratic kernel for ROOTEDMAXIMUM LEAFOUTBRANCHING,we use the following four reduction rules:(0) If there exists a vertex not reachable from r in D, then reduce to a triviallyFALSE instance.(1) Let x be a cutvertex of D. Delete vertex x and add an arc (v, z) for every
v ∈ N−(x) and z ∈ N+(x) − v.(2) Let P be a bipath of length 4. Contract two consecutive internal verticesof P .(3) Let x be a vertex of D. If there exists y ∈ N−(x) such that N−(x) − ycuts y from r, then delete the arc (y, x).Note that these reduction rules are not parameter dependent. Rule (0) onlyneeds to be applied once.Observation 1 Let S be a cutset of a rooted digraph D. Let T be an outbranch-ing of D. There exists a vertex in S which is not a leaf in T .Lemma 4 The above reduction rules are safe and can be checked and appliedin polynomial time.Proof :(0) Reachability can be tested in linear time.(1) Let x be a cutvertex ofD. Let D′ be the graph obtained fromD by deletingvertex x and adding an arc (v, z) for every v ∈ N−(x) and z ∈ N+(x)− v.Let us show that maxleaf(D) = maxleaf(D′). Assume T is an outbranchingof D rooted at r with k leaves. By Observation 1, x is not a leaf of T .Let f(x) be the father of x in T . Let T ′ be the tree obtained from T bycontracting x and f(x). T ′ is an outbranching of D′ rooted at r with kleaves.Let T ′ be an outbranching of D′ rooted at r with k leaves. N−(x) is a cutin D′, hence by Observation 1 there is a non-empty collection of vertices
y1, . . . , yl ∈ N−(x) which are not leaves in T ′. Choose yi such that yj isnot an ancestor of yi for every j ∈ {1, . . . , l} − {i}. Let T be the graphobtained from T ′ by adding x as an isolated vertex, adding the arc (yi, x),and for every j ∈ {1, . . . , l}, for every arc (yj , z) ∈ T with z ∈ N+(x),delete the arc (yj , z) and add the arc (x, z). As yi is not reachable in T ′from any vertex y ∈ N−(x) − yi, there is no cycle in T . Hence T is anoutbranching of D rooted at r with at least k leaves. Moreover, decidingthe existence of a cut vertex and �nding one if such exists can be done inpolynomial time. 8



(2) Let P be a bipath of length 4. Let u, v, w, x and z be the vertices of P inthis consecutive order. Let z be an outbranching of D. Note that either
u is the father of w or w is the father of u in T . Let D′ be the rooteddigraph obtained from D by contracting v and w. The rooted digraphobtained from T by contracting w with its father in T is an outbranchingof D′ with as many leaves as T .Let T ′ be an outbranching of D′. If the father of vw in T ′ is x, then
T ′− (x, vw)∪ (x, v)∪ (v, u) is an outbranching of D with at least as manyleaves as T ′. If the father of vw in T ′ is u, then T ′−(u, vw)∪(u, v)∪(v, w)is an outbranching of D with at least as many leaves as T ′.(3) Let x be a vertex of D. Let y ∈ N−(x) be a vertex such that N−(x)−y cuts
y from r. Let D′ be the rooted digraph obtained from T by deleting thearc (y, x). Every outbranching of D′ is an outbranching of D. Let T be anoutbranching of D containing (y, x). There exists a vertex z ∈ N−(x)− ywhich is an ancestor of x. Thus T − (y, x) ∪ (z, x) is an outbranching of
D′ with at least as many leaves as T .

� We apply these rules iteratively until reaching a reduced instance, on whichnone can be applied.Lemma 5 Let D be a reduced rooted digraph with a vertex of indegree at least
k. Then D is a TRUE instance.Proof : Assume x is a vertex of D with in-neighbourhood N−(x) = {u1, . . . , ul},with l ≥ k. For every i ∈ {1, . . . , l}, N−(x) − ui does not cut ui from r. Thusthere exists a path Pi from r to ui outside N−(x) − ui. The rooted digraph
D′ = ∪i∈{1,...,l}Pi is connected, and for every i ∈ {1, . . . , l}, ui has outdegree0 in D′. Thus D′ has an outbranching with at least k leaves, and such anoutbranching can be extended into an outbranching of D with at least as manyleaves. �4 Quadratic kernelIn this section and the following, a vertex of a 2-connected rooted digraph D issaid to be special if it has indegree at least 3 or if one of its incoming arcs issimple. A non special vertex is a vertex u which has exactly two in-neighbours,which are also outneighbours of u. A weak bipath is a maximal connected set ofnon special vertices. If P = {x1, . . . , xl} is a weak bipath, then the in-neighboursof xi, for i = 2, . . . , l − 1 in D are exactly xi−1 and xi+1. Moreover, x1 and xlare each outneighbour of a special vertex. Denote by s(P ) the in-neighbour of
x1 which is a special vertex.This section is dedicated to the proof of the following statement:Theorem 3 A digraph D of size at least (3k − 2)(30k − 2) reduced under thereduction rules of previous section has an outbranching with at least k leaves.9



Proof : By Theorem 1 and Theorem 2, if there are at least 6k + 24k − 1special vertices, then D has an outbranching with at least k leaves. Assumethat there are at most 30k − 2 special vertices in D.As D is reduced under Rule (2), there is no bipath of length 4. We canassociate to every weak bipath B of D of length t a set AB of dt/3e out-arcs toward special vertices. Indeed, let P = (x1, . . . , xl) be a weak bipathof D. For every three consecutive vertices xi, xi+1, xi+2 of P , 2 ≤ i ≤ l − 3,
(xi−1, xi, xi+1, xi+2, xi+3) is not a bipath by Rule (2), hence there exists an arc
(xj , z) with j = i, i + 1 or i + 2 and z /∈ P . Moreover z must be a special vertexas arcs between non-special vertices lie within their own weak bipath. The setof these arcs (xj , z) has the prescribed size.By Lemma 5, any vertex in D has indegree at most k − 1 as D is reducedunder Rule (3), hence there are at most 3(k − 1)(30k − 2) non special verticesin D. �To sum up, the kernelization algorithm is as follows: starting from a rooteddigraph D, apply the reduction rules. Let D′ be the obtained reduced rooteddigraph. If D has size more than (3k − 2)(30k − 2), then reduce to a triviallyTRUE instance. Otherwise, D′ is an instance equivalent to D of size quadraticin k.This bound is tight up to a constant factor with respect to our reductionrules (see Annex).5 ApproximationLet us describe our constant factor approximation algorithm for ROOTEDMAXIMUMLEAF OUTBRANCHING, being understood that this also gives an approximationalgorithm of the same factor for MAXIMUM LEAF OUTBRANCHING as well asfor �nding an out-tree (not necessarily spanning) with many leaves in a digraph.Our reduction rules directly give an approximation algorithm asymptoticallyas good as the best known approximation algorithm [10] (see Annex). Let us nowdescribe our constant factor approximation algorithm. Given a rooted digraph
D′′, apply exhaustively Rule (1) of Section 3. The resulting rooted digraph Dis 2-connected. By Lemma 4, maxleaf(D′′) = maxleaf(D).Let us denote by Dns the digraph D restricted to non special vertices. Recallthat Dns is a disjoint union of bipaths, which we call non special components. Avertex of outdegree 1 in Dns is called an end. Each end has exactly one specialvertex as an in-neighbour in D.Theorem 4 Let D be a 2-connected rooted digraph with l special vertices and
h non special components. Then max( l

30 , h − l) ≤ maxleaf(D) ≤ l + 2h.Proof : The upper bound is clear, as at most two vertices in a given non specialcomponent can be leaves of a given outbranching. The �rst term of the lowerbound comes from Theorem 1 and Theorem 2. To establish the second term,consider the digraph D′ whose vertices are the special vertices of D and r. For10



every non special component of D, add an edge in D′ between the special in-neighbours of its two ends. Consider an outbranching of D′ rooted at r. Thisoutbranching uses l − 1 edges in D′, and directly corresponds to an out-tree Tin D. Extend T into an outbranching T̃ of D. Every non special componentwhich is not used in T contributes to at least a leaf in T̃ , which concludes theproof. �Consider the best of the three outbranchings of D obtained in polynomialtime by Theorem 1, Theorem 2 and Theorem 4. This outbranching has at leastmax( l
30 , h − l) leaves. The worst case is when l

30 = h − l. In this case, theupper bound becomes: 92l
30 , hence we have a factor 92 approximation algorithmfor ROOTED MAXIMUM LEAF OUTBRANCHING.6 ConclusionWe have given a quadratic kernel and a constant factor approximation algorithmfor ROOTED MAXIMUM LEAF OUTBRANCHING: reducing the gap between theproblem of �nding trees with many leaves in undirected and directed graphs.MAXIMUM LEAF SPANNING TREE has a factor 2 approximation algorithm, andROOTED MAXIMUM LEAF OUTBRANCHING now has a factor 92 approximationalgorithm. Reducing this 92 factor into a small constant is one challenge. Thegap now essentially lies in the fact that MAXIMUM LEAF SPANNING TREE has alinear kernel while ROOTED MAXIMUM LEAF OUTBRANCHING has a quadratickernel. Deciding whether ROOTED MAXIMUM LEAF OUTBRANCHING has alinear kernel is a challenging question. Whether long paths made of 2-circuitscan be dealt with or not might be key to this respect.References[1] N. Alon, F. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Parameterizedalgorithms for directed maximum leaf problems. In Proc. ICALP 2007, LNCS4596, pages 352�362, 2007.[2] N. Alon, F. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Spanning directedtrees with many leaves. SIAM J. Discrete Maths., 23(1):466�476, 2009.[3] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problemswithout polynomial kernels (extended abstract). In Proc. of Automata, Languagesand Programming, 35th International Colloqium (ICALP), pages 563�574, 2008.[4] Paul S. Bonsma and Frederic Dorn. An fpt algorithm for directed spanning k-leaf.abs/0711.4052, 2007.[5] J. Cheriyan and J. Reif. Directed s-t numberings, rubber bands, and testingdigraph k-vertex connectivity. Combinatorica, 14(4):435�451, 1994.[6] J. Daligault, G. Gutin, E. J. Kim, and A Yeo. Fpt algorithms and kernels for thedirected k-leaf problem. manuscript, http://arxiv.org/abs/0810.4946, 2747, 2008.[7] E. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.ACM, 17(11):643�644, 1974. 11
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A AppendixIn this annex we just explain two very minor points not explicited in the mainbody due to space constraints.Firstly, our analysis for the quadratic kernel for ROOTED MAXIMUM LEAFOUTBRANCHING is tight up to a constant factor. Indeed, the following graph
Tl is reduced under the reduction rules stated on Section 3 and has a number ofvertices quadratic in its maximal number of leaves. Let V = {vi,j |i = 1, . . . , l,
j = 1, . . . , 3(l− 1)}. For every i = 1, . . . , l, (r, vi,1) is an arc of T . For every j =
1, . . . , 3l − 2, i = 1, . . . , l, (vi,j , vi,j+1) is a 2-circuit of Tl. For every i = 1, . . . , l,
(vi,3l−1, vi+1[l],3l−1) is an arc of Tl. For every t = 1, . . . , l − 1, i = 1, . . . , l,
(vi,3t, vi+t[l],1) is an arc of Tl. This digraph Tl is reduced under the reductionrules of Section 3, and maxleaf(Tl) = 2(l − 1). Finally, Tl has 3l(l − 1) + 1vertices.Note that this graph has many 2-circuits. We are not able to deal withthem with respect to kernelization. For the approximation on the contrary, weare able to deal with the 2-circuits to produce a constant factor approximationalgorithm.The second point is that the reduction rules described in Section 4 directlygive an approximation algorithm asymptotically as good as the best knownapproximation algorithm [10]. Indeed, as these rules are independant of theparameter, and as our proof of the existence of a solution of size k when thereduced graph has size more than 3(k − 1)(30k − 2) is contructive, this yieldsa O(

√
OPT ) approximation algorithm. Let us sketch this approximation algo-rithm. Start by applying the reduction rules described in Section 4 to the inputrooted digraph. This does not change the value of the problem. Let m be thesize of the reduced graph. Exhibit an outbranching with at least √

m
90 leavesas in the proof of Theorem 3. Finally, undo the sequence of contractions yieldby the application of reduction rules at the start of the algorithm, repairing thetree as in the proof of Lemma 4. The tree thus obtained has at least √

m
90 leaves,while the tree with maximum number of leaves in the input graph has at most

m − 1 leaves. Thus this algorithm is an O(
√

OPT ) approximation algorithm.
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