
A faster fixed-parameter approach to drawing
binary tanglegrams

Sebastian Böcker1, Falk Hüffner2, Anke Truss1, and Magnus Wahlström3

1 Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz
2, 07743 Jena, Germany, {sebastian.boecker,anke.truss}@uni-jena.de

2 Algorithms in Computational Genomics group, School of Computer Science, Tel
Aviv University, Tel Aviv 69978, Israel, hueffner@tau.ac.il

3 Max-Planck-Institut für Informatik, Department 1: Algorithms and Complexity,
Building 46.1, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany,

wahl@mpi-inf.mpg.de

Abstract. Given two binary phylogenetic trees covering the same n
species, it is useful to compare them by drawing them with leaves ar-
ranged side-by-side. To facilitate comparison, we would like to arrange
the trees to minimize the number of crossings k induced by connecting
pairs of identical species. This is the NP-hard Tanglegram Layout
problem. By providing a fast transformation to the Balanced Sub-
graph problem, we show that the problem admits an O(2kn4) algorithm,
improving upon a previous fixed-parameter approach with running time
O(cknO(1)) where c ≈ 1000. We enhance a Balanced Subgraph imple-
mentation based on data reduction and iterative compression with im-
provements tailored towards these instances, and run experiments with
real-world data to show the practical applicability of this approach. All
practically relevant (k ≤ 1000) Tanglegram Layout instances can
be solved exactly within seconds. Additionally, we provide a kernel-like
bound by showing how to reduce the Balanced Subgraph instances for
Tanglegram Layout on complete binary trees to a size of O(k log k).

1 Introduction

In phylogenetics, researchers often wish to compare different phylogenetic trees
with the same set of leaves: This can be two trees that resulted from applying
different tree-building methods to the same dataset, a gene tree vs. species tree
comparison, or a host-parasite comparison. The Tanglegram Layout problem
(TL) deals with visually comparing a pair of binary rooted trees with identical
leaf sets [5,10]: The trees are drawn such that the leaves of both trees face each
other, and each leaf is connected to the corresponding leaf in the opposing tree
by an edge, see Fig. 1. A layout with many crossings of connecting edges can be
hard or even impossible to analyze. Hence, our goal is to find a layout of the two
trees such that we can draw connecting edges with as few crossings as possible.

The Tanglegram Layout problem is NP-hard, even if both trees are com-
plete [3]. In the same publication, Buchin et al. provide a O(n3) 2-approximation

2 S. Böcker, F. Hüffner, A. Truss, M. Wahlström

Fig. 1. A tanglegram.

and a O(4kn3) fixed-parameter algorithm for this special case, where k is the
number of crossings in an optimal tanglegram. They also show that under the
Unique Games Conjecture, there is no constant-factor approximation for the
problem on general binary trees, that is, trees that are not necessarily complete.
For general binary trees, the fastest fixed-parameter algorithm is due to Fernau
et al. [5] and has running time O(cknO(1)), where c was estimated by the authors
to be about 1024.

On the application side, Nöllenburg et al. [9] compare different heuristics and
exact algorithms for Tanglegram Layout. Baumann et al. [2] and Bansal
et al. [1] study the generalization where the perfect matching between leaves
is replaced by an arbitrary bipartite graph, and present heuristics and Integer
Linear Programs for its solution.

In this paper, we transform Tanglegram Layout instances to the Bal-
anced Subgraph problem. The fastest fixed-parameter algorithm for the latter
problem is due to Hüffner et al. [8] and has running time O(2k m2) time, where
k is the number of edges violated in an optimal solution and m is the number of
graph edges. As an algorithm engineering technique, the authors also provide a
set of efficient data reduction rules for Balanced Subgraph.

Our contributions. We show in Sec. 3 that we can transform a Tanglegram
Layout instance into a Balanced Subgraph instance in polynomial time, so
that Tanglegram Layout is solvable in O(2kn4) time, where k is the min-
imum number of crossings in a tanglegram of the two input trees and n the
number of leaves in each input tree. In Sec. 4, we present a O(k log k) kernel-like
bound on the size of Balanced Subgraph instances derived from tanglegrams
with complete binary trees. In experiments described in Sec. 5, we give some
improvements to the Balanced Subgraph solver tailored towards our appli-
cation. We then apply the algorithm to synthetic and real-world tanglegram

Fixed-parameter approach to drawing binary tanglegrams 3

datasets and thus show that we can compute exact solutions for all practically
relevant tanglegram instances within seconds.

2 Preliminaries

For an inner node v of a binary tree, let T (v) be the subtree rooted at v, and
l(v) and r(v) the left and right child of v, respectively. Then L(v) := T (l(v))
and R(v) := T (r(v)) are the subtrees rooted at l(v) and r(v), respectively. Let
L(v) denote the set of leaf labels in T (v). We identify leaves with their labels
for the sake of readability.

The last common ancestor lcaT (l1, l2) of two leaves l1, l2 is the inner node v
of T where {l1, l2} ⊆ L(v) but {l1, l2} 6⊆ L(l(v)) and {l1, l2} 6⊆ L(r(v)). The last
common ancestor of two nodes is defined accordingly. To switch v means that
we interchange the order of the children l(v) and r(v) such that the former L(v)
becomes R(v), and vice versa, without changing node and leaf orders in L(v) or
R(v).

Given two not necessarily complete binary trees S, T with identical leaf sets,
a tanglegram is a planar embedding of S and T , where the two trees are con-
trasted in such a way that the leaves of each tree are arranged on one of two
parallel straight lines, and identical leaves are connected by additional edges, see
Figure 1. The task of the Tanglegram Layout problem is to find a tanglegram
which minimizes the number of crossings between leaf label edges.

The Balanced Subgraph problem is defined as follows: Given an undi-
rected multigraph with m edges, each of which is either labeled with = or with
6=, the task is to find a two-coloring of the vertices that violates as few edges
as possible. We say that a two-coloring violates an =-edge (an 6=-edge) if the
incident vertices have different colors (the same color).

For ease of presentation, in the following we will assume all graphs to be
multigraphs.

3 Transformation

In this section, we present the transformation from a Tanglegram Layout
instance to a Balanced Subgraph instance. This, in turn, can be solved in
time O(2kn4) for input trees with n leaves that admit a tanglegram with at most
k crossings [8]. A similar construction was used by Nöllenburg et al. [9] and by
Buchin et al. [4] in the context of approximation and integer linear programming
modelling, respectively.

Given two trees S, T , our starting point is an arbitrary tanglegram of the
trees. We now transform this tanglegram into an instance of the Balanced
Subgraph problem, that is, an undirected graph G where all edges are labeled
‘=’ or ‘6=’. This graph may contain multiple edges between two vertices.

Let G be a bipartite graph with vertex set VS ∪ VT , where the vertices in VS

(or VT) correspond to all inner vertices of S (or T , respectively). For each pair

4 S. Böcker, F. Hüffner, A. Truss, M. Wahlström

Fig. 2. An example of the transformation to Balanced Subgraph. An arbi-
trary tanglegram of the input trees (upper left) is transformed into a bipartite
graph (lower left). Continuous lines denote =-edges, dashed lines 6=-edges. This
instance can be solved by violating one edge, e.g. {u2, v2}, which leads to a valid
two-coloring of the vertices (lower right). The vertices of one color, here u1 and
u2, are switched to obtain an optimal tanglegram (upper right).

of leaf labels l1, l2, we draw an edge between the vertices corresponding to the
last common ancestors lcaS(l1, l2) and lcaT (l1, l2) of the leaves labelled l1, l2 in
S and T . For each such edge we test whether there is a crossing between edges
l1 − l1 and l2 − l2 in the current tanglegram. If so, we label the edge with ‘ 6=’,
else with ‘=’.

We use G as input for a Balanced Subgraph algorithm which returns
an optimal two-coloring of the vertices of G, such that the vertices incident to
=-edges have the same color, whereas those incident to 6=-edges have different
colors, while at the same time, violating as few edge labels as possible. This cor-
responds to leaving as few crossings as possible in the tanglegram: The optimal
tanglegram is obtained by picking one of the colors, say white, and switching all
inner vertices in S and T which correspond to white vertices in G. See Fig. 2 for
an example.

Lemma 1. The balanced subgraph instance generated by the transformation above
is solvable with violating at most k edges if and only if the original trees admit a
tanglegram with at most k crossings. The transformation can be done in quadratic
time.

Proof. Let S, T be two trees of a tanglegram instance and G = (VS ∪ VT , E) be
the graph after the transformation.

Fixed-parameter approach to drawing binary tanglegrams 5

It is easy to see that a crossing between two labels l1, l2 in the initial tan-
glegram is resolved if and only if exactly one of the last common ancestors
u = lcaS(l1, l2) and v = lcaT (l1, l2) is switched. Analogously, if the edges be-
tween these labels are not crossed initially, they stay uncrossed if and only if
both or none of the inner nodes u and v are switched. In the first case the
transformation introduces an 6=-edge {u, v} to G, in the latter case an =-edge
{u, v}.

If an optimal solution for G violates an edge {u, v} that is an 6=-edge, u and v
are colored equally, so either both u and v or none of them will be switched in the
tanglegram. If the broken edge {u, v} is an =-edge, u and v are colored differently,
and thus exactly one of these nodes will be switched. In both cases there is
a crossing between the two labels that caused {u, v} in the new tanglegram.
Similarly, an edge {u, v} that is not broken corresponds to a leaf pair that will
not have a crossing in the new tanglegram. This shows that there is an exact
one-to-one correspondence between leaf pairs in S, T and edges in G: An edge is
broken if and only if there is a crossing between the respective leaf labels.

The running time of our transformation for trees S, T with n leaves is O(n2):
Given an arbitrary tanglegram of S, T , we compute the last common ancestors of
all leaf pairs in linear time [6]. The sequence of labels in each tree can be obtained
in linear time with a standard search algorithm. With this information, we can
easily compute in O(n2) time whether there are crossings between each pair of
labels and add the respective edges to the bipartite graph. ut

The Balanced Subgraph instance we generate has 2n−2 vertices and
(
n
2

)
edges, as a binary tree has n−1 inner nodes. The running time of the Balanced
Subgraph algorithm from [8] is O(2km2) for a graph with m edges, so the total
running time of our algorithm is O(2kn4). Note, however, that the n4 factor can
be reduced in practice; see Section 5.

Baumann et al. [2] present an ILP for the generalized problem where leaves
of the two trees are not necessarily connected by a perfect matching but instead
by an arbitrary bipartite graph. We note that the above transformation can be
applied to instances of this more general problem, too. This possibility has been
also noted in [1].

Our transformation allows us to prove that Balanced Subgraph is NP-
complete on bipartite graphs, but this can also be seen directly: For an arbitrary
instance of Balanced Subgraph, insert dummy vertices into every edge, and
replace an =-edge by two =-edges, and an 6=-edge by an =-edge and an 6=-edge.
The resulting instance is bipartite, and has a solution if and only if the original
instance has a solution.

Grötschel and Pulleyblank [7] showed that Edge Bipartization can be
solved in polynomial time for weakly bipartite graphs, a class of graphs that
includes both bipartite and planar graphs. Hüffner et al. [8] wrongly claimed
that using this result, Balanced Subgraph can be solved in polynomial time
for (weakly) bipartite input graphs. The reason is that starting from a weakly
bipartite instance of Balanced Subgraph, the resulting Edge Bipartization
instance is no longer weakly bipartite.

6 S. Böcker, F. Hüffner, A. Truss, M. Wahlström

4 A Kernel-like Result for Complete Binary Trees

In parameterized complexity, a kernel is a polynomial-time self-reduction of
a parameterized problem after which the problem size can be bounded by a
function only depending on the parameter. Here, we give a bound of O(k log k)
on the size of the Balanced Subgraph instance which is the result of the
transformation from Sect. 3, for the case that the input binary trees are complete.
To show this, we begin with some definitions.

For a pair of leaves a, b with u = lcaS(a, b) and v = lcaT (a, b), there is a
corresponding edge {u, v} in G; call this the edge associated with a, b. Likewise,
a, b is a leaf pair associated with the edge {u, v}. Obviously, there can be many
leaf pairs associated with a single edge.

A pair of contradictory edges are two edges between the same pair of nodes
in G, with different edge labels. A node u is involved in contradictory edges if
there is a pair of contradictory edges with one end in u.

Let a mirror node of a node u be a node with identical leaf set. If u has a
mirror node v, then the nodes of T (u) and T (v) generate a subgraph of G which
is separate from the rest of the graph (the subgraph is not necessarily connected,
but every edge of G that is incident to a node of T (u) is incident to a node of
T (v) and vice versa). If furthermore l(u) and r(u) have mirror nodes (necessarily
among l(v) and r(v)), then v is an identical mirror of u, and u and v will end up
in a two-vertex component in G. Such a component is a trivial component and
can be solved immediately. Note that one of l(u) and r(u) has a mirror node if
and only if both have mirror nodes.

We need the following reduction rules. The first three are generic, i.e. appli-
cable not only in the case of complete trees; their correctness is immediate.

Rule 1 (Remove contradictory edges) If there are multiple edges {u, v}, of
which n1 > 0 are =-edges and n2 > 0 are 6=-edges, let t = min{n1, n2}. Lower k
by t, and delete t edges of each kind; reject if t > k.

Assume from now on that Rule 1 has been applied exhaustively.

Rule 2 (High-multiplicity edges) If there is any edge {u, v} of multiplicity
more than k, then set it to permanent.

The following rule describes how edges set to “permanent” can be contracted.

Rule 3 (Vertex merging) If an =-edge between two vertices u, v is set to per-
manent, then replace each edge {v, w}, w 6= u with an equally labeled edge {u, w}
and delete v.

If an 6=-edge between two vertices u, v is set to permanent, then replace each
edge {v, w}, w 6= u with a contrarily labeled edge {u, w} (= becomes 6= and vice
versa) and delete v.

Finally, we have two rules which are specific for the complete binary case.
The essence is that given the restriction on the tree shapes, a node which does
not have a mirror node will have leaves involved in edge crossings in any drawing.

Fixed-parameter approach to drawing binary tanglegrams 7

Rule 4 Let S, T be complete binary trees defining a TL instance. Let two nodes
be incomparable if they are not in an ancestor-offspring relationship. If there
are more than 2k pairwise incomparable nodes in S without mirror nodes, then
reject the instance.

Rule 5 Let S, T be complete binary trees defining a TL instance. If there is any
node u in S such that for every node v in T of the same depth as u, more than
k leaves of T (u) are missing from T (v), then reject the instance.

Lemma 2. Rules 4 and 5 are correct.

Proof. Since the trees S and T are both complete, the grouping of leaves to
nodes with respect to any ordering of the trees follows the same structure: every
node u in S will be placed directly opposite a node v in T (on the same level as
u) sharing the same section of the leaf ordering (e.g. if the leftmost eight leaves
of S meet in u, then the leftmost eight leaves of T meet in v). Also, consider an
imaginary line drawn on the left side of T (u) and T (v). The number of edges that
cross this line coming from the left side of it in S is the same as the number of
crossing edges from the right side in S, and every edge from the left side crosses
every edge from the right side; likewise for a line drawn to the right of T (u)
and T (v). Now for every leaf in T (u) not present in T (v), the corresponding
matching edge must cross one of these lines, and thus must be involved in a
crossing.

Rule 5 follows immediately. Rule 4 follows since incomparable nodes have
disjoint leaf sets; if the rule applies, then there are more than 2k separate edges
involved in crossings. ut

Let U be the set of lowest nodes without mirror nodes, i.e. all nodes u without
mirror nodes such that any other node in T (u) does have a mirror node. These
nodes are pairwise incomparable, so |U | ≤ k. Furthermore, any internal node of
S which is beneath a node in U , or incomparable to all nodes in U , belongs to
a trivial component in the balancing graph. Repeating the argument from the
root of S (which does have a mirror), we find that what remains of S after Rules
4 and 5 have been checked and trivial components removed is a set of binary
trees whose leaves are the nodes of U . In principle, this already gives us a kernel
of size O(k2): at most O(k log n) nodes remain, and if log n > k, then solving the
problem exactly in time O(2knO(1)) counts as polynomial processing in n. We
next show that our reduction rules take care of this in a different way, leaving
at most O(k log k) nodes in the balancing graph.

Theorem 1. Let S, T be complete binary trees. Applying rules 4 and 5, pro-
cessing trivial components, and repeatedly merging heavy edges and removing
contradictory edges either leads to a rejection of the instance or leaves a balanc-
ing graph with at most O(k log k) remaining nodes.

Proof. Call a node fat if both children have at least 4k leaves. We will essentially
show that fat nodes contribute nothing to the size of the final graph (because
all but a bounded number of them will be merged into other nodes). We make
three claims to show the result.

8 S. Böcker, F. Hüffner, A. Truss, M. Wahlström

1. Every fat node has an identifiable partner on the same level in the opposite
tree, which shares the same leaf set with at most k exceptions. If not, then
Rule 5 would apply. The same rule holds for the children of a fat node; by
a counting argument, the partner matching must map the children of a fat
node u to different children of its partner v. In particular, for any fat partner
nodes u, v, there is an edge {u, v} with multiplicity more than k.

2. Let u be a fat node, with partner v. Let v′ be an ancestor of v. We claim that
if there is an edge {u, v′}, then there is such an edge with multiplicity more
than k. Let a, b be a leaf pair associated with an edge {u, v′}, and assume
w.l.o.g. that a ∈ L(v′), b ∈ R(v′), and v ∈ R(v′).
Let L̂ be the set of leaves that l(u) shares with its partner, andR̂ the same
for r(u). By the above, |L̂|, |R̂| ≥ 3k, and L̂ ∪ R̂ ⊆ L(v). If a ∈ L(u), then
every pair of leaves a, c for c ∈ R̂ has an associated edge {u, v′}; if a ∈ R(u),
then the same holds for a, c for c ∈ L̂. Thus the claim is shown.

3. Let u be a fat node with partner v. If u and v are not mirror nodes, then we
claim that there is an edge {u, v′} where v′ is an ancestor of v. Note that by
the previous claim, there must then exist such an edge that is heavy. Also
recall that if u and v are mirror nodes, then for any node u′ ∈ T (u) and any
edge {u′, v′}, v′ ∈ T (v).
Assume a ∈ L(u), a /∈ L(v). Then for any pair of leaves a, b with lcaS(a, b) =
u there is an associated edge {u, v′} where v′ /∈ T (v). If v′ is not itself an
ancestor of v, then there is another edge {u, lcaT (v, v′)}, which can be found
by combining leaves associated with edges {u, v} and {u, v′}.

The last claim has strong implications about the structure of the balancing
graph. In particular, for fat partner nodes u and v, if there is an edge from u to
an ancestor v′ of v, then for any node v′′ between v and v′, there is in turn an
edge from v′′ to an ancestor of its partner (perhaps to the partner of v′). Thus the
fat nodes of each connected component in the balancing graph are merged into
one. To finalize the proof, we need to bound the number of connected non-trivial
components.

Consider a node u with fat children l(u), r(u). If both children have mirror
nodes (which are then their partners) then u has an identical mirror node and
ends up in a trivial component. Otherwise, u shares a component with at least
one child. In either case, we see that no connected non-trivial component contains
u but no child of u. Thus the number of nodes that remain after the merging
process is bounded by the number of non-fat ancestor nodes of the nodes U
previously defined, which is in turn bounded by O(k log k). ut

5 Implementation and Experiments

For our experiments, we used Falk Hüffner’s implementation of the Balanced
Subgraph algorithm [8]. It is based on a combination of data reduction and
iterative compression for solving the unreducible parts. The program consists
of about 1900 lines of Objective Caml code and about 300 lines of C code

Fixed-parameter approach to drawing binary tanglegrams 9

that implements the time-critical compression routine of the iterative compres-
sion method. All experiments were run on a dual AMD Opteron 275 machine
with 2.2 GHz, 1024 KB cache, and 6 GB main memory running under the So-
laris 10 8/07 operating system (only one core was used). The program was com-
piled with Objective Caml 3.11.1 and the GNU gcc 3.4.3 compiler using the
options “-O3 -march=athlon”.

Two properties of the instances obtained by the reduction from Tangle-
gram Layout are notable here. First, they have a particular degree distribu-
tion (at least for well-balanced trees): there are vertices with both very low and
very high degrees, and the distribution follows a power law, thus the networks
are scale-free. Second, there are edges with very high multiplicity (up to several
hundred). This works to our advantage. The data reduction rules of the algo-
rithm depend on the existence of small separators, that is, vertex sets whose
deletion disconnects the graph. The existence of many small-degree vertices in
our instances makes finding such sets likely. Moreover, the exponential part of
the running time of the iterative compression algorithm (O(2k)) can be more
precisely bounded by O(2c), where c is the maximum size of a vertex cover
needed to cover an (intermediary) balancing set of edges (see [8] for details).
Because of the high multiplicity and the existence of “hubs” (vertices with high
degree), these vertex covers are much smaller than k.

Another notable property is that Balanced Subgraph instances result-
ing from our transformation are bipartite. However, since we noted above that
arbitrary instances can be made bipartite, it seems unlikely that this can be
exploited.

The special structure also motivated us to add two modifications to the
solver, both of which are correct for general Balanced Subgraph instances
but tailored towards such instances.

First, we added a data reduction rule that can get rid of edges with high
multiplicity, without needing to know the value of k. The correctness is easy to
see.

Rule 6 (Cut with heavy edge) Let G be a Balanced Subgraph instance,
where all pairs of contradictory edges have been removed. If there is an edge cut
of G separating two vertices u and v in which at least half the edges of the cut
are edges {u, v}, then the edges {u, v} can be made permanent. In particular,
this rule applies if there are vertices u and v such that at least half the edges of u
are edges {u, v}.

After we have decided that an edge is permanent, we can simplify the instance
using Rule 3. This rule applies in particular when two nodes in the two trees are
similar (that is, they have similar leaf sets, split roughly the same way).

In fact, we implemented only the special case of Rule 6, since our experiments
showed that almost always a cut between u and v when an edge {u, v} is present
either isolates u or isolates v by deleting all adjacent edges. We also did not
implement rules that depend on knowing k in advance, such as Rules 2, 4, and
5. The reason is that we either would have to try increasing values of k, which

10 S. Böcker, F. Hüffner, A. Truss, M. Wahlström

Table 1. Running times with 60 s time limit

k time [s]

Set solved [%] median maximum median maximum

A 69.0 630 58697 0.04 49.30
B 100 83 4639 0.04 2.41
C 39.9 844 8815 1.00 59.79
D 100 172 975 0.06 0.20
E 100 0 10085 < 0.01 2.56
F 99.7 28 34811 < 0.01 31.45
G 100 0 555 < 0.01 2.49

would add a large polynomial factor, or use a heuristic upper bound on k, which
is less likely to yield effective reduction.

The second modification concerns the iterative compression process (we as-
sume familiarity with the approach). When building up the instance, we need to
add edges one-by-one. Since some instances have extremely many edges (up to
148 240 before data reduction), it is desirable to avoid this factor of n2. For this,
we start with a heuristic solution and compress it repeatedly until no more com-
pression is possible. This typically requires only up to 20 rounds of compression.
The initial solution is found using a simple Kernighan–Lin style algorithm: Start-
ing from a random coloring, repeatedly change the color of a vertex as long as
this decreases the number of nonsatisfied edges. The disadvantage is that we for-
feit the worst-case bound on the running time, and instances can be constructed
for which this would give a slowdown. However, for the dense instances we en-
countered, this is not a problem. To make for a more robust implementation, we
could try both methods in parallel.

Data. The seven datasets we used stem from Nöllenburg et al. [9]: Sets A–D are
artificial datasets. Set A contains 600 pairs of random complete binary trees of
sizes 16–512, set B consists of pairs of mutated complete binary trees, and sets
C and D contain 2900 more naturally generated general binary trees with 20–
300 leaves and additional mutations in set D. Sets E–F comprise 1303 tree pairs
generated with real-world data of animal families. Set E compares Maximum
Likelihood and Neighbor joining trees, set F and G Neighbor Joining trees that
used different distances. See [9] for details.

The results of the computations are listed in Table 1. We observe that as
expected the algorithm struggles the most with sets A and C, which are synthetic
random instances which are not expected to have a low number of crossings. From
the real-world instances, only 4 instances from set F remain unsolved within a
minute. These have k ≥ 10000.

Instances with k > 1000 are unlikely to be of practical interest, since with
more than 1000 crossings, the visualization will not be helpful. If we restrict
ourselves to the real-world instances with k ≤ 1000, we can solve all instances

Fixed-parameter approach to drawing binary tanglegrams 11

with a median of < 0.01 s and a maximum of 2.55 s. This means we can get
optimal solutions for all practically relevant instances within seconds.

In general, performance is similar to the ILP approach of Nöllenburg et al. [9],
which also can solve most of the instance with k not too high. The advantage of
our approach is that it has useful worst-case running time bounds and does not
require the proprietary CPLEX software.

6 Conclusion

With improving the previously best-known fixed-parameter running time for the
Tanglegram Layout problem from O(cknO(1)) with c ≈ 1024 [5] to O(2kn4),
where k is the minimum number of crossings in a drawing, we managed to
make fixed-parameter algorithms applicable for sizes that are interesting for
visualization of phylogenetic trees. Experiments showed that we can usually
solve instances with k ≤ 1000 in well below one second.

Consequential challenges are working towards a problem kernel for general
binary trees and extending the algorithm to nonbinary phylogenetic trees. We
plan to do further algorithm engineering and to integrate the algorithm into the
EPoS4 framework, a modular framework for phylogenetic analysis and visual-
ization, to make it easily available to biologists.

Acknowledgments. We thank Martin Nöllenburg for providing us with the tan-
glegram datasets from [9].

References

1. M. S. Bansal, W.-C. Chang, O. Eulenstein, and D. Fernández-Baca. Generalized
binary tanglegrams: Algorithms and applications. In Proc. of BICoB 2009, volume
5462 of LNCS, pages 114–125. Springer, 2009.

2. F. Baumann, C. Buchheim, and F. Liers. Exact crossing minimization in general
tanglegrams. Technical Report zaik2009-581, Zentrum für Angewandte Informatik
Köln, Mar. 2009.

3. K. Buchin, M. Buchin, J. Byrka, M. Nöllenburg, Y. Okamoto, R. I. Silveira, and
A. Wolff. Drawing (complete) binary tanglegrams. In Proc. of Graph Drawing
(GD 2008), pages 324–335. Springer, 2009.

4. K. Buchin, M. Buchin, J. Byrka, M. Nöllenburg, Y. Okamoto, R. I. Silveira, and
A. Wolff. Drawing (complete) binary tanglegrams: Hardness, approximation, fixed-
parameter tractability. arXiv.org, arXiv:0806.0920v2 [cs.CG], 2008.

5. H. Fernau, M. Kaufmann, and M. Poths. Comparing trees via crossing minimiza-
tion. In Proc. of Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2005), pages 457–469, 2005.

6. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of
disjoint set union. In Proc. of ACM Symposium on Theory of Computing (STOC
1983), pages 246–251. ACM, 1983.

4 http://bio.informatik.uni-jena.de/epos/

http://bio.informatik.uni-jena.de/epos/

12 S. Böcker, F. Hüffner, A. Truss, M. Wahlström

7. M. Grötschel and W. R. Pulleyblank. Weakly bipartite graphs and the max-cut
problem. Oper. Res. Lett., 1(1):23–27, 1981.

8. F. Hüffner, N. Betzler, and R. Niedermeier. Optimal edge deletions for signed
graph balancing. In Proc. of Workshop on Experimental Algorithms (WEA 2007),
volume 4525 of LNCS, pages 297–310. Springer, 2007.

9. M. Nöllenburg, D. Holten, M. Völker, and A. Wolff. Drawing binary tanglegrams:
An experimental evaluation. In Proc. of Workshop on Algorithm Engineering and
Experiments (ALENEX 2009), pages 106–119. SIAM, 2009.

10. R. D. M. Page, editor. Tangled Trees: Phylogeny, Cospeciation, and Coevolution.
University of Chicago Press, Chicago, 2002.

	A faster fixed-parameter approach to drawing binary tanglegrams
	Sebastian Böcker, Falk Hüffner, Anke Truss, and Magnus Wahlström

