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Abstract. In contrast to undirected width measures (such as tree-
width or clique-width), which have provided many important algo-
rithmic applications, analogous measures for digraphs such as DAG-
width or Kelly-width do not seem so successful. Several recent papers,
e.g. those of Kreutzer–Ordyniak, Dankelmann–Gutin–Kim, or Lampis–
Kaouri–Mitsou, have given some evidence for this. We support this di-
rection by showing that many quite different problems remain hard even
on graph classes that are restricted very beyond simply having small
DAG-width. To this end, we introduce new measures K-width and DAG-
depth. On the positive side, we also note that taking Kanté’s directed
generalization of rank-width as a parameter makes many problems fixed
parameter tractable.

1 Introduction

The very successful concept of graph tree-width was introduced in the context
of the Graph Minors project by Robertson and Seymour [RS86,RS91], and it
turned out to be very useful for efficiently solving graph problems. Tree-width
is a property of undirected graphs. In this paper we will be interested in directed
graphs or digraphs.

Naturally, a width measure specifically tailored to digraphs with all the nice
properties of tree-width would be tremendously useful. The properties of such a
measure should include at least the following:

i) The width measure is small on many interesting instances.
ii) Many hard problems become easy if the width measure is bounded.

Obviously, there is a conflict between these goals, and consequently we can expect
some trade-off. On the search for such a digraph measure, several suggestions
were made, starting with directed tree-width [JRST01], and being complemented
recently with several new approaches including DAG-width [Obd06,BDHK06],
Kelly-width [HK08], entanglement [BG04], D-width [Saf05], directed path-
width [Bar06] (defined by Reed, Seymour, and Thomas), and —although quite
different —bi-rank-width [Kan08] (see Section 2).



Some positive results were encouraging: The Hamiltonian path problem can
be solved in polynomial time (XP) if the directed tree width, the DAG-width,
or the Kelly-width are bounded by a constant [JRST01]. More recently, it has
been shown that parity games can be solved in polynomial time on digraphs of
bounded DAG-width [BDHK06] and Kelly-width [HK08].

Are more results just waiting around the corner and do we just have to wait
until we get more familiar with these digraph measures? It is the aim of this
paper to answer this question, at least partially.

Unfortunately, as encouraging as the first positive results are, there is also
the negative side. Hamiltonian path is W[2]-hard on digraphs of bounded DAG-
width [LKM08], and some other natural problems even remain NP-hard on di-
graphs of low widths [KO08,DGK08,LKM08]. One of the main goals of this paper
is to show that not only many problems are hard on DAGs, but rather that they
remain hard even if we very severely further restrict the graphs structure.

We introduce two digraph measures for this purpose: K-width and DAG-
depth. While K-width (Section 2.3) restricts the number of different simple paths
between pairs of vertices, DAG-depth (Definition 2.6) is the directed analog
of tree-depth [NdM06]. K-width and DAG-depth are very restrictive digraph
measures; at least as high as DAG-width, and often much higher.

The problems we consider in this paper (and formally define in Section 3) are
Hamiltonian path (HAM), Disjoint paths (k-Path), Directed Dominating Set
(DiDS), unit cost Directed Steiner Tree (DiSTP), Directed Feedback Vertex Set
(DFVS), Kernel (Kernel), Maximum Directed Cut (MaxDiCut), Oriented
Colouring (OCN), MSO1 model checking (φ-MSO1mc), solving Parity Games
(Parity) and LTL-model checking (φ-LTLmc). See Table 1 in Section 3.

It turns out that most of the aforementioned problems are not only hard for
DAG-width, but even for constant K-width and DAG-depth, or on DAGs. This
can be seen as a strong indication that DAG-width or related measures are not
yet the right parameters for dealing with standard digraph problems.

On the other hand, one width measure that fares much better in Table 1
is bi-rank-width (Definition 2.4), a width measure generalizing the rank-width
of undirected graphs [Kan08]. Nearly all of our problems are fixed parameter
tractable or at least in XP with respect to this parameter. Even better, unlike
as for DAG-width or Kelly-width, finding an optimal bi-rank-decomposition is
known to be in FPT [HO08,Kan08].

2 Digraph Width Measures

The first wave of directed measures to appear shared the following features:

i) On bidirected orientations of graphs they coincided with the tree-width.
ii) These measures were strongly based on some variant of the directed cops-

and-robber game on a digraph: There are k cops and a robber. Each cop
can either occupy a vertex, or move around in a helicopter, and the robber
occupies a vertex. The robber can, however, see the helicopter landing, and
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can move at a great speed along a cop-free directed path to another vertex.
The objective of the cops is to capture the robber by landing on the vertex
currently occupied by him, the objective of the robber is to avoid capture.

iii) Point (ii) implied that DAGs and other graphs where vertices could be or-
dered in such a way that edges between them point mainly in one direction,
and only a few point backwards, have a very low width.

iv) The last feature (iii) also made the algorithms to be XP, instead of FPT,
because of the need to remember the partial results for all vertices with
incoming edges from the outside, of which there could be |V |.

Directed tree-width. The first explicit directed measure was that of directed tree-
width (dtw) [JRST01]. In the related cops-and-robber game the robber has to
stay in the same cop-free strongly connected component, however the relation-
ship between the number of cops needed and the directed tree-width is not strict.
[JRST01] also contains XP algorithms for solving the Hamiltonian cycle, k-path,
and related problems on graphs of bounded directed tree-width.

DAG-width. First defined in [Obd06] and, independently, in [BDHK06], DAG-
width (dagw) was the next attempt to come up with a directed tree-width coun-
terpart. This time the robber does not have to stay in the SCC, but the cop
strategy has to be monotone, i.e., a cop cannot be placed on a previously va-
cated vertex. This game fully characterizes DAG-width. Note that monotone
and non-monotone strategies are not equivalent [KO08].

Theorem 2.1 ([Obd06,BDHK06]). For any graph G, there is a DAG-
decomposition of G of width k if, and only if, the cop player has a monotone
winning strategy in the k-cops-and-robber game on G.

Kelly-width. Defined a year later, Kelly-width (kellyw) [HK08] aimed to solve an
existing problem with DAG-decompositions: the number of nodes can be polyno-
mially larger then the number of vertices in the original graph (the size depends
on the width). The idea of Kelly-decompositions is based on the elimination or-
dering for tree-width, and therefore the size of the decomposition is linear in the
size of the graph. The game characterizing Kelly-width is as for DAG-width, but
with two important differences: 1) the cops cannot see the robber, and 2) the
robber can move only when a cop is about to land on his vertex.

Cycle rank. This is perhaps the oldest definition of a digraph connectivity mea-
sure, given in 60’s by Eggan and Büchi [Egg63].

Definition 2.2 (Cycle rank). The cycle rank cr(G) of a digraph G is defined
inductively as follows: For DAGs, cr(G) = 1. If G is strongly connected and
E(G) 6= ∅, then cr(G) = 1 + min{ cr(G − v) : v ∈ V (G) }. Otherwise, cr(G) is
the maximum over the cycle rank of the strongly connected components of G.

Measure comparison. All the measures presented above are closely related to
each other. The following theorem in a summary shows that if a problem is hard
for graphs of bounded cycle rank, then it is hard for all the other measures.
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Theorem 2.3. Let G be a digraph. Then (dpw [Bar06] is the directed path-
width):

1/3(dtw(G) − 1) ≤[BDHK06] dagw(G) ≤ dpw(G) ≤[Gru08] cr(G)

1/6(dtw(G) + 2) ≤[HK08] kellyw(G) ≤ dpw(G) ≤[Gru08] cr(G)

Moreover, when DAG-width is bounded, so is Kelly-width [HO06].

2.1 Directed rank-width

The rank-width of undirected graphs was introduced by Oum and Seymour in
relation to graph clique-width. While the definition of clique-width works “as is”
also on digraphs, the following straightforward generalization of rank-width to
digraphs (related to clique-width again) has been proposed by Kanté [Kan08].

Definition 2.4 (Bi-rank-width). Consider a digraph G, and vertex subsets
X ⊆ V (G) and Y = V (G) \X. Let A+

X denote the X × Y 0, 1-matrix with the
entries ai,j = 1 (i ∈ X, j ∈ Y ) iff (i, j) ∈ E(G), and let A−

X = (A+
Y )T . The

bi-cutrank function of G is defined as the sum of the ranks of these two matrices
brkG(X) = rk(A+

X) + rk(A−
X) over the binary field GF (2). The bi-rank-width

brwd(G) of G then equals the branch-width of this bi-cutrank function brkG.

We remind the readers that the branch-width [RS91] of an arbitrary symmet-
ric submodular function λ : 2E → N is defined as the minimum width over all
branch-decompositions of λ over E, where a branch-decomposition is a pair T, τ
satisfying the following: T is a tree of degree at most three, and τ is a bijection
from E to the leaves of T . If f is an edge of T , then let Xf ⊆ V (T ) be the vertex
set of one of the two connected components of T − f , and let the width of f be
λ(τ−1(Xf )). The width of T, τ is the largest width over all edges of T .

Importantly, as proved by Kanté [Kan08], the rank-decomposition algorithm
of [HO08] can also be used to find an optimal bi-rank-decomposition of a digraph.

Theorem 2.5 ([HO08] and [Kan08]). Let t ∈ N be constant. There exists
an algorithm that in time O(n3), for a given n-vertex graph (digraph) G, either
outputs a rank-decomposition (bi-rank-decomposition, respectively) of G of width
at most t, or certifies that the rank-width (bi-rank-width) is more than t.

A rank-decomposition is, actually, not so suitable for designing dynamic pro-
gramming algorithms. Yet, there is an efficient alternative characterization of a
rank-decomposition via algebraic terms (or parse trees) over the bilinear graph
product, which has been proposed by Courcelle and Kanté [CK07] and further
extended towards algorithmic applications by [GH08] (see also an independent
similar approach of [BXTV08]). As shown in [Kan08], an analogous “dynamic
programming friendly” parse-tree view (of bi-rank-width) exists for digraphs,
and we will apply this later, e.g. in Theorems 3.7 and 3.12.

2.2 DAG-depth

This part is inspired by the tree-depth notion of Nešeťril and Ossona de Mendez.
[NdM06, Lemma 2.2] gives an inductive definition of the tree-depth td(G) of
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undirected G as follows (compare to Def. 2.2). If G has one vertex, then td(G) =
1. If G is connected, then td(G) = 1 + min{ td(G− v) : v ∈ V (G) }. Otherwise,
td(G) equals the maximum over the tree-depth of the components of G.

We propose a new “directed” generalization of this definition. For a digraph
G and any v ∈ V (G), let Gv denote the subdigraph of G induced by the vertices
reachable from v. The maximal elements of the poset {Gv : v ∈ V (G) } in the
graph-inclusion order are called reachable fragments of G. Notice that reachable
fragments in the undirected case coincide with connected components.

Definition 2.6 (DAG-depth). The DAG-depth ddp(G) of a digraph G is in-
ductively defined: If |V (G)| = 1, then ddp(G) = 1. If G has a single reachable
fragment, then ddp(G) = 1 + min{ddp(G− v) : v ∈ V (G) }. Otherwise, ddp(G)
equals the maximum over the DAG-depth of the reachable fragments of G.

Comparing Definitions 2.2 and 2.6, one can see that DAG-depth equals cycle
rank on bidirected orientations of graphs. Furthermore, the following useful game
characterization of this new measure can be proved along Definition 2.6.

Theorem 2.7. The DAG-depth of a digraph G is at most t if, and only if, the
cop player has a “lift-free” winning strategy in the k-cops and robber game on G,
i.e., a strategy that never moves a cop from a vertex once he has landed.

Corollary 2.8 (cf. Theorem 2.1, Def. 2.2). For any digraph G, the DAG-
depth of G is greater than or equal to the DAG-width and the cycle rank of G. ⊓⊔

Another claim tightly relates our new measure to directed paths in a digraph.

Proposition 2.9. Consider a digraph G of DAG-depth t, and denote by ℓ the
number of vertices of a longest directed path in G. Then ⌊log2 ℓ⌋ + 1 ≤ t ≤ ℓ.

2.3 K-width

Moreover, applications in various “directed path” problems, see e.g. Section 3.1,
inspired the following width measure: The K-width (a shortcut of “Kenny
width”) of a digraph G is the maximum number of distinct (not necessarily
disjoint) simple s–t paths in G over all pairs of distinct vertices s, t ∈ V (G).

Similarly to DAG-depth in Proposition 2.9, K-width can be arbitrarily large
on DAGs. By giving a suitable search strategy for the cop player in a di-
graph G based on a DFS tree of G, we show that K-width is lower-bounded
by DAG-width, but K-width is generally incomparable with cycle-rank which is
unbounded on bidirected paths.

Theorem 2.10 (cf. Theorem 2.1). For any digraph G, the K-width of G is
greater or equal to the DAG-width of G minus one.

Furthermore, an easy algorithm enumerating all paths leads to:

Proposition 2.11. The K-width k of a given digraph G can be computed in
time k · poly(|V (G)|).
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3 Summary of Complexity Results

Table 1. Old and new (in boldface) complexity results on digraph measures ( ∗-marked
results assume a decomposition is given in advance; p-NPC is a shortcut for the com-
plexity class para-NPC; and c and φ are fixed parameters of the respective problems).

Problem K-width DAG-depth DAG-width Cycle-rank DAG Bi-rank-width

HAM FPT FPT XPa ∗ XPa ∗ P XPb

W[2]-hardc W[2]-hardd

c-Path FPT FPT XPa ∗ XPa ∗ Pa FPT

k-Path p-NPC p-NPC NPC NPC NPC open

DiDS p-NPC p-NPC NPC NPC NPC FPT

DiSTP p-NPC p-NPC NPC NPC NPC FPT

MaxDiCut p-NPCc p-NPCc NPCc NPCc NPCc XP

c-OCN p-NPC p-NPC NPCe NPCe NPCe FPT

DFVS open open p-NPCf p-NPCf P FPT

Kernel p-NPCg p-NPCg p-NPCf ,g p-NPCf ,g P FPT

φ-MSO1mc p-NPH p-NPH NPH NPH NPH FPTh

φ-LTLmc p-coNPH p-coNPH coNPH coNPH coNPC p-coNPH

Parity XPi XPi XPi ∗ XPi ∗ P XPj

References a[JRST01] b[GH09] c[LKM08] d[FGLS09] e[CD06] f [KO08] g[vL76]
h[CMR00] i[BDHK06] j[Obd07] . Refer to the respective following sections for details
and the new results.

3.1 Hamiltonian Path (HAM) and Disjoint Paths (k-Path)

The classical NP-hard Hamiltonian Path (HAM) problem [GJ79] is to find a
directed path that visits each vertex of a digraph exactly once. A natural gen-
eralization of HAM is the Longest Path problem (Longest Path), where one
is asked to find the longest simple path in a given digraph.

It is easy to see that HAM can be solved on DAGs in polynomial time. When
using the parameter DAG-width, the problem belongs to the complexity class
XP [JRST01], but was also proven to be W[2]-hard [LKM08]. We prove our new
FPT results for the parameters K-width and DAG-depth on the more general
Longest Path problem. Using a simple enumeration of all distinct paths in the
case of bounded K-width, or applying Proposition 2.9 and any FPT-algorithm for
Longest Path in the standard parameterization (e.g. [CKL+09]) when DAG-
depth is bounded, we get:

Theorem 3.1. There is a fixed parameter tractable algorithm solving the
Longest Path problem on a digraph G

a) in time O
(

t · |V (G)| · |E(G)|
)

if G is of K-width at most t;

b) in time O
(

42t+O(t3) · |V (G)| · |E(G)|
)

if G is of DAG-depth at most t.

Another well-known problem is Disjoint Paths (k-Path); given a digraph
and k pairs of nodes (si, ti), 1 ≤ i ≤ k, the task is to find pairwise disjoint
directed paths from each si to the respective ti. This problem is NP-complete
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[FHW80] even when k is bounded by any constant c ≥ 2 (c-Path). Moreover, a
“mixed” generalization of c-Path remains NP-complete [BJK09] even on DAGs.

If the digraph of an instance of k-Path has K-width ≤ 2, then it can be
expressed as a 2-SAT formula, and if DAG-depth is ≤ 2, then it is equivalent
to an SDR instance (system of distinct representatives). If, however, we slightly
relax the restrictions as follows, the problem becomes NP-complete again.

Theorem 3.2. The k-Path problem (with k as part of input)
a) can be solved in polynomial time on graphs of K-width or DAG-depth 2;
b) is NP-complete on DAGs of K-width 3 and DAG-depth 4.

Finally, since one can express an instance of c-Path for any fixed c in MSO1

logic (Section 3.6), it follows from Theorem 3.12 that this problem is fixed pa-
rameter tractable on digraphs of bi-rank-width t with parameters c and t. The
c-Path problem however also becomes easier for the other new measures:

Theorem 3.3. There is a fixed parameter tractable algorithm (for constant c)
solving the c-Path problem on a digraph G

a) in time O(tc · |E(G)|) if G is of K-width at most t;

b) in time O
(

(2c)ct4t

· |E(G)|2) if G is of DAG-depth at most t.

3.2 Directed Dominating Set (DiDS) and Steiner Tree (DiSTP)

The well-known NP-hard Dominating Set (DS) and Steiner Tree (STP) prob-
lems both allow for natural directed counterparts. We consider them in their un-
weighted variants for simplicity. The Directed Dominating Set problem (DiDS)
asks for a minimum cardinality vertex set X in a digraph G such that every
vertex of G not in X is an outneighbour of X. The Directed Steiner Tree prob-
lem (DiSTP) [HRW92], given a digraph G and T ⊆ V (G), r ∈ V (G), asks for a
minimum size tree in G spanning r ∪ T with all arcs oriented away from r.

While it is folklore that both of these problems are NP-hard in general, we
show (with a simple reduction from Vertex Cover) that the same holds even
on very restricted graph classes.

Theorem 3.4. DiDS and DiSTP problems are NP-complete on a digraph G
even if G is restricted to be a DAG of K-width 2 and DAG-depth 3.

Applying the MSO1 optimization framework described in Section 3.6 we get:

Proposition 3.5 (Theorem 3.12). The (unit cost) DiDS and DiSTP prob-
lems are fixed parameter tractable when parameterized by bi-rank-width.

3.3 Maximum directed cut (MaxDiCut)

Maximum directed cut (MaxDiCut) is an extensively studied problem on di-
graphs. Given a digraph G, the goal is to partition the vertex set V (G) into
V0 and V1 such that the cardinality of { (u, v) ∈ E(G) : u ∈ V0, v ∈ V1 } is
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maximized. This problem is often stated with edge weights, but we consider
only the unweighted (cardinality MaxDiCut) variant in our paper.

It is well known that the MaxDiCut optimization problem is NP-hard, and
it has been shown that MaxDiCut stays NP-hard even on DAGs [LKM08].
A closer, yet quite nontrivial look, at the reduction reveals the resulting graph
to have also bounded DAG-depth and K-width.

Theorem 3.6 ([LKM08]). The MaxDiCut problem is NP-hard on a digraph
G even if G is restricted to be a DAG of K-width 4608 and DAG-depth 11.

The only new efficiently solvable case among our measures is the following:

Theorem 3.7. The unweighted MaxDiCut problem on a digraph G of bi-rank-
width t is polynomially solvable for every fixed t (i.e. it belongs to the class XP).

3.4 Oriented Colouring (OCN)

A natural directed generalization of the ordinary graph colouring problem can
be obtained as follows: The chromatic number χ(G) of a graph G equals the
minimum c such that G has a homomorphism into the complete graph Kc. The
Oriented Chromatic Number (OCN) χo(G) of a digraph G is defined as the
minimum c such that G has a homomorphism into some(!) orientation of Kc.

In other words, χo(G) equals minimum c such that the vertex set of G can
be partitioned into c independent sets such that, between each pair of the sets,
all arcs have the same direction. For instance, χo = 5 for the directed 5-cycle.

It has been shown [KM04] that checking χo(G) ≤ 3 is easy, but determining
whether χo(G) ≤ 4 is already NP-complete. Subsequently, [CD06] have shown
that the problem χo(G) ≤ 4 remains NP-complete even on acyclic digraphs.
Using a simpler and more powerful reduction than [CD06], we prove:

Theorem 3.8. The problem (4-OCN) to decide whether a digraph G satisfies
χo(G) ≤ 4 is NP-complete even if G is a DAG of K-width 3 and DAG-depth 5.

On the other hand, it follows from the general framework of Theorem 3.12:

Proposition 3.9. The problem (c-OCN) to decide χo(G) ≤ c on an input di-
graph G of bi-rank-width t is fixed parameter tractable with parameters c and t.

3.5 Directed Feedback Vertex Set (DFVS) and Kernel (Kernel)

The directed feedback vertex set (DFVS) problem is to find a minimum cardina-
lity set S of vertices of a digraph G whose removal leaves G \ S acyclic. This
problem is trivial for acyclic digraphs, and it is FPT with the parameter k = |S|.
We hence consider only the optimization variant of DFVS with unbounded k.

Kreutzer and Ordyniak [KO08] gave a reduction showing NP-hardness of the
DFVS optimization problem on digraphs of DAG-width 4. A closer look at this
reduction reveals that all the produced graphs are moreover of cycle rank 4, but
they have unbounded K-width and DAG-depth.
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The kernel of a digraph G is defined as an independent set S ⊆ V (G) such
that for every x ∈ V (G) \ S there is an arc from x into S. Notice that a kernel
may not always exist. However, on acyclic digraphs, a kernel can be easily found.
Having a closer look at the NP-completeness reduction of van Leeuwen [vL76],
one discovers the following claim (cf. also [KO08]).

Theorem 3.10 (van Leeuwen [vL76]). It is NP-complete to decide whether
a digraph G has a kernel, even if G is restricted to have (all at once) DAG-width
and K-width 2, cycle rank also 2, and DAG-depth 4.

Finally, by Example 3.11 and Theorem 3.12, both the Kernel and DFVS

problems are fixed parameter tractable on digraphs of bounded bi-rank-width.

3.6 MSO1 Model Checking (φ-MSO1mc)

Monadic second order (MSO) logic is a language often used for description of
combinatorial algorithmic problems. When applied to a one-sorted relational
graph structure (i.e. to a set V with a symmetric relation edge(u, v)), this lan-
guage is abbreviated as MSO1. We use the same abbreviation MSO1 also for
digraphs with a relation arc(u, v).

Example 3.11. The following properties are expressible in MSO1 on digraphs

– a directed dominating set X as ∀z
(

z ∈ X ∨ ∃x ∈ X arc(x, z)
)

,

– the existence of a kernel S as ∃S ∀x
[

x 6∈ S ↔
(

∃y ∈ S arc(x, y)
)]

, or

– a feedback vertex set Z as ∀X
[

X ∩ Z = ∅ →
(

∃x ∈ X ∀y ∈ X ¬arc(x, y)
)]

.

On the other hand, MSO1 cannot express Hamiltonian cycle, for instance.

The MSO1 model checking problem (φ-MSO1mc), where φ is a fixed for-
mula, is FPT on (undirected) graphs of bounded clique-width or rank-width
[CMR00,CK07]. Not surprisingly, this extends to digraphs parameterized by bi-
rank-width. More generally, the LinEMSO1 optimization framework includes all
problems which can be expressed as maximization of a linear evaluational term
over all tuples of sets X1, . . . ,Xj satisfying ψ(X1, . . . ,Xj) where ψ is an MSO1

formula —see [CMR00] for details. Analogously to [CMR00] (or [GH08]) we get:

Theorem 3.12 (cf. [CMR00], and [Kan08,GH08]).
Every ψ-LinEMSO1 optimization problem is fixed parameter tractable when re-
stricted to digraphs of bi-rank-width t, with parameters t and ψ.

Theorem 3.12 particularly implies that the problems listed in Example 3.11
(and many others) are FPT on digraphs of bi-rank-width t. No analogous results,
however, seem possible for our other directed width measures since one can
interpret φ-MSO1mc of arbitrary undirected graphs via subdividing each edge
and giving the two new edges opposite orientations, leading to:

Proposition 3.13. The φ-MSO1mc problem is NP-hard even when restricted
to DAGs that are of K-width 1 and DAG-depth 2.
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3.7 LTL Model Checking (φ-LTLmc) and Parity Games (Parity)

Another useful language that allows to express properties of digraphs is Linear
Temporal Logic (LTL) —see, e.g., [BK08]. LTL model checking remains hard for
a fixed formula φ and all of the directed width measures we considered here,
including bi-rank-width (as opposed to MSO1 model checking).

Theorem 3.14. The φ-LTLmc problem is coNP-hard even when the input di-
graph is restricted to have K-width 1, DAG-depth 4, and bi-rank-width 2.

Theorem 3.15. The φ-LTLmc problem is coNP-complete on DAGs.

Parity games—see e.g. [GTW02] for a reference, play an important role in
the field of model-checking and formal verification. There are many reasons for
this. First, solving parity games is equivalent to model-checking the modal µ-
calculus, an important modal logic subsuming many other logics (e.g. CTL).
Moreover, the modal µ-calculus is a bisimulation invariant fragment of MSO1.

Second, the exact complexity of solving a parity game is a long-standing open
problem. It is known to be in NP∩ co-NP, and widely believed to be in P . It is
trivially in P for acyclic digraphs. Moreover, it was shown that solving a parity
game is in XP for digraphs of bounded tree-width [Obd03], bounded DAG-width
[BDHK06] (hence also on bounded K-width, DAG-depth, and cycle rank) and
bounded Kelly-width [HK08], and of bounded clique-width [Obd07] (implying
the same for bi-rank-width).

4 Conclusion

Table 1, and the related results in this paper, have left several interesting open
problems and questions. Just to specifically mention a few:

1) We suggest there exist FPT algorithms solving the DFVS problem for
bounded K-width or DAG-depth (two of the open table entries).

2) For some entries in the table, we neither expect an FPT algorithm, nor have
an NP-hardness estimate. E.g., MaxDiCut or k-Path for bi-rank-width, or
c-Path for cycle rank. Can we then, at least, show a W-hardness result?

3) While we have given FPT and XP, respectively, algoritms solving the unit-
cost variants of DiSTP and MaxDiCut, these problems are usually consid-
ered in their weighted variants and then we expect their complexity to be
higher. We, however, have no further results in this direction.

4) Some suggest that the DFVS number (see in Section 3.5) perhaps can be a
good directed width measure. However, since majority of our sample prob-
lems in Table 1 remain hard even on DAGs, there is not much room left for
applications of the DFVS parameter. Interestingly though, Kernel becomes
FPT when parametrized by DFVS.

Theorem 4.1. If a digraph G is given with a directed feedback vertex set of
size k, then the Kernel problem can be solved in time O(2k · |V (G)|2).
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Finally, we try to formulate the overall impression coming from Table 1:
Robber-and-cops based width measures do not seem to be very useful for pa-
rameterized algorithms on digraphs. One reason might be that cops “give” good
graph separators in the undirected case, but that does not work any more for
digraphs. Considering the DFVS number as a width parameter does not seem
to help either. We perhaps need something new to move on. At this moment,
bi-rank-width seems like a good alternative.
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supported by the Czech research grant GAČR 201/08/0308.
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APPENDIX

Notes on Section 2.1 (bi-rank-width)

A rank-decomposition is, actually, not so suitable for designing dynamic pro-
gramming algorithms. Yet, there is an efficient alternative characterization of a
rank-decomposition via algebraic terms (or parse trees) over the bilinear graph
product, which has been proposed by Courcelle and Kanté [CK07] and further
extended towards algorithmic applications by [GH08] (see also an independent
similar approach of [BXTV08]). As shown in [Kan08], an analogous “dynamic
programming friendly” parse-tree view (of bi-rank-width) exists for digraphs,
and we will apply this later, e.g. in Theorem 3.12. in Section 3.6.

Following Section 2.1, we describe Kanté’s bi-labeling parse trees [Kan08,
Section 4] (thereafter called “algebraic expressions for bin-rank-width”),
which characterize bi-rank-width of digraphs up to a multiplicative factor 2
(Lemma 5.3).

A t-labeled digraph is a pair Ḡ = (G, lab) of a digraph G and a vertex labeling
lab : V (G) → 21,...,t into subsets of t labels, or equivalently in linear algebra
terms a mapping lab : V (G) → GF (2)t into the points of a t-dimensional binary
vector space. For technical reasons, we analogously define a t-bi-labeled digraph
H̃ = (H, lab+, lab−). A t-relabeling is a linear mapping f : GF (2)t → GF (2)t, or
in other words a binary t× t matrix f .

Definition 5.1 (Bi-labeling join). Considering a t-labeled digraph Ḡ =
(G, lab) and a t-bi-labeled digraph H̃ = (H, lab+, lab−), a t-bi-labeling join Ḡ⊗H̃
is defined on a disjoint union of G and H by adding, where u ∈ V (G), v ∈ V (H);
all arcs (u, v) such that |lab(u) ∩ lab+(v)| is odd, and all arcs (v, u) such that
|lab(u) ∩ lab−(v)| is odd. The resulting digraph is unlabeled.

Definition 5.2 (Bi-labeling parse trees). Considering t-labeled digraphs
Ḡi = (Gi, labi), i = 1, 2, and relabelings f1, f2, h

+, h− : GF (2)t → GF (2)t,
we define a t-bi-labeling composition operator ⊗[h+, h−; f1, f2] as follows.
Ḡ1 ⊗ [h+, h−; f1, f2] Ḡ2 = Ḡ3 where G3 = Ḡ1 ⊗ (G2, h

+· labT2 , h
−· labT2 ) and the

labeling of v ∈ V (Gi) in Ḡ3 is lab3(v) = fi · lab
T
i , i = 1, 2.

A t-bi-labeling parse tree T , see also [GH08], is a finite rooted ordered sub-
cubic tree (with the root degree at most 2) such that

– the leaves of T contain a ⊙ symbol creating a new graph vertex of label {1},
– each internal node of T contains one of the t-bi-labeling composition symbols.

A parse tree T then generates (parses) the digraph Ḡ which is obtained by
successive leaves-to-root applications of the operators in the nodes of T .

Lemma 5.3 (Kanté [Kan08]). Let G be a digraph of bi-rank-width t. If m is
the smallest integer such that (some labeling of) G is produced by some m-bi-
labeling parse tree, then t ≥ m ≥ t/2.
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Having now the bi-labeling parse tree machinery at hand, it is straightforward
to translate the formal tools of [GH08,GH09] to digraphs of bounded bi-rank-
width, see e.g. the proof of Theorem 3.7. In this way, for instance, the XP
algorithm for undirected Hamiltonian path [GH09] directly translates to an XP
algorithm for Hamiltonian path in digraphs of bounded bi-rank-width.

On the other hand, we remind the readers that one cannot use an undi-
rected rank-decomposition (or parse tree) of a digraph G to design a dynamic
programming algorithm for a problem referring to the direction of arcs of G.
That is because the parse tree produces large bipartite cliques, and one cannot
exhaustively process all possible orientations of those.

For sake of completeness, we lastly remark that Kanté [Kan08] considers also
another directed generalization of rank-width, the so called GF (4)-rank-width.
Since these two are within a constant factor, there is no need to consider the
latter in our paper.

Proofs for Section 2.2 (DAG-depth)

Theorem 2.7. The DAG-depth of a digraph G is at most t if, and only if, the
cop player has a “lift-free” winning strategy in the k-cops and robber game on G,
i.e., a strategy that never moves a cop from a vertex once he has landed.

Proof. (sketch) We proceed by induction along the definition of DAG-depth.
That is trivial if |V (G)| = 1. Let F1, . . . , Fd be all the reachable fragments of G. If
d > 1, then the robber may start in any vertex of any Fi ⊆ G, i ∈ {1, . . . , d}, and
so the cop player needs as many moves in G as in such most expensive reachable
fragment which is max{ddp(Fi) : i = 1, . . . , d } by inductive assumption.

Now assume G has a single reachable fragment. Hence there is v ∈ V (G)
which can reach whole G, and so whenever another cop is to land at s ∈ V (G),
the robber may move to any vertex of G−s. It follows from inductive assumption
that the cop player needs another ddp(G−s) moves after landing at s. Therefore,
the cop player needs at least 1 + min{ddp(G− v) : v ∈ V (G) } moves on G, and
this is also sufficient. ⊓⊔

Proposition 2.9. Consider a digraph G of DAG-depth t, and denote by ℓ the
number of vertices of a longest directed path in G. Then ⌊log2 ℓ⌋ + 1 ≤ t ≤ ℓ.

Proof. Firstly, we show that the DAG-depth of an ℓ-vertex path P is at least
⌊log2 ℓ⌋+1. This is trivial if ℓ = 1. Since a path has a single reachable fragment,
we have from the definition ddp(P ) = 1 + ddp(Q) where Q a path of length
⌈(ℓ− 1)/2⌉. If ℓ is even, then ddp(P ) = 1 + ⌊log2(ℓ/2)⌋ + 1 = ⌊log2 ℓ⌋+ 1. If ℓ is
odd, then ddp(P ) = 1 + ⌊log2((ℓ− 1)/2)⌋ + 1 = ⌊log2(ℓ− 1)⌋ + 1 = ⌊log2 ℓ⌋+ 1.

On the other hand, we describe a simple ℓ-move lift-free winning strategy for
the cop player on any such digraph G. The first cop lands on the initial position
s1 of the robber. In cop move i > 1, the cop number i lands on a vertex si of
G which is the out-neighbour of si−1 on some directed path from si−1 to the
current robber position. Since all directed paths starting in s1 have ≤ ℓ vertices,
the robber is finally caught after ≤ ℓ cop moves. ⊓⊔
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Notice that Proposition 2.9 provides efficient computation of DAG-depth:

Corollary 5.6. The DAG-depth of a digraph G can be approximated by an FPT
algorithm, and computed exactly by an XP algorithm.

Proof. We first compute the longest directed path length ℓ in G, which can be
done by an FPT algorithm of e.g., [CKL+09]. This ℓ is already a good estimate
of the DAG-depth of G by Proposition 2.9.

In the second part, we carry a brute-force recursive computation of the DAG-
depth of G according to the definition. Since the depth of recursion is bounded
by ℓ, and each call branches into O(|V (G)|) subproblems, we get an XP algo-
rithm. ⊓⊔

Furthermore, notice that the approach of Corollary 5.6 also gives an efficient
way to construct a bounded DAG-decomposition for G if the DAG-depth is
bounded (of course, with no matching lower bound).

Proofs for Section 2.3 (K-width)

Theorem 2.10. For any digraph G, the K-width of G is greater or equal to the
DAG-width of G minus one.

Proof. Let T be any depth first search tree of G. Based on T , we outline a
monotone search strategy for the cop player on G, in which the player is to use
a cop number k + 1 only if there are at least k paths between a pair of vertices.

(i) In the first move a cop is placed at the root of T .
(ii) In each subsequent cop-placing move, the cop player chooses the (unique)

vertex v of G such that; v is an outneighbour of a cop-occupied vertex, and
v reaches the robber along a cop-free path in T .

(iii) Whenever a cop-occupied vertex u is no longer reachable from the current
robber position, the cop from u is lifted back.

This strategy is clearly monotone. Consider the vertex v in rule (ii). If there
was a cop-occupied vertex w in G which is not an ancestor of v, then w must
no longer be reachable by the robber since T is a DFS tree. So (iii) for u = w
applies before (ii). Therefore, our strategy maintains an invariant that all vertices
occupied by cops belong to one directed path of T .

Consider now a situation when there is a set U of k cop-occupied vertices in G,
and rule (ii) applies again. Then there is a path P ⊆ T such that U ⊆ V (P ). Let
s be the last cop-occupied vertex of P . By (iii), each vertex w ∈ U is reachable
in G from the robber vertex r along a cop-free path Qw. So P ∪Qw contains a
path from r to s, and these k paths are pairwise distinct for distinct w. ⊓⊔

Notice that the proof of Theorem 2.10, together with Proposition 2.11, give
an efficient way to construct a bounded DAG-decomposition for G if the K-width
is bounded. Furthermore, the following simple claim will be useful in algorithmic
applications of K-width.
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Lemma 5.8. If G is a digraph of K-width t, then all (at most t|V (G)|) directed
paths starting at a vertex u ∈ V (G) can be enumerated in time O(t · |E(G)|).

Proof. Enumerate paths in G starting at u by backtracking and prune the search
whenever finding a vertex that is already on the current path.

The resulting search tree has at most t|V (G)| nodes: Each node in the search
tree corresponds to a simple path in G starting at u. There can be at most t
such paths with the same terminal vertex.

The time spent in each node of the search tree is O(d), where d is the out-
degree of the terminal vertex of the corresponding simple path. Overall this
amounts to a running time of O(t|E(G)|). ⊓⊔

Finally, we can easily compute the K-width, if it is not too big.

Proposition 2.11. The K-width k of a given digraph G can be computed in
time k · poly(|V (G)|).

Proof. Enumerate all (up to k each) simple paths starting from every vertex
in G. Count how many path to each other vertex. The maximum number you
encounter is exactly k. ⊓⊔

Proofs for Section 3.1 (HAM, k-Path)

Note that FPT-membership for Longest Path implies membership for HAM.

Theorem 3.1(a). Given a digraph G with K-width at most t, one can solve
Longest Path in time O(t|V (G)| · |E(G)|).

Proof. For all u ∈ V (G) enumerate all simple paths starting at u according to
Lemma 5.8 while keeping track of their lengths. ⊓⊔

Theorem 3.1(b). Given a digraph G with DAG-depth at most t, one can solve

Longest Path in time 42t+O(t3) · |V (G)| · |E(G)|.

Proof. We know by Proposition 2.9 that ⌊log2 ℓ⌋+ 1 ≤ t ≤ ℓ, or in other words,
ℓ ≤ 2t, where ℓ is the length of the longest path. We can hence use an arbitrary
FPT-algorithm for the Longest Path decision problem in the standard param-
eterization (e.g., [CKL+09] with running time 4ℓ+O(log3 ℓ)|V (G)| · |E(G)|): We
begin with ℓ = 1 and subsequently increase ℓ until a “no”-instance is found.
This yields an FPT-algorithm for parameter t even if t is unknown to the algo-
rithm. ⊓⊔

Theorem 3.2(a). The k-Path problem can be solved in polynomial time on
graphs of K-width at most 2 or DAG-depth at most 2.

Proof. Given a digraph G with K-width ≤ 2 and k pairs of nodes (s1, t1),
. . . , (sk, tk), we first for every 1 ≤ i ≤ k compute by Lemma 5.8 the (wlog) two
possible paths pi,1 and pi,2 from si to ti. Then we construct a 2-SAT formula
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sxi txi

xi,1 xi,2
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· · ·

· · ·

...
...

sC1

tC1

sC2

tC2

sC3

tC3

sx0 tx0

sx1 tx1

sx2 tx2

Fig. 1. Left: gadget for variable xi; right: schematic of the construction

as follows: For each pair (si, ti), 1 ≤ i ≤ k, there is a clause over the two alter-
native paths, Ci = {pi,1, pi2}. Furthermore, for each pair of non-disjoint paths
p1, p2 ∈ { pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ 2 }, such that p1 6= p2 and V (p1) ∩ V (p2) 6= ∅,
there is a clause excluding each other, Cp1,p2

= {¬p1,¬p2}. We omit the sim-
ple proof that the formula is satisfiable if and only if there is a solution to the
k-paths instance at hand.

Similarly, given a digraph G with ddp(G) ≤ 2 and k pairs of nodes (s1, t1),
. . . , (sk, tk), we proceed as follows. In the first step, for each pair (si, ti) such
that (si, ti) ∈ E(G), we simple remove both vertices si, ti from the instance.

Hence we may assume that every si–ti path in G is formed by a pair of arcs
(si, x), (x, ti) ∈ E(G), cf. Proposition 2.9. We denote by Xi the set of all such
x in G for the pair (si, ti). Then, clearly, the k-Path instance has a solution if
and only if X1, . . . ,Xk admit a system of distinct representatives, which can be
decided in P. ⊓⊔

Theorem 3.2(b). The k-Path problem is NP-complete on DAGs with K-
width 3 and DAG-depth 4.

Proof. We reduce from the well-known NP-complete 3-SAT problem, where each
clause contains exactly three literals. Let ϕ be a 3-SAT-formula with m clauses
C1, . . . , Cm over n variables. Without loss of generality, we may assume that
every variable occurs in at most three literals (cf. the proof of Theorem 3.6),
and that no variable has all three literals positive or all three negated (otherwise
we set it true or false, respectively). Hence every literal occurs at most two times
in the whole formula ϕ. We create a digraph G as follows.

For every variable xi, we add a gadget as depicted in Figure 1. The “up-
per” path in the gadget corresponds to a negative assignment of the vari-
able since it leaves the nodes xi,1 and xi,2 available for clauses, while simi-
larly the “lower” path corresponds to a positive assignment. Then, for every
clause Ci = {ℓ1, ℓ2, ℓ3}, we add two nodes sCi

and tCi
. Then, for every literal lj ,
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1 ≤ j ≤ 3, such that lj is the kth occurrence in the formula, we add the edges
(sCi

, ℓj,k) and (ℓj,k, tCi
).

For example, if l3 = x5, and x5 occurred already in some Ci′ with i′ < i, then
we add the edges (sCi

, x5,2) and (x5,2, tCi
). See Figure 1 for a schematic view.

It is easy to see that the resulting digraph is a DAG, the longest path con-
tains at most four nodes (which bounds the DAG-depth by Proposition 2.9),
and between any two nodes there are at most three paths. Furthermore, ϕ is
satisfiable if and only if G is a “yes”-instance to the k-path problem with pairs
(sxi

, txi
) for all 1 ≤ i ≤ n and pairs (sCj

, tCj
) for all 1 ≤ j ≤ m:

Let C be a satisfying assignment of the variables. For the path between a
pair (sxi

, txi
), we use the path corresponding to the assignment of the variable

xi, i.e., if xi is assigned 0, we use the path through the nodes labeled with xi,1

and xi,2, and the path through xi,1 and xi,2 otherwise. If a clause Cj is satisfied
by some literal li, then by construction the path between sxi

and txi
is not using

the node v labeled with li, which means we can use the path sCj
vtCj

for the
pair (sCj

, tCj). Hence, all pairs can be connected by disjoint paths.
If otherwise there is a solution to the k-path problem on the constructed

instance, then first note that a path between each sxi
and txi

for every variable xi

either has to use the “positive” or the “negative” path through its corresponding
gadget. We choose an assignment C of the variables, where each variable is
assigned 0 if the path between sxi

and txi
uses the path through the nodes

labeled with xi,1 and xi,2, and is assigned 1 else. Then each clause Cj = {l1, l2, l3}
is satisfied: The path between sCj

and tCj
has to use one of the three nodes

corresponding to l1, l2, and l3, say lk for some variable xi. Since all paths are
disjoint, the path between sxi

and txi
is not using lk, and therefore the variable

is assigned a value such that lk has the value 1 and Cj is satisfied. ⊓⊔

Lemma 5.14. Let G be a digraph, and let c pairs of vertices si, ti ∈ V (G), i =
1, . . . , c be given. There is an MSO1 formula expressing (c-Path) the existence
of c pairwise disjoint directed si– ti paths, i = 1, . . . , c, in G.

Proof. We write

∃X1, . . . ,Xc





∧

i 6=j∈{1,...,c}

Xi ∩Xj = ∅ ∧
∧

i∈{1,...,c}

si, ti ∈ Xi ∧

∧

i∈{1,...,c}

∀Z ⊆ Xi

(

(si ∈ Z ∧ ti 6∈ Z) → ∃x ∈ Z, y ∈ Xi\Z arc(x, y)
)





which means that there exist pairwise disjoint sets X1, . . . ,Xc ⊆ V (G) such
that si, ti ∈ Xi, and each Xi induces a subdigraph of G in which ti is reachable
from si. Notice that si, ti are not variables, but constants in this sentence. ⊓⊔

Theorem 3.3. There is a fixed parameter tractable algorithm solving the
c-Path problem (for fixed c) on a digraph G

a) in time O(tc · |E(G)|) if G is of K-width at most t;

b) in time O
(

(2c)ct4t

· |E(G)|2) if G is of DAG-depth at most t.
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Proof. (sketch) Notice that we can, without loss of generality of the c-Path

problem, assume that G is a simple digraph (while 2-cycles are permitted).
a) We, for each i = 1, . . . , c, use Lemma 5.8 to list all ≤ t distinct directed

paths from si to ti. Then, using brute force over all tc possibilities, we check
whether there is a selection of pairwise disjoint ones.

b) This algorithm uses part (a) and recursive calls in a clever way. By Propo-
sition 2.9, the longest directed path in G has length ℓ < 2t (which is the only
extra information we use about G). We are actually going to recursively solve
a more general problem to find a collection of c pairwise disjoint directed si– ti
paths Qi in G such that E(Qi) ⊆ Ei ⊆ E(G). Initially E1 = · · · = Ec = E(G).

Let Pi be the collection of all si– ti paths with arcs from Ei. If |Pi| ≤ (cℓ)ℓ2

for all i = 1, . . . , c, then we may actually use (a) to solve the problem in time

O
(

(cℓ)cℓ2 · |E(G)|
)

. Otherwise, |Pi| > (cℓ)ℓ2 for some i, and we may apply the
following for u = si, v = ti, and (loosely) m = cℓ, k = ℓ:

Claim. Let H be a simple digraph, and u, v two vertices of H such that the
longest path starting in u has length k+ 1 and there exist 1+ (m− 1)k2

distinct
directed u–v paths in H. Then there exist vertices u′, v′ in H such that there
are m pairwise internally disjoint u′–v′ paths.

To prove the claim, we may assume that every arc of H is on some u–v
path. By the pigeon-hole priciple, there exists a vertex u′ in H having outdegree
≥ 1+(m−1)k, and this u′ is not an in-neighbour of v (otherwise, we would have

only ≤
(

(m−1)k
)k

distinct u–v paths). Let u′i, i = 1, . . . , p ≥ 1+(m−1)k be the
out-neighbours of u′ in H, and let H ′ be an inclusion-wise minimal subgraph of
H such thatH ′ contains some u′–v path Si passing through u′i for all i = 1, . . . , p.
By a symmetric application of the pigeon-hole priciple, there exists a vertex v′

having indegree ≥ m in H ′. Let v′j , j = 1, . . . , q ≥ m be the in-neighbours of v′

in H ′. It follows from minimality of H ′ that the u′–v′ paths S′
j passing through

appropriate u′ij
and v′j are pairwise internally disjoint.

In other words, there exist vertices s′, t′ in G such that cℓ suitable fragments
of paths from Pi form pairwise internally disjoint s′– t′ paths R1, . . . , Rcℓ. These
paths can be found in time O

(

(cℓ)ℓ2 · |E(G)|
)

using an approach similar to
Lemma 5.8. Now, we make a new arc set E′

i from Ei by removing all arcs of
R1 ∪ · · · ∪ Rcℓ, and adding a new arc f ′ = (s′, t′). We call the same algorithm
recursively on E1, . . . , E

′
i, . . . , Ec.

This algorithm clearly stops after O(c|E(G)|) recursive calls since each call

decreases |E1|+ · · · + |Ec|. Hence the overall run-time is O
(

(cℓ)cℓ2 · |E(G)|2
)

. It
remains to prove that there is a solution with constrains to E1, . . . , Ei, . . . , Ec

if, and only if, there is a solution to E1, . . . , E
′
i, . . . , Ec. The “only if” direction

is trivial since we can simply use the arc f ′ = (s′, t′) when needed.
In the “if” direction, when f ′ is not used in the path, we are done. If f ′

is used in the si– ti path Q′
i, then we notice the following: By the pigeon-hole

principle, some of the paths R1, . . . , Rcℓ must be disjoint from all other c − 1
paths of ≤ ℓ vertices in the solution, and hence we can use the path (Qi−f

′)∪Rj

with all arcs in Ei instead. ⊓⊔
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Proofs for Section 3.2 (DiDS and DiSTP)

Theorem 3.4. DiDS and DiSTP are NP-complete on DAGs that are of K-
width 2 and DAG-depth 3.

Proof. We use a reduction from Vertex Cover to show hardness. Let a graph
G = (V,E) and k ∈ N be an input instance for Vertex Cover. Wlog, we can
assume that |V | ≥ k + 2.

We construct G′ = (V ′, E′) as follows. We set V ′ = V ∪E ∪ {v0} and define
the set of edges as follows:

E′ = { (v0, v) : v ∈ V } ∪ { (v, e) ∈ V × E : v ∈ e }.

Now, G = (V,E) has a vertex cover of size k iff G′ = (V ′, E′) has a directed
dominating set of size k + 1.

Assume that there is some k vertex cover C ⊆ V in G. Then v0 ∪ C is a
directed dominating set in G′, because v0 dominates itself as well as all v ∈ V ,
and since each e ∈ E is incident to some v ∈ C, C dominates E in G′.

Now let D be a directed dominating set in G′ of size k+1. Since |V | ≥ k+2,
v0 ∈ D, because otherwise a node in V would not be dominated. Moreover, we
can assume that D ∩E = ∅, because each e ∈ E can only dominate itself in G′.
It is thus always safe to pick a predecessor of e instead. But then, each e ∈ E is
dominated by some v ∈ D ∩ V , and thus D ∩ V is a vertex cover in G.

Finally, G′ is a DAG with K-width two, since there are only two paths from
v0 to each e ∈ E, only one path from v0 to each v ∈ V and only one path from
each v ∈ V to each e ∈ E. Likewise, the DAG-depth of G′ is at most three.

Note that the same construction also can be used to prove hardness for the
DiSTP problem. The dominating set implied by a vertex cover forms a Steiner
tree of size 1 + k + n, by connecting all e ∈ E via nodes in D to the root v0.

Moreover, any Steiner tree T that connects v0 to all e ∈ E implies a vertex
cover V (T ) ∩ V , since each node in E must be connected by a node v ∈ V with
v ∈ e. Moreover, any such Steiner tree T of cost at most k+ |E| contains at most
k nodes from V , and thus V (T ) ∩ V is a vertex cover of size k in G. ⊓⊔

Proposition 3.5. The (unit cost) DiSTP problem can be formulated as a
LinEMSO1 optimization problem, and hence DiSTP is fixed parameter tractable
when parameterized by bi-rank-width.

Proof. Let G be a digraph, and T ⊆ V (G), r ∈ V (G) \ T . Though DiSTP

problem optimizes over the number of edges (recall unit cost!) of a Steiner tree
S ⊆ G rooted from r and spanning T , there is a simple equality; |E(S)| =
|V (S)| − 1. Hence we can, instead, minimize the cardinality of X = V (S) such
that X induces in G directed paths from r to all vertices of T .

Similarly to Lemma 5.14, we can thus write (with constants r and T )

∀t ∈ T ∀Z ⊆ X
(

(r ∈ Z ∧ t 6∈ Z) → ∃x ∈ Z, y ∈ X\Z arc(x, y)
)

. ⊓⊔
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Proofs for Section 3.3 (MaxDiCut)

Theorem 3.6. The MaxDiCut problem is NP-hard on a digraph G even if G
is restricted to be acyclic (implying directed tree-width, DAG-width and Kelly-
width, and cycle rank 1) of K-width 4608 and DAG-depth 11.

Proof. To verify that the digraph which is the result of the [LKM08] reduction
from not-all-equal (NAE) 3SAT has bounded DAG-depth and K-width, we need
to slightly modify the construction.

First we may assume the the input instance φ of NAE-3SAT contains no
clause with both positive and negative occurrence of the same variable. If this is
not so, we can remove all such clauses, as they are always satisfied in the NAE-
SAT sense. Moreover, we can also assume that each variable occurs at most 4
times in the input formula. If not, we can replace the k different occurrences of
a variable x with k fresh variables x1, . . . , xk and add the following clauses to
the formula: (x1∨¬x2∨¬x2)∧ (x2 ∨¬x3∨¬x3)∧ . . .∧ (xk ∨¬x1∨¬x1). It is not
hard to see that the new formula is satisfied (in the NAE sense) iff the original
formula was satisfied, and every variable occurs at most four times. Moreover,
the size of this new formula is linear in the size of φ.

al bixl

¬xl

ci,1,1

ci,1,2

ci,1,3

ci,2,1

ci,2,2

ci,2,3

ci,3,1

ci,3,2

ci,3,3

6|xl|

6|xl|

2

2

2

Fig. 2. MaxDiCut reduction gadget
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Fig. 2 shows a part of the resulting graph for formula φ, a variable xl and a
clause ci, which contains a positive occurrence of xl on the second position. The
labels on the edges show the weight of the given edge (unlabelled edges have
weight 1). |xl| is the number of occurrences of the variable xl in the formula φ
(at most four, as argued above).

To obtain an unweighted graph we use the construction from [LKM08, Theo-
rem 3]. This construction first replaces each edge (u, v) of weight k by k parallel
edges, and then replaces each parallel edge by a path of length 3 (two fresh
vertices are added for each such edge).

To compute K-width we notice that the highest number of paths between
some ai and bj and can be at most 6|xi| ∗ 6|xi| ∗ 2(1 + 2 + 1) ≤ 4608, since
|xi| ≤ 4. Finally, the DAG-depth is bounded by the length of longest path,
which is 3 + 3 + 3 + 1 + 1 = 11. ⊓⊔

Theorem 3.7. The unweighted MaxDiCut problem on a digraph G of bi-rank-
width t is polynomially solvable for every fixed t (i.e. it belongs to the class XP).

Proof. (sketch) We give an XP dynamic programming algorithm running on a
bi-rank-width parse tree (cf. the appendix of Section 2.1 for the terminology).

We use shortcut notation arcs(G;V0, V1) = { (u, v) ∈ E(G) : u ∈ V0, v ∈ V1 }.
Given two t-labeled digraphs Ḡ1, Ḡ2 and mappings ϕi : V (Gi) → {0, 1} where
i = 1, 2 (here ϕi gives a partition of V (Gi) into V0 = ϕ−1

i (0) and V1 = ϕ−1
i (1) ),

we define an equivalence relation: (Ḡ1, ϕ1) ≈ (Ḡ2, ϕ2) if, and only if, the following
holds for all t-bi-labeled digraphs H̃ and all mappings ψ : V (H) → {0, 1}

∣

∣

∣
arcs

(

Ḡ1 ⊗ H̃; ϕ−1
1 (0), ψ−1(1)

)
∣

∣

∣
+

∣

∣

∣
arcs

(

Ḡ1 ⊗ H̃; ψ−1(0), ϕ−1
1 (1)

)
∣

∣

∣
=

=
∣

∣

∣
arcs

(

Ḡ2 ⊗ H̃; ϕ−1
2 (0), ψ−1(1)

)
∣

∣

∣
+

∣

∣

∣
arcs

(

Ḡ2 ⊗ H̃; ψ−1(0), ϕ−1
2 (1)

)
∣

∣

∣
.

In informal words, the relation ≈ captures “all necessary information from Ḡ1”
needed to find an optimal solution to MaxDiCut on any (bigger) Ḡ1 ⊗ H̃.

Let T be a t-bi-labeling (bi-rank-width) parse tree of the input digraph G,
constructed from Theorem 2.5 (Lemma 5.3). Our algorithm processes T in
the leaves to root direction. At every node s of T , parsing a t-labeled sub-
digraph Ḡs, and for every equivalence class C of ≈, we remember a mapping
ϕ : V (Gs) → {0, 1} achieving maximum cardinality of arcs

(

Gs;ϕ
−1(0), ϕ−1(1)

)

among all (Ḡs, ϕ) ∈ C. This information can be easily combined from the two
descendants in our parse tree processing. The maximum value (over all classes
of ≈) recorded at the root of T is then the optimal solution.

It remains to bound the number of classes of ≈. From the definition of t-bi-
labeling join operator ⊗ (cf. the appendix of Section 2.1), we straightforwardly
derive the following claim: Let a signature of (Ḡ, ϕ), where Ḡ = (G, lab) is a
t-labeled digraph, be the pair of multisets 〈{ lab(x) : x ∈ ϕ−1(0) }, { lab(x) : x ∈
ϕ−1(1) }〉. If (Ḡ1, ϕ1) and (Ḡ2, ϕ2) have the same signature, then (Ḡ1, ϕ1) ≈
(Ḡ2, ϕ2).
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The total number of signatures for t-labeled n-vertex digraphs is clearly at
most n2·2t

since every lab(x) ∈ GF (2)t and we record the multiplicities of all

labels. Hence our above outlined algorithm runs in time nO(2t) which is polyno-
mial in n for every fixed t. ⊓⊔

Proofs for Section 3.4 (OCN)

Theorem 3.8. The problem (4-OCN) to decide whether a digraph G satisfies
χo(G) ≤ 4 is NP-complete even if G is acyclic of K-width 3 and DAG-depth 5.

Proof. We use the following easy claim from [CD06] as the starting point of our
reduction: Let R be the digraph on the right-hand side of Fig. 3, and Q be the
acyclic digraph on the left-hand side. Then every oriented 4-colouring of Q must
induce a homomorphism into R such that b is mapped to B and f1, f2 are both
mapped to F .

Q
f1

b

f2

→

FB

A T

R

Fig. 3. Forcing a 4-colouring homomorphism

We reduce from NP-complete not-all-equal (NAE) 3SAT problem, which has
an input CNF formula ϕ with exactly three literals in each clause, and the
question is whether ϕ has a satisfying assignment such that no clause receives
three times true. We replace each variable x of ϕ with a gadget depicted in Fig. 4
left, consisting of a copy of Q, two arcs leaving the copy of vertex b into new
vertices p and n, a new path of length 5 from p to n, and the necessary number
of terminals for the x and ¬x literals occurring in ϕ, each adjacent from p or
n, respectively. Then we replace each clause C of ϕ with a gadget depicted in
Fig. 4 right, consisting of three directed paths of lengths 3, 4, 5, with a common
source. The ends of these paths are the terminals for the literals of C.

Let Gϕ be the digraph obtained from all these variable and clause gadgets
(pairwise disjoint so far) by identifying all the pairs of corresponding (in ϕ)
literal terminals. We claim that ϕ is NAE satisfiable if and only if the oriented
chromatic number of Gϕ is 4. It follows from the following sequence of claims:

– Any oriented 4-colouring of Gϕ is a homomorphism into the above digraph R.
– In any homomorphism of the variable gadget into R, the vertices p, n are

mapped into {A,T}. Furthermore, the colours of p and n must be distinct.
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ℓ2
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Fig. 4. Variable and clause gadgets for 4-OCN reduction

Hence all the x-terminals of the gadget are mapped to T and all the ¬x-
terminals are mapped to F (meaning x is valued true), or vice versa (meaning
x is valued false).

– A simple case-analysis shows that any homomorphism of the clause gadget
into R such that ℓ1, ℓ2, ℓ3 are mapped into {T, F} has an additional property
that not all three colours of ℓ1, ℓ2, ℓ3 are the same (meaning that this clause
is NAE satisfied).

– On the other hand, for both possible surjective mappings p : {x,¬x} →
{T, F} there exist homomorphisms of the variable gadget into R extend-
ing p. Similarly for all surjective mappings q : {ℓ1, ℓ2, ℓ3} → {T, F} there
exist homomorphisms of the clause gadget into R extending q.

Secondly, we claim that Gϕ has K-width 3 and DAG-depth 5. Since all the
terminals in our construction of the acyclic digraph Gϕ are sinks, it is enough
to verify the claimed properties for each gadget separately. The K-width bound
is easy; we get up to three distinct paths between two vertices in a copy of Q
(Fig. 3). We now show a winning strategy for the cops on a variable gadget in
5 moves. In the first two moves, cops land on b and p, and then the robber is
easily caught on one of the remaining directed paths of length ≤ 6. For a clause
gadget, just 4 moves suffice when the first cop lands on C. ⊓⊔

Proposition 3.9. The problem (c-OCN) to decide χo(G) ≤ c on an input di-
graph G of bi-rank-width t is fixed parameter tractable with parameters c and t.

Proof. We write an MSO1 formula

∃X1, . . . ,Xc





∧

i=1,...,c

∀x, y ∈ Xi

(

¬arc(x, y)
)

∧
∧

i,j=1,...,c

∀x, y ∈ Xi, z, t ∈ Xj

(

arc(x, z) → ¬arc(t, y)
)





which describes valid oriented colouring classes X1, . . . Xc in a graph G. Hence
the result follows from Theorem 3.6. ⊓⊔
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At last we remark that, although there is an XP algorithm computing the
chromatic number of a given graph of bounded rank-width, it is open whether
such an algorithm could exist for computing the oriented chromatic number
of a digraph of bounded bi-rank-width. It seems that the known “undirected”
algorithm does not extend in this way.

Proofs for Section 3.6 (φ-MSO1mc)

Theorem 3.12 (cf. [CMR00], and [Kan08,GH08]).
Every LinEMSO1 optimization problem is fixed parameter tractable when re-
stricted to digraphs of bi-rank-width t, with a parameter t.

Proof. (sketch) Given an input digraph G of bi-rank-width t, we first use Theo-
rem 2.5 to compute a width-t bi-rank-decomposition of G, and then construct an
expression XG of clique-width ≤ 2t+1 − 1 for G using [Kan08, Proposition 5.3].
Now, although the formulations in [CMR00] speak only about FPT solvability
of LinEMSO1 problems on undirected graphs (their τ1 graph structure has a
symmetric adjacency relation) of bounded clique-width, there is no apparent
mathematical reason why not to extend the whole interpretation scheme there
to digraphs. Therefore, [CMR00] (indirectly) implies our theorem.

Alternative proof. Nevertheless, the indirect interpretability approach (based on
[CMR00]) to Theorem 3.12 has some disadvantages. First, there is no apparent
explicit algorithm behind it, and no “nice” estimate of run-time dependency on
t for particular problems except a generic “tower of exponents”. Second, the
clique-width parameter in the above reduction may grow up to exponentially in
t which is not good in applications.

We propose another, more explicit approach to proving Theorem 3.12, based
on the bi-labeling parse trees of [Kan08] and the proof method of [GH08, The-
orem 4.2] (which has been an alternative to [CMR00] on undirected graphs of
bounded rank-width) Given an input digraph G of bi-rank-width t, we first use
Theorem 2.5 to compute a width-t bi-rank-decomposition of G, and then we
translate this decomposition into a t-bi-labeling parse tree, e.g. in quadratic
time using the method of [GH08, Theorem 2.2].

Now, with the same “automata–regularity” tools as used in [GH08, Theo-
rem 4.2], we prove (constructively) the following: For every MSO1 formula ϕ
and fixed t, there is a finite tree automaton accepting exactly those t-bi-labeling
parse trees T giving a digraph ḠT such that GT |= ϕ (when ϕ has free variables,
we naturally consider ḠT equipped with interpretations for these free variables).

In a dynamic processing of the input labeling parse tree, we then keep track
only of suitable “optimal” representatives of all possible interpretations of the
free variables in ϕ, indexed by the states of the automaton. The overall running
time is O(f(t) ·n3) for some computable f depending on the problem (on ϕ). ⊓⊔

Proposition 3.13. The MSO1 model checking problem is NP-hard even when
restricted to acyclic digraphs of K-width 1 and DAG-depth 2.
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Fig. 5. The construction used in Theorem 3.14

Proof. We show an MSO1 interpretation of undirected graphs in suitable di-
graphs. Given a graph H without isolated vertices, we construct an acyclic di-
graph G of K-width 1 and DAG-depth 2: For every edge e = uv of H, we add a
new vertex xe and replace e with two arcs uxe, vxe. Notice that G has no directed
path on 3 vertices. A vertex v of H can be then identified in G with ∃x(arc(v, x),
and a predicate edge(u, v) can be written as ∃x(arc(u, x)∧ arc(v, x)). The claim
follows since MSO1 model checking is NP-hard on undirected graphs. ⊓⊔

Proofs for Section 3.7 (φ-LTLmc)

We briefly fix the LTL-notation used in the following proofs. Atomic properties
do hold on vertices (states). The Boolean connectors are as usual, the operators
next and eventually (in the future) are denoted by capital letters X and F . We
assume that if a run reaches a sink, it repeats its symbol infinitely often to avoid
the existence of finite runs. For clarity, this will be made explicit with self-loops
in the figures.

Theorem 3.14. The φ-LTLmc problem is coNP-hard even when the input di-
graph is restricted to have K-width 1, DAG-depth 4, and bi-rank-width 2.

Proof. We use a reduction from the DS (undirected dominating set) problem,
which is a folklore NP-complete problem even when the input is restricted to
cubic graphs. Let G = (V,E), k ∈ N be an input instance for DS such that the
graph G has all degrees 3. We construct the following instance of φ-LTLmc with
an underlying digraph G′ = (V ′, E′):
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Fig. 6. The construction used in Theorem 3.15

For each v ∈ V , we define V ′
v = {uv , uv,1, uv,2, uv,3}. Then V ′ = {s, t, c} ∪

⋃

v∈V V
′
v . We let properties S hold in s, and T in t. If the neighbours of each v in

G are wv,1, wv,2, wv,3, then let v hold in uv , and wv,i hold in uv,i for i = 1, 2, 3.
Edges are added as follows.

E′ = {(s, c), (c, t)} ∪ { (c, uv), (uv,3, c) : v ∈ V }

∪ { (uv , uv,1), (uv,1, uv,2), (uv,2, uv,3), : v ∈ V }.

Then
F = ¬ (X1+5k+1 T ∧

∧

v∈V
Fv)

holds on G′ iff G does not contain a dominating set of size k. See Figure 5 for
an illustration.

Assume there is any dominating set D of size k in G. Then the run (i.e. di-
rected walk in G′) R starting in s, following the cycle through each V ′

v ∪ {c} for
all v ∈ D, and visiting only t afterwards, does not satisfy F : After 1 + 5k + 1
steps, the sink t is reached (where T holds), and since C is a dominating set,
each v ∈ V holds at some point in P – namely when V ′

w is traversed for some
w ∈ D that dominates v.

Now assume that G contains no dominating set of size k. Then, no run R of
length at most 1 + 5k can satisfy

∧

v∈V Fv : Since at most k sets V ′
v1
, . . . , V ′

vk

are visited by R and since the corresponding nodes v1, . . . , vk ∈ V cannot form
a dominating set in G, there is some w ∈ V such that w does not hold on R.
Hence, any path that satisfies

∧

v∈V Fv cannot satisfy X1+5k+1 t at the same
time. Therefore, F holds on G′.

Finally, the digraph G′ has clearly K-width 1, and it can be shown to have
DAG-depth 4. To prove that the bi-rank-width of G′ is at most 2 (recall Sec-
tion 2.1), we look at the set Y = {s, t, c}. Then both matrices A+

Y and A−
Y have

only one nonzero row each, and so brkG′(Y ) = 2. Furthermore, the subdigraph
G′−Y is a collection of paths, and so brkG′ can easily be 2-branched on V ′ \Y .
Hence the bi-rank-width of G′ is at most 2. ⊓⊔

Theorem 3.15. LTL model checking is coNP-complete on DAGs.

Proof. For containment in coNP, note that the NTM just has to guess a run on
which the formula does not hold. Since there are no loops (except self-loops),
the length of this run is polynomially bounded.
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For the hardness part, we use a similar construction to the one used in The-
orem 3.14. See in Figure 6. Let G = (V,E), k ∈ N be an input instance for DS
such that the graph G has all degrees 3. We construct the following instance of
φ-LTLmc with an underlying digraph G′ = (V ′, E′):

Again, V ′
v = {uv , uv,1, uv,2, uv,3} for each v ∈ V . Then V ′ = {s0, s1, . . . , s|V |,

t}∪
⋃

v∈V V
′
v . We let S hold in s0 and T hold in t. If the neighbours of each v in

G are wv,1, wv,2, wv,3, then let v hold in uv , and wv,i hold in uv,i for i = 1, 2, 3.
Edges are added as follows, assuming V = {v1, . . . , vn} (in arbitrary order).

E′ = { (si−1, si) : 1 ≤ i ≤ |V | } ∪ {(s|V |, t)} ∪ { (si−1, uvi
), (uvi,3, si) : 1 ≤ i ≤ |V | }

∪ {(uvi
, uvi,1), (uvi ,1, uvi,2), (uvi,2, uvi,3) : 1 ≤ i ≤ |V |}

Then
F = ¬

(

X4k+|V | t ∧
∧

v∈V
Fv

)

holds on G′ iff G does not contain a dominating set of size k. The rest follows
in the same way as in the proof of Theorem 3.14. ⊓⊔

Proofs for Section 4 (DFVS)

Theorem 4.1. If a digraph G is given with a directed feedback vertex set of
size k, then the Kernel problem can be solved in time O(2k · |V (G)|2).

Proof. (sketch) We are actually going to solve the annotated Kernel problem,
in which the input is a digraph G and a set U ⊆ V (G), and the task is to find a
kernel which is a subset of U .

For a given DAG G and set U , we easily solve annotated Kernel using the
following reduction rules:

– The setK ⊆ V (G) of all sink vertices ofG (which is acyclic) must be included
in the kernel. If K 6⊆ U , then no such kernel exists.

– Hence all the in-neighbours N−(K) already have an arc into the kernel, and
so N−(K) can be ignored further on. We call the procedure recursively on
G− (K ∪N−(K)) and U \ (K ∪N−(K)).

We now consider an arbitrary digraph G with a feedback set S ⊆ V (G) of
size k, and solve annotated Kernel for G and U ⊆ V (G) as follows. We cycle
through all 2k subsets Z ⊆ S, looking for a kernel that intersects S in Z:

– If Z is not independent in G, then this iteration fails.
– We include Z into the kernel. Hence all the in-neighbours N−(K) already

have an arc into the kernel, and so N−(K) can be ignored further on. All the
out-neighbours N+(K) must stay out of the kernel, and so they can simply
be removed from the set U .

– Since all the vertices of S \ Z are not in the kernel, the incoming edges of
S \ Z have no influence on the problem, and so they can be removed from
the digraph G, making a new digraph G′.
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– Finally, the digraph G′−Z is acyclic. Therefore, we call the previous proce-
dure on G′ − (Z ∪N−(K)) and U \ (Z ∪N−(K) ∪N+(K)).

It remains to straightforwardly verify that this procedure gives a correct answer.
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