
An OðN2Þ Algorithm for Discovering
Optimal Boolean Pattern Pairs

Hideo Bannai, Heikki Hyyrö, Ayumi Shinohara, Masayuki Takeda, Kenta Nakai, and Satoru Miyano

Abstract—We consider the problem of finding the optimal combination of string patterns, which characterizes a given set of strings

that have a numeric attribute value assigned to each string. Pattern combinations are scored based on the correlation between their

occurrences in the strings and the numeric attribute values. The aim is to find the combination of patterns which is best with respect to

an appropriate scoring function. We present an OðN2Þ time algorithm for finding the optimal pair of substring patterns combined with

Boolean functions, where N is the total length of the sequences. The algorithm looks for all possible Boolean combinations of the

patterns, e.g., patterns of the form p ^ :q, which indicates that the pattern pair is considered to occur in a given string s, if p occurs in s,

AND q does NOT occur in s. An efficient implementation using suffix arrays is presented, and we further show that the algorithm can be

adapted to find the best k-pattern Boolean combination in OðNkÞ time. The algorithm is applied to mRNA sequence data sets of

moderate size combined with their turnover rates for the purpose of finding regulatory elements that cooperate, complement, or

compete with each other in enhancing and/or silencing mRNA decay.

Index Terms—Pattern discovery, Boolean patterns, suffix tree, suffix array.

�

1 INTRODUCTION

ALTHOUGH recent genome sequencing projects have
revealed the whole DNA sequence of several organ-

isms, there is still much that is unknown concerning what
and how the information is encoded in these blueprints of
life. Pattern discovery from such biological sequences is
thus an important topic in bioinformatics that has been
studied heavily with numerous variations and applications
(see [1] for a survey on earlier work). To extract meaning
from biological sequences, the general goal of these
methods is to find patterns which are conserved across a
set of biologically related sequences. The existence of such
sequence elements suggests that those elements are central
to the functions and characteristics of the sequence set.
Computational analyses which provide such candidates can
be a very helpful guide for biologists in the task of
experimentally confirming the actual sequence elements in
play, as well as their functions.

Although finding the most significant sequence element

conserved across multiple sequences has important applica-

tions, it is known that more than one sequence element will

affect the biological characteristics of the sequences in many

actual cases. There are several methods which address this
observation, focusing on finding composite patterns. In [2],
they develop a suffix tree-based approach for discovering
structured motifs, which are two or more patterns separated
by a certain distance, similar to text associative patterns [3].
MITRA [4] is another method that looks for composite
patterns using mismatch trees. Bioprospector [5] applies the
Gibbs sampling strategy to find gapped motifs. Multiple
unordered motifs are considered in [6].

In this paper, we assume that we are given a set of
sequences that have numeric attribute values associated
with each sequence as input. We present a new formulation
of composite pattern discovery where the problem is to find
pairs of patterns combined with any Boolean function. The
main contribution is an OðN2Þ algorithm (where N is the
total length of the input strings) and implementation based
on suffix arrays, for finding the optimal Boolean substring
pattern pair with respect to some suitable scoring function.
Note that the methods mentioned above for finding
composite patterns can be viewed as being limited to
finding pattern pairs which use only the ^ (AND) operation
(with an extra distance constraint in the case of gapped
motifs). In other words, the algorithms find combinations of
two patterns p, q where both p AND q occur in each string.
The use of any Boolean function permits the use of the :
(NOT) operation, allowing combinations such as p ^ :q.
This makes it possible to find not only sequence elements
that cooperate with each other, but those with competing
functions, i.e., not only the presence of one element, but the
absence of the other is crucial for their functions. The pattern
pairs discovered by our algorithm are optimal in that they
are guaranteed to be the highest scoring pair of substring
patterns with respect to a given scoring function and, also, a
limit on the lengths of the patterns in the pair is not
assumed. Our algorithm can be adjusted to handle several
common problem formulations of pattern discovery, for
example, pattern discovery from positive and negative

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004 159

. H. Bannai, K. Nakai, and S. Miyano are with the Human Genome Center,
Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai,
Minato-ku, Tokyo 108-8639, Japan.
E-mail: {bannai, knakai, miyano}@ims.u-tokyo.ac.jp.

. H. Hyyrö is with PRESTO, Japan Science and Technology Agency (JST),
Kawaguchi-shi, Saitama, Japan. E-mail: heikki.hyyro@gmail.com.

. A. Shinohara is with PRESTO, Japan Science and Technology Agency
(JST) and the Department of Informatics, Graduate School of Information
Science and Electrical Engineering, Kyushu University, 6-10-1 Hakozaki,
Higashi-ku, Fukuoka 812-8581, Japan. E-mail: ayumi@i.kyushu-u.ac.jp.

. M. Takeda is with SORST, Japan Science and Technology Agency (JST)
and the Department of Informatics, Graduate School of Information Science
and Electrical Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-
ku, Fukuoka 812-8581, Japan. E-mail: takeda@i.kyushu-u.ac.jp.

Manuscript received 3 Oct. 2004; revised 3 Dec. 2004; accepted 14 Dec. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBBSI-0163-1004.

1536-1233/04/$20.00 � 2004 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

sequence sets [7], [8], [9], [10], as well as the discovery of
patterns that correlate with a given numeric attribute (e.g.,
gene expression level) assigned to the sequences [11], [12],
[13], [14], [15]. The significance of the algorithm in this
paper lies in the fact that, since there are indeed OðN2Þ
possible substring pattern combinations, the information
needed to calculate the score for each pattern pair can be
gathered, effectively, in constant time.

The algorithm is presented conceptually as using a
generalized suffix tree [16], which is an indispensable data
structure for efficient processing of substring information.
Moreover, the algorithm using the suffix tree can be
simulated very efficiently, with the same asymptotic
complexity, using suffix arrays. We apply our algorithm
to 3’UTR (untranslated region) of yeast and human mRNA,
together with data obtained from microarray experiments
which measure the decay rate of each mRNA [17], [18]. We
were successful in obtaining several interesting pattern
pairs where some correspond to known mRNA destabiliz-
ing elements.

A preliminary version of this paper appears in [19]. In
this paper, we further present several generalizations of the
problem and algorithm and show how to find the optimal
k-pattern Boolean combination in OðNkÞ time, as well as the
consideration of multiple string attributes as input.

2 PRELIMINARIES

2.1 Notation

Let � be a finite alphabet. An element of �� is called a
string. Strings x, y, and z are said to be a prefix, substring,
and suffix of string w ¼ xyz, respectively. The length of a
string w is denoted by lengthðwÞ. The empty string is
denoted by ", that is, lengthð"Þ ¼ 0. The ith character of a
string w is denoted by w½i� for 1 � i � lengthðwÞ and the
substring of a string w that begins at position i and ends at
position j is denoted by w½i : j� for 1 � i � j � lengthðwÞ.
For convenience, let w½i : j� ¼ " for j < i. For any set S, let
jSj denote the cardinality of the set.

Let ðp; sÞ be a Boolean matching function that has the
value true if the pattern string p is a substring of the string s
and false otherwise. We define the triplet hF; p; qi as a
Boolean pattern pair (or simply pattern pair), which consists of
two patterns, p and q, and a 2-ary Boolean function
F : ftrue; falseg � ftrue; falseg ! ftrue; falseg. The
matching function value ðhF; p; qi; sÞ is defined as
F ð ðp; sÞ; ðq; sÞÞ. Table 1 lists all 16 possible Boolean
functions of two Boolean variables, that is, all possible
choices for F . We say that a pattern or Boolean pattern pair �
matches string s if and only if ð�; sÞ ¼ true. Note that the
pattern " matches any string.

For a given set of strings S ¼ fs1; . . . ; smg, let Mð�; SÞ
denote the set of indices of strings in S that � matches, that
is,Mð�; SÞ ¼ fi j ð�; siÞ ¼ trueg, and let its complement be
denoted as Mð�; SÞ ¼ fi j ð�; siÞ ¼ falseg. Now, suppose
that, for each si 2 S, we are given an associated numeric
attribute value ri. Let Rð�; SÞ ¼

P
i2Mð�;SÞ ri denote the sum

of ri over all si such that � matches. For brevity, we shall
omit S where possible and let Mð�Þ and Rð�Þ be shorthand
for Mð�; SÞ and Rð�; SÞ, respectively. Note that jMð"Þj ¼ m
and Rð"Þ ¼

Pm
i¼1 ri.

2.2 Problem Definition

In general, the problem of finding a good pattern from a
given set of strings S refers to finding a pattern � that
maximizes some suitable scoring function score with
respect to the strings in S. We concentrate on scoring
functions whose values for a pattern � depend on values
cumulated over the strings in S that match �. We also
assume that the score value computation itself can be done
in constant time if the required parameter values are
known. More specifically, we concentrate on a score that
takes parameters of type jMð�Þj and Rð�Þ. The specific
choice of the scoring function highly depends on the
particular application. A variety of problems fall into the
category represented by the following problem definition:

Problem 1 (Optimal pair of substring patterns). Given a set
S ¼ fs1; . . . ; smg of strings, where each string si is assigned a
numeric attribute value ri and a scoring function score : R�
R) R, find the Boolean pattern pair � 2 fhF; p; qi j p; q 2
��; F 2 fF0; . . . ; F15gg that maximizes scoreðjMð�Þj; Rð�ÞÞ.

Intuitively, the score for a given pattern � should be a
measure of the difference between the two distributions of
ri, one corresponding to the set of strings that � matches
and the other corresponding to the set that � does not
match. A greater difference would mean that � is a better
characterization, with respect to ri, of the set of strings it
matches. Many statistical measures for this purpose can be
expressed as a function of jMð�Þj and Rð�Þ. We give several
examples of choices for a suitable score and ri below.

160 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

TABLE 1
Summary of Candidate Boolean Operations

on Pattern Pair hF; p; qi

2.2.1 Positive/Negative Sequence Set Discrimination

We are given two disjoint sets of sequences S1 and S2,
where sequences in S1 (the positive set) are known to
possess some biological function or characteristic, while the
sequences in S2 (the negative set) are known not to. The
objective is to find pattern pairs which match more
sequences in one set and less in the other.

We create an instance of the optimal pair of substring
patterns problem as follows: Let S ¼ S1 [S2 ¼ fs1; . . . ; smg
and let ri ¼ 1 if si 2 S1 and ri ¼ 0 if si 2 S2. Then, for each
pattern pair �, the scoring function will receive jMð�; SÞj and
Rð�; SÞ ¼ jMð�; S1Þj. Notice that jMð�; S2Þj ¼ jMð�; SÞj �
jMð�; S1Þj. Common scoring functions that are used in this
situation include the entropy information gain, the Gini
index, and the chi-square statistic, which all are essentially
functions of jMð�; S1Þj, jMð�; S2Þj, jS1j, and jS2j.

2.2.2 Correlated Patterns

We are given a set S of sequences, with a numeric
attribute value ri associated with each sequence si 2 S,
and the task is to find pattern pairs whose occurrences in
the sequences correlate with their numeric attributes. For
example, ri could be the expression level ratio of a gene
with upstream sequence si. The scoring function used in
[12], [14] is the interclass variance, which can be
maximized by maximizing the scoring function
scoreðx; yÞ ¼ y2=xþ ðy�

Pm
i¼1 riÞ

2=ðm� xÞ, w h e r e x ¼
jMð�Þj and y ¼ Rð�Þ. We will later describe how to
construct a nonparametric scoring function based on the
normal approximation of the Wilcoxon rank sum test,
which can also be used in our framework.

2.3 Basic Data Structures

A suffix tree [16] for a given string s is a rooted tree whose
edges are labeled with substrings of s, satisfying the
following characteristics. For any node v in the suffix tree,
let lðvÞ denote the string spelled out by concatenating the
edge labels on the path from the root to v. For each leaf
node v, lðvÞ is a distinct suffix of s, and, for each suffix in s,
there exists such a leaf v. Furthermore, each node has at
least two children and the first character of the labels on the
edges to its children are distinct. A generalized suffix tree
(GST) for a set of m strings S ¼ fs1; . . . ; smg is basically a
suffix tree for the string s1$1 � � � sm$m, where each $i ð1 �
i � mÞ is a distinct character which does not appear in any
of the strings in the set. However, all paths are ended at the
first appearance of any $i and each leaf is labeled with idi. It
is well-known that suffix trees (and generalized suffix trees)
can be represented in linear space and constructed in linear
time [16] with respect to the length of the string (total length
of the strings for GST).

A suffix array [20] As for a given string s of length n is a
permutation of the integers 1; . . . ; n representing the lexico-
graphic ordering of the suffixes of s. The value As½i� ¼ j in
the array indicates that s½j : n� is the ith suffix in the
lexicographic ordering. The lcp array for a given string s is an
array of integers representing the longest common prefix
lengths of adjacent suffixes in the suffix array. We define
lcps½1� ¼ 0, lcps½i� ¼ maxfk j s½As½i� 1� : As½i� 1� þ k� 1� ¼
s½As½i� : As½i� þ k� 1�g for 2 � i � n, and lcps½i� ¼ �1 other-
wise. Recently, three methods for constructing the suffix
array directly from a string in linear time have been

developed [21], [22], [23]. The lcp array can be constructed
from the suffix array also in linear time [24]. It has been
shown that several algorithms (and potentially many more)
which utilize the suffix tree can be implemented very
efficiently using the suffix array together with its lcp array
[24], [25] (the combination termed, in [25], the enhanced
suffix array). This paper presents yet another example for
efficient implementation of an algorithm based concep-
tually on suffix trees, but uses the suffix and lcp arrays.

The lowest common ancestor lcaðx; yÞ of any two nodes x
and y in a tree is the deepest node which is common to the
paths from the root to each of the nodes. The tree can be
preprocessed in linear time to answer the lowest common
ancestor (lca-query) for any given pair of nodes in constant
time [26]. In terms of the suffix array, the lca-query is almost
equivalent to a range minimum query (rm-query) on the
lcp array. Given a pair of positions i and j, an rm-query
rmqði; jÞ on the lcp array returns the position of the
minimum element in the subarray lcp½i : j�. The lcp array
can also be preprocessed in linear time to answer the
rm-query in constant time [26], [27].

Figs. 1 and 2 show examples of a suffix tree and
generalized suffix tree, as well as their corresponding suffix
arrays and lcp arrays.

The linear time bounds mentioned above for the con-
struction of suffix trees and arrays, as well as the preproces-
sing for lca- and rm-queries, are actually not required for the
OðN2Þ overall time bound for finding optimal pattern pairs.
This is because the results of all queries can be calculated
naively inOðN2Þ time once and their results stored for reuse.
However, they are very important for an efficient imple-
mentation of our algorithm.

3 ALGORITHM

Now, we present algorithms to solve the optimal pair of
substring patterns problem, given the set of strings
S ¼ fs1; . . . ; smg, an associated attribute ri for each string si,
and a scoring function score. Also, let N ¼

Pm
i¼1 lengthðsiÞ.

BANNAI ET AL.: AN OðN2Þ ALGORITHM FOR DISCOVERING OPTIMAL BOOLEAN PATTERN PAIRS 161

Fig. 1. A suffix tree, suffix array As, and lcp array lcps for string
s ¼ caggaggaccat. Notice that the paths of the suffix tree from the root
to the leaves (i.e., suffixes) are sorted in lexicographic order from left to
right, each leaf corresponding to a position in the suffix array. The
integer in the suffix array represents the position in the string from which
the corresponding suffix starts. The lcp array represents the length of the
longest path that consecutive suffixes in the suffix array share.

We first show that a naive algorithm requiresOðN3Þ time and
then describe the OðN2Þ algorithm. The algorithms calculate
scores for all possible combinations of pattern pairs, from
which finding the optimal pair is a trivial task.

3.1 An OðN3Þ Algorithm
We know that we only need to consider OðNÞ candidates
for a single pattern since the candidates can be confined to
patterns of form lðvÞ, where v is a node in the generalized
suffix tree over the set S. This is because, for any pattern
corresponding to a path that ends in the middle of an edge
of the suffix tree, the pattern which corresponds to the path
extended to the next node will match the same set of strings
and, hence, the score would be the same. Therefore, there
are OðN2Þ possible candidate pattern pairs for which we
must calculate the scoring function value. For a given
pattern pair candidate � ¼ hF; lðv1Þ; lðv2Þi, where v1; v2 are
nodes of the GST, the values jMð�Þj and Rð�Þ can be
computed in OðNÞ time by using any of the linear time
string matching algorithms. Then, each corresponding
scoring function value can be computed in constant time.
Therefore, the total time required is OðN3Þ, using
OðNÞ space for the generalized suffix tree.

The time complexity can be further improved to OðmN2Þ
as follows: For each pattern candidate p, we store the
matching function values ðp; s1Þ; . . . ; ðp; smÞ as an array of
length m. This can be computed using a linear time string
matching algorithm, taking OðNÞ time for each pattern
candidate, for a total of OðN2Þ time to calculate all OðNÞ
arrays. With this precalculation, the score for a given
pattern pair � ¼ hF; p; qi can be calculated in OðmÞ time by a
single loop over i ¼ 1; . . . ;m to accumulate values accord-
ing to F ð ðp; siÞ; ðq; siÞÞ to obtain jMð�Þj and Rð�Þ. The
total time would then be OðmN2Þ time to calculate scores
for all pattern pairs, which could be reasonable for small m,
but would still be prohibiting otherwise. The space
complexity is also increased to OðmNÞ for storing the
arrays of length m.

3.2 An OðN2Þ Algorithm
Our algorithm is derived from the technique for solving the
color set size problem [28], which calculates the values jMðlðvÞÞj
inOðNÞ time for all nodes v of a GST over the string set S. Let
us first describe a slight generalization of this algorithm,
described in [14].

Lemma 1. Given a set of strings S ¼ fs1; . . . ; smg, correspond-
ing numeric attributes ri for each si, and a GST of S, jMðlðvÞÞj
and RðlðvÞÞ can be computed for all nodes v of the GST in, total

of OðNÞ time and space.

Proof. The following algorithm computes the values RðlðvÞÞ
for all nodes v in the GST. Note that if we give each

attribute ri the value 1, then RðlðvÞÞ ¼ jMðlðvÞÞj. Thus, we

do not need to consider separately how to compute

jMðlðvÞÞj.
First, we introduce some auxiliary notation. Let LF ðvÞ

denote the set of all leaf nodes in the subtree rooted by
the node v and let ciðvÞ denote the number of leaves in
LF ðvÞ that have the label idi. Let us also define the sum
of leaf attributes for a node v as

P
LF ðvÞ ri. Since LF ðvÞ

corresponds to all occurrences of lðvÞ in the string set S,
we have that X

LF ðvÞ
ri ¼

X
I2MðlðvÞÞ

ðciðvÞ � riÞ: ð1Þ

For any node v in the GST over the string set S, the

matching value ðlðvÞ; siÞ is true for at least one string si.

Thus, the equality

RðlðvÞÞ ¼
X

I2MðlðvÞÞ
ri ¼

X
LF ðvÞ

ri �
X

I2MðlðvÞÞ
ððciðvÞ � 1Þ � riÞ ð2Þ

holds. Let us define the preceding subtracted sum to be a

correction factor, which we denote by

corrðlðvÞ; SÞ ¼
X

i2MðlðvÞÞ
ððciðvÞ � 1Þ � riÞ: ð3Þ

Since the recurrence

X
LF ðvÞ

ri ¼
X
v0

 X
LF ðv0Þ

ri j v0 is a child node of v

!
ð4Þ

clearly holds, the values
P

LF ðvÞ ri can be easily calcu-

lated for all v during a linear time bottom-up (postorder)

traversal of the GST.
The next step is to remove the redundancies,

represented by the values corrðlðvÞ; SÞ, from the valuesP
LF ðvÞ ri. Let IðidiÞ be the list of all leaves with the

label idi in the order they appear in a postorder traversal
of the tree. Clearly, the lists IðidiÞ can be constructed in
linear time for all labels idi. We note the following four
simple but useful properties:

1. The leaves in LF ðvÞ with the label idi form a
continuous interval of length ciðvÞ in the list IðidiÞ.

2. If ciðvÞ > 0, a length-ciðvÞ interval in IðidiÞ contains
ciðvÞ � 1 adjacent (overlapping) leaf pairs.

3. If x; y 2 LF ðvÞ, the node lcaðx; yÞ belongs to the
subtree rooted by v.

4. For any si 2 S, ðlðvÞ; siÞ ¼ true, that is, i 2
MðlðvÞÞ if and only if there is a leaf x 2 LF ðvÞ
with the label idi.

Assume that each node v has a correction value that has
been initialized to 0. Consider nowwhat happens if we go
through all adjacent leaf pairs x; y in the list IðidiÞ and add,
for each pair, the value ri into the correction value of the

162 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

Fig. 2. A generalized suffix tree and its corresponding suffix array for the

strings facct; gctt; ctctg.

node lcaðx; yÞ. It follows from Properties 1-3 that now, for
each node v in the tree, the sum of the correction values in
the nodes of the subtree rooted by v equals ðciðvÞ � 1Þ � ri.
Moreover, if we repeat the process for each of the lists
IðidiÞ, then, due to Property 4, the preceding total sum of
the correction values in the subtree rooted by v becomesP

i2MðlðvÞÞððciðvÞ � 1Þ � riÞ ¼ corrðlðvÞ; SÞ. Hence, at this
point, a single linear time bottom-up (postorder) traversal
of the tree enables us to cumulate the correction values
corrðlðvÞ; SÞ from the subtrees into each node v and, at the
same time, we may record the final values RðlðvÞÞ. This
procedure is illustrated in Fig. 3.

The preceding process involves a constant number of
linear time traversals of the tree, as well as a linear
number of lca-queries. Since each lca-query can be done in
constant time after a linear time preprocessing, the total
time for computing the values RðlðvÞÞ for all nodes v is
linear.

The linear time algorithm is shown as pseudocode in
Fig. 4. tu

The above-described algorithm permits us to compute
the values RðlðvÞÞ and jMðlðvÞÞj in linear time, which, in
turn, leads into a linear time solution for the problem of
finding the best pattern when the pattern is a single

substring: The scoring function can now be computed for
each possible pattern candidate lðvÞ. The case of a Boolean
pattern pair will be solved in a similar manner, that is, we
will concentrate on how to compute the values Rð�Þ (and
jMð�Þj) for all possible OðN2Þ pattern pair candidates,
where � ¼ hF; lðv1Þ; lðv2Þi and v1; v2 are any two nodes in
the GST over S. If we manage to do this in OðN2Þ time,
then the whole problem will be solved in OðN2Þ under the
assumption that the scoring function can be computed in
constant time for each candidate.

Naive use of the information gathered by the single
substring pattern algorithm is not sufficient for solving the
problem for pairs of patterns inOðN2Þ time. This is because, in
order to compute the needed values jMðhF; lðv1Þ; lðv2ÞiÞj and

RðhF; lðv1Þ; lðv2ÞiÞ from jMðlðv1ÞÞj; jMðlðv2ÞÞj and Rðlðv1ÞÞ;
Rðlðv2ÞÞ, we must somehow conduct an intrinsic set opera-
tion between the string subsets that match or do not match
lðv1Þ and lðv2Þ. However, an OðN2Þ algorithm for pattern
pairs is fairly simple to derive from the linear time algorithm
for the single pattern.

Theorem 1. The optimal pair of substring patterns problem can
be solved in OðN2Þ time and OðNÞ space for any scoring
function score provided that it can be calculated in constant
time given its inputs.

Proof. We go over the OðNÞ choices for the first pattern,
lðv1Þ. For each such fixed lðv1Þ, we use a modified version
of the linear time algorithm shown above in order to
process the OðNÞ choices for the second pattern lðv2Þ in
OðNÞ time. More precisely, given a fixed lðv1Þ, we
additionally label each string si 2 S and the correspond-
ing leaves in the GST with the Boolean value ðlðv1Þ; siÞ.
This can be done in OðNÞ time using any linear time
string matching algorithm. Now, the trick is to cumulate
the sums and correction factors separately for different
values of the additional label. The end result is that we
will have valuesX

i2Mðlðv2ÞÞ
ðri j ðlðv1Þ; siÞ ¼ trueÞ

¼
X
i

ðri j ðlðv1Þ; siÞ ¼ true; ðlðv2Þ; siÞ ¼ trueÞ

¼ RðhF8; lðv1Þ; lðv2ÞiÞ

and X
i2Mðlðv2ÞÞ

ðri j ðlðv1Þ; siÞ ¼ falseÞ

¼
X
i

ðri j ðlðv1Þ; siÞ ¼ false; ðlðv2Þ; siÞ ¼ trueÞ

¼ RðhF2; lðv1Þ; lðv2ÞiÞ;

which are decompositions of
P

i2Mðlðv2ÞÞ ri ¼ Rðlðv2ÞÞ
according to ðlðv1Þ; siÞ for all nodes v in linear time.
We note that

BANNAI ET AL.: AN OðN2Þ ALGORITHM FOR DISCOVERING OPTIMAL BOOLEAN PATTERN PAIRS 163

Fig. 3. Illustration of linear time algorithm for calculating the the sum of weights of distinct ids in the subtree of each node. First, correction factors
are set at the lca of consecutive leaves of the same id. This sets the correction values at internal nodes v1; v2; v3 to r3, r2, and r3, respectively (a).
Then, with the bottom-up (postorder) traversal (b), the sums accumulated at v3; v2; v1 become r3 þ r2 þ r3 � r3 ¼ r2 þ r3 ¼ Rðlðv3ÞÞ, Rðlðv3ÞÞ þ r2 �
r2 ¼ r2 þ r3 ¼ Rðlðv2ÞÞ, and r1 þRðlðv2ÞÞ þ r3 � r3 ¼ r1 þ r2 þ r3 ¼ Rðlðv1ÞÞ, respectively, as desired. (a) Store correction factors at the lca of
adjacent leaves of same id. (b) Propagate leaf weights and correction factors upward with a bottom-up (postorder) traversal.

X
i2Mðlðv2ÞÞ

ðri j ðlðv1Þ; siÞ ¼ trueÞ

¼
X
i

ðri j ðlðv1Þ; siÞ ¼ true; ðlðv2Þ; siÞ ¼ falseÞ

¼ RðhF4; lðv1Þ; lðv2ÞiÞ
¼ Rðlðv1ÞÞ �RðhF8; lðv1Þ; lðv2ÞiÞ

andX
i2Mðlðv2ÞÞ

ðri j ðlðv1Þ; siÞ ¼ falseÞ

¼
X
i

ðri j ðlðv1Þ; siÞ ¼ false; ðlðv2Þ; siÞ ¼ falseÞ

¼ RðhF1; lðv1Þ; lðv2ÞiÞ
¼ Rð�Þ �Rðlðv1ÞÞ �RðhF2; lðv1Þ; lðv2ÞiÞ;

where the values Rð"Þ and Rðlðv1ÞÞ can be easily
computed in linear time. Thus, all cumulative values of
the form

P
iðri j ðlðv1Þ; siÞ ¼ b1; ðlðv2Þ; siÞ ¼ b2Þ;

where b1; b2 2 ftrue; falseg, can be computed in linear
time. From these four values, it is straightforward to
compute the values

RðhF; lðv1Þ; lðv2ÞiÞ ¼
X

i2MðhF;lðv1Þ;lðv2ÞiÞ
ri

¼
X
i

ðri j F ð ðlðv1Þ; siÞ; ðlðv2Þ; siÞÞ ¼ trueÞ;

as well as the corresponding scoring function values, for

all other F 2 fF0; . . . ; F15g in linear time. Thus, given a

fixed lðv1Þ, we can compute the scores for all pattern pair

candidates of form hF; lðv1Þ; lðv2Þi in OðNÞ time. Since

there are only OðNÞ candidates for lðv1Þ, we have an

OðN2Þ algorithm for evaluating all possible pattern pair

candidates for any given F 2 fF0; . . . ; F15g.
Since the OðNÞ time calculations for each fixed lðv1Þ

are independent of each other, the generalized suffix tree
can be reused. Therefore, the space complexity of the
algorithm is OðNÞ. The outline of the algorithm is shown
as pseudocode in Fig. 5. tu

The algorithm can be adapted to the general case of

combining k > 2 patterns. We define the ðkþ 1Þ-tuple
hF; p1; . . . ; pki as a k-pattern Boolean combination where F is

a k-ary Boolean function and p1; . . . ; pk are substring

patterns. We say pi is the ith component of the k-pattern

Boolean combination. The matching function for a k-pattern

Boolean combination � ¼ hF; p1; . . . ; pki is defined naturally

as ð�; sÞ ¼ F ð ðp1; sÞ; . . . ; ðpk; sÞÞ.
Corollary 1. For a given k-ary (k > 2) Boolean function F , the

optimal k-pattern combination � ¼ hF; p1; . . . ; pki can be

found in OðNkÞ time and OðN þmkÞ space for any scoring

function score provided that it can be calculated in constant

time given its inputs.

Proof. For a given k-ary Boolean function F , we can

decompose F into a sequence of 2-ary Boolean functions

G1; . . . ; Gk�1 such that

F ðx1; . . . ; xkÞ � Gk�1ðGk�2ð� � �G1ðx1; x2Þ � � �Þ; xkÞ

164 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

Fig. 4. Summary of the algorithm for solving the general version of the color set size problem, which calculates RðlðvÞÞ for all nodes v. Note that

jMðlðvÞÞj can be calculated for all nodes v by setting ri ¼ 1 for all i ¼ 1; . . . ;m and is not shown. In line 17, childrenðvÞ represents the set of child

nodes of node v. The score for each node v is calculated from RðlðvÞÞ and jMðlðvÞÞj and reported at line 18.

for all inputs x1; . . . ; xk 2 ftrue; falseg. For a fixed
node v1 for the first pattern component, we label each
string si and the corresponding leaves of the GST with
the label ðlðv1Þ; siÞ, which can be done in OðNÞ time. For
j ¼ 2; . . . ; k� 2, we repeat this process, this time labeling
the strings and leaves with Gj, using the previous label
and the Boolean value ðlðvjÞ; siÞ as input. This can also
be done in OðNÞ time for each j. For the kth pattern
component, the linear time algorithm for solving the
color set size can be used with function Gk�1 and the
labels of the suffix tree obtained in the previous steps.
Since there are at most OðNÞ candidates for any given
component of the pattern combination, the total time for
considering all possible pattern combinations is therefore
the sum of the nested loops:

OðNÞ � OðNÞ þOðNÞ � OðNÞ þOðNÞ � OðNÞ þ � � �½ �½ �½ � ¼

O

 Xk
i¼2

Ni

!
¼ OðNkÞ:

ð5Þ

Since the suffix tree can be reused, the space complexity
is OðNÞ plus an extra OðmÞ in each loop to remember the
labels of each string. Note that choosing the optimal
k-ary function for F would take an additional factor of
Oð22kÞ, the number of such functions. tu

4 IMPLEMENTATION USING SUFFIX ARRAYS

The algorithm on the suffix tree can be simulated efficiently
by a suffix array. We modify the algorithm of [24], [29] that
simulates a bottom-up (postorder) traversal of a suffix tree
using a suffix array. A subtlety in the modification lies in
calculating the lca, as well as determining where to store the
correction factor, which should be set at the lca since the
simulation via suffix arrays does not explicitly create the
internal nodes of the suffix tree. Notice that, since each suffix
of the string corresponds to a leaf in the suffix tree, each leaf

in the suffix tree corresponds to a position in the suffix array.
Let us denote this position for a leaf x as posðxÞ. The lowest
common ancestor query between two leaves is conceptually
equivalent to a range minimum query on the lcp array: For a
given pair of leaves x; y such that posðxÞ < posðyÞ, we have
that lengthðlðlcaðx; yÞÞÞ ¼ lcp½rmqðposðxÞ þ 1; posðyÞÞ�.

For storing the correction factors, we construct another
array CF of the same length as the suffix array,
representing internal nodes of the suffix tree. The
correction factors CF ½:::� are first initialized to 0 and,
when setting the correction factor for two leaves x; y such
that posðxÞ < posðyÞ, the correction value is added into
CF ½rmqðposðxÞ þ 1; posðyÞÞ�.

Fig. 6 shows pseudocode for the modified version of
the Substring_Statistics algorithm of [24], which
originally reports

P
LF ðvÞ ri instead of RðlðvÞÞ for each

node v of the generalized suffix tree. The difference is in
lines 14 and 17, where the correction factor CF ½i� is
subtracted from the sums. In the ith step, the correction
factor CF ½i� is subtracted from the (potentially) new node
lcaðpos�1ði� 1Þ; pos�1ðiÞÞ, where

lengthðlðlcaðpos�1ði� 1Þ; pos�1ðiÞÞÞÞ ¼ lcp½i�: ð6Þ

If CF ½i� is not zero, this means that there existed leaves x; y
where posðxÞ � i� 1 < i � posðyÞ such that rmqðposðxÞ þ 1,
posðyÞÞ ¼ i, and

lengthðlðlcaðx; yÞÞÞ ¼ lcp½i�: ð7Þ

From (6) and (7), we have that lcaðx; yÞ ¼ lcaðpos�1ði� 1Þ;
pos�1ðiÞÞ and we can see that the correction factor is
subtracted from the correct node.

5 COMPUTATIONAL EXPERIMENTS

5.1 Running Times

The algorithm was implemented using the C++ language.
All results reported in this paper were computed on a Sun
Fire 15K (UltraSPARC III Cu 1.2GHz x 96 CPUs). Table 2
shows the comparison of running times between the naive

BANNAI ET AL.: AN OðN2Þ ALGORITHM FOR DISCOVERING OPTIMAL BOOLEAN PATTERN PAIRS 165

Fig. 5. Summary of the algorithm for solving the general version of the color set size problem for Boolean substring pattern pairs. The loop in lines 9
to 12 uses a variation of the algorithm in Fig. 4, where the sums for ri are maintained separately for sequences with ðlðv1Þ; siÞ ¼ true and
 ðlðv1Þ; siÞ ¼ false. In line 11, the value RðhF; lðv1Þ; lðv2ÞiÞ can be calculated from Rð"Þ, Rðlðv1ÞÞ, RðhF8; lðv1Þ; lðv2ÞiÞ, and RðhF2; lðv1Þ; lðv2ÞiÞ.

OðmN2Þ algorithm and our OðN2Þ algorithm for the data
set presented in Section 5.2.1. Our OðN2Þ algorithm is
clearly faster.

Our algorithm is also highly parallelizable, which is
shown by the running times and speed-up when varying
the number of processors in the parallel implementation of
our algorithm (Fig. 7). POSIX threads were used to execute
parallel computations. Since the suffix tree (suffix array)
traversal takes roughly the same time for each fixed first
candidate pattern, the work load is simply divided into
equal sized sets of first candidate patterns which each
thread will compute and the results of each thread are
combined later.

5.2 Finding Sequence Elements which Determine
mRNA Degradation Rates

The degradation of mRNA, in addition to transcription, is
one of several important mechanisms which control the
expression level of a gene (see [30] for survey). The half

lives of mRNA are very diverse: Some mRNAs can degrade
100 times faster than others, which allows their expression
level to be adjusted more quickly. The degradation of
mRNA is controlled by many factors, for example, it is
known that some proteins bind to the UTR of the mRNA to
promote its decay, while others inhibit it. Recently, the
comprehensive decay rates of many genes have been
measured using microarray technology [17], [18]. We
consider the problem of finding substring pattern pairs
related to the rate of mRNA decay to find possible binding
sites of the proteins in order to further understand this
complex mechanism.

In the experiments presented, we limit the search to
Boolean functions F 2 fF1; F2; F4; F7; F8; F11; F13; F14g be-
cause: F0 and F15 are constant functions and clearly do not
have discriminative power, F3; F5; F10; F12 essentially
ignore the matching results of one of the patterns in the
pair and are not of interest to us in this paper. We also did
not consider F6; F9, since it may be difficult to interpret
their meaning biologically. Furthermore, for function pair
Fi; Fj, where Fið ðp; sÞ; ðq; sÞÞ � Fjð ðq; sÞ; ðp; sÞÞ (F2 and
F4, F11 and F13), only one function per pair needs to be
considered since all OðNÞ candidates for p and q are
considered. Also, for function pair Fi; Fj, where
Fið ðp; sÞ; ðq; sÞÞ � :Fjð ðp; sÞ; ðq; sÞÞ (F1 and F14, F2

and F13, F4 and F11, F7 and F8), only one function per
pair needs to be considered if score is symmetric with
respect to jSj and

Pm
i¼1 ri, that is, if scoreðjMð�Þj; Rð�ÞÞ ¼

scoreðjSj � jMð�Þj; ð
Pm

i¼1 riÞ �Rð�ÞÞ.

166 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

Fig. 6. Core of the algorithm for solving the general version of the color set size problem using a suffix array. We assume the correction factors are
stored in the array CF . The algorithm simulates a postorder traversal on the suffix tree using the suffix array and corresponds to the loop in lines 16-
19 of Fig. 4. A node v in the suffix tree is represented by a three-tuple ðL;H;RÞ, where L denotes the position in the suffix array for a leaf in LF ðvÞ,H
denotes the length of the path from the root to v, and R denotes RðlðvÞÞ.

TABLE 2
Approximate Running Times of Naive OðmN2Þ Algorithm

and Our OðN2Þ Algorithm

Measured with data in Section 5.2.1 (N ¼ 77200, m ¼ 772).

5.2.1 Positive/Negative Set Discrimination of Yeast

Sequences

For our first experiment, we used the two sets of predicted
3’UTR processing site sequences provided in [31], which are
constructed based on the microarray experiments in [17]
that measure the degradation rate of yeast mRNA. One
set Sf consists of 393 sequences which have a fast
degradation rate (t1=2 < 10 minutes), while the other set Ss
consists of 379 predicted 3’UTR processing site sequences
which have a slow degradation rate (t1=2 > 50 minutes).
Each sequence is 100 nt long and the total length of the
sequences is 77; 200 nt. The traversal on the suffix array on
this data set shows that there are 46; 554 candidates for a
single pattern (i.e., the number of internal nodes in the
suffix tree. Patterns corresponding to leaf nodes were
ignored since they are not “commonly occurring” patterns),
meaning that there are 46; 5542 ¼ 2; 167; 274; 916 possible
pattern pairs. For the scoring function, we used the
standard chi-squared statistic, calculated by

ðjSf j þ jSsjÞ
ðtp � tn� fp � fnÞ2

ðtpþ fnÞðtpþ fpÞðtnþ fpÞðtnþ fnÞ ; ð8Þ

where tp ¼ jMð�; SfÞj, fp ¼ jSf j � tp, tn ¼ jSsj � fn, and
fn ¼ jMð�; SsÞj. All four values may be calculated by setting
ri as shown in Section 2.2.1.

The top five scoring pattern pairs found are shown in
Table 3. Several interesting patterns can be found in these
pattern pairs. For all the patterns in the pairs that match
more in the faster decaying set, the substring UGUA is
contained. This sequence is actually known as a core
consensus for the binding site of the PUF protein family that
plays important roles in mRNA regulation [32] and has also
been found in the previous analysis [31] to be significantly
overrepresented in the fast degrading set.

On the other hand, patterns which are combined with :
can be considered as sequence elements which compete with
UGUA and interfere with mRNA decay. The patterns AUCC

and GUUG were in fact found to be substrings of a less
studied mRNA stabilizer element, experimentally shown to
be within a region of 65nt in the TEF1/2 transcripts [33]. We
cannot say directly that the two substrings represent
components of this stabilizer element since it was reported

that this stabilizer element should be in the translated

region in order to function. However, the mechanisms of

stabilizers are not yet well understood and further

investigation may uncover relationships between these

sequences.

5.2.2 Finding Correlated Patterns from Human

Sequences

For our second experiment, we used the decay rate

measurements of the human hepatocellular carcinoma cell

line HepG2 made available as Supplementary Table 9 of

[18]. 3’UTR sequences for each mRNA was retrieved using

the ENSMART [34] interface. We were able to obtain 2; 306

pairs of 3’UTR sequences and their decay rates, with the

average length of the sequences being 925:54 nt, and the

total length was 2; 134; 294 nt.
Since the distribution of the turnover rates seemed to

have a heavier tail than the normal distribution, we used a

nonparametric scoring function that fits into our OðN2Þ total
time bound: the normal approximation of the Wilcoxon

rank sum test statistics. The set of sequences S is first sorted

in increasing order according to its decay rate and each

sequence si is assigned its rank for ri. For a pattern pair �,

the rank sum statistic Rð�Þ ¼
P

i2Mð�Þ ri approximately

depends on the normal distribution when the sample size

is large. Therefore, we use the z-score defined by:

zðx; yÞ ¼ y� xðjSj þ 1Þ=2ð Þffi
xðjSj � xÞðjSj þ 1Þ=12

p ; ð9Þ

BANNAI ET AL.: AN OðN2Þ ALGORITHM FOR DISCOVERING OPTIMAL BOOLEAN PATTERN PAIRS 167

Fig. 7. The (a) running time and (b) speed-up plots of our algorithm using various numbers of CPUs for the data in Section 5.2.1. The algorithm can
be highly parallelized and speedup is almost linear in the number of processors used.

TABLE 3
Top Five Scoring Pattern Pairs Found

from Yeast 3’UTR Sequences

where x ¼ jMð�Þj and y ¼ Rð�Þ, with appropriate correc-

tions for ranks and variance when there are ties in the decay

rate values. The score function can be calculated in constant

time for each x and y, provided Oðm logmÞ time preproces-

sing for sorting of the data and assigning the ranks.
The top five scoring patterns are presented in Table 4. All

pairs are of the form p _ q common to sequences with

higher ranks, that is, sequences with higher decay rates.

Notice that most of the highest scoring patterns contain

UGUAUA, which was also contained in the results for yeast,

which may indicate a possibility that these degradation

mechanisms are evolutionarily conserved between eukar-

yotes. The other pattern in the pairs consists of A and U and

apparently captures the A+U rich elements (AREs) [30],

which are known to promote rapid mRNA decay depen-

dent on deadenylation. The form p _ q of the pattern pairs

also indicates that the two elements may have complemen-

tary roles in the degradation of mRNA.

6 DISCUSSION

In this paper, we presented a new formulation of the

composite pattern discovery problem: finding Boolean

combinations of patterns. In contrast to previous composite

pattern discovery approaches, our algorithm can find

sequence element pairs which may possess competing

properties, as well as cooperative ones. We have presented

an efficient OðN2Þ algorithm for finding the optimal

Boolean substring pattern pair with respect to a suitable

scoring function from a set of strings that have a numeric

attribute value assigned to each string. The algorithm was

applied to moderately sized biological sequence data and

was successful in finding pattern pairs that captured known

destabilizing elements, as well as possible stabilizing

elements, from 3’UTR of yeast and human mRNA

sequences, where each mRNA sequence is labeled with

values depending on its decay rate.
Frequently, in biological applications, motif models

which consider ambiguity in the matching are preferred,

rather than the “exact” substring patterns used in this

paper. Nevertheless, the selection of the motif model for a

particular application is still a very difficult problem and

substring patterns can be effective, as shown in this paper

and others [11]. As well as being efficient, simpler models

also have the advantage of being easier to interpret and can

be used as a quick, initial scanning for the task.

6.1 Algorithm Variations

6.1.1 Multiple String Attributes

In the previous sections, we assumed that the input
consisted of a single set of strings, where each string is
paired with a numeric attribute value. The algorithm can be
easily modified to account for two string attributes and a
numeric attribute. Let S ¼ fs1; . . . ; smg and T ¼ ft1; . . . ; tmg.
For a given pattern pair � ¼ hF; p; qi, we redefine

Mð�Þ ¼Mð�; S; T Þ ¼
fi j F ð ðp; siÞ; ðq; tiÞÞ ¼ true; si 2 S; ti 2 Tg;

that is, p is searched from S, while q is searched from T . Two
generalized suffix trees, one for S and the other for T , are
constructed: The former is used simply to enumerate the
candidates for p, while the latter is used for enumerating q
together with the linear-time algorithm for solving the color
set size problem. The algorithm would run inOðN2

1 þN1N2Þ
time andOðN1 þN2Þ space, whereN1 ¼

Pm
i¼1 lengthðsiÞ and

N2 ¼
Pm

i¼1 lengthðtiÞ. With this change in problem defini-
tion, we are able to search for Boolean combinations of
patterns from different sequence regions. For example, in
the mRNA data sets used previously, if we were to choose
the set of 3’UTR sequences of each gene for S and the set of
5’UTR sequences of each gene for T , we could look for
possible functional dependencies between sequence ele-
ments in the 3’UTR and 5’UTR.

6.1.2 Distance Restrictions

A variation of the problem which considers distance
constraints between the occurrences of the two patterns is
presented in [35]. Pattern combinations such as p ^� :q are
considered, which is defined to match a given string s if
there exists an occurrence of p in s such that q does NOT
occur in s within � positions of the occurrence of p, where �
is a given integer. The algorithm in this paper is modified to
use sparse suffix trees and is able to solve the problem
optimally for a given � in OðN2Þ time.

6.2 Availability

Software that implements the algorithms in this paper is
provided at http://bonsai.ims.u-tokyo.ac.jp/~bannai/
software/cpd/ under the GNU General Public License.

ACKNOWLEDGMENTS

This work was supported in part by Grant-in-Aid for
Encouragement of Young Scientists (B) and Grant-in-Aid
for Scientific Research on Priority Areas (C) “Genome

168 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

TABLE 4
Top Five Scoring Pattern Pairs Found from Human 3’UTR Sequences

Biology” from the Ministry of Education, Culture, Sports,
Science, and Technology of Japan. Computational resources
for the experiments were provided by The Human Genome
Center Super Computer System at the Institute of Medical
Science, University of Tokyo. The authors are also grateful
to Dr. Seiya Imoto (Human Genome Center, Institute of
Medical Science, University of Tokyo) for helpful comments
concerning the scoring functions.

REFERENCES

[1] A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert, “Ap-
proaches to the Automatic Discovery of Patterns in Biose-
quences,” J. Computational Biology, vol. 5, pp. 279-305, 1998.

[2] L. Marsan and M.-F. Sagot, “Algorithms for Extracting Structured
Motifs Using a Suffix Tree with an Application to Promoter and
Regulatory Site Consensus Identification,” J. Computational Biol-
ogy, vol. 7, pp. 345-360, 2000.

[3] H. Arimura, A. Wataki, R. Fujino, and S. Arikawa, “A Fast
Algorithm for Discovering Optimal String Patterns in Large Text
Databases,” Proc. Int’l Workshop Algorithmic Learning Theory,
pp. 247-261, 1998.

[4] E. Eskin and P.A. Pevzner, “Finding Composite Regulatory
Patterns in DNA Sequences,” Bioinformatics, vol. 18, pp. S354-
S363, 2002.

[5] X. Liu, D. Brutlag, and J. Liu, “BioProspector: Discovering Conserv-
ed DNA Motifs in Upstream Regulatory Regions of Co-Expressed
Genes,” Proc. Pacific Symp. Biocomputing, pp. 127-138, 2001.

[6] O. Maruyama, H. Bannai, Y. Tamada, S. Kuhara, and S. Miyano,
“Fast Algorithm for Extracting Multiple Unordered Short Motifs
Using Bit Operations,” Information Sciences, vol. 146, pp. 115-126,
2002.

[7] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara,
and S. Arikawa, “Knowledge Acquisition from Amino Acid
Sequences by Machine Learning System BONSAI,” Trans. In-
formation Processing Soc. Japan, vol. 35, no. 10, pp. 2009-2018, 1994.

[8] A. Shinohara, M. Takeda, S. Arikawa, M. Hirao, H. Hoshino, and
S. Inenaga, “Finding Best Patterns Practically,” Progress in
Discovery Science, pp. 307-317, 2002.

[9] M. Takeda, S. Inenaga, H. Bannai, A. Shinohara, and S. Arikawa,
“Discovering Most Classificatory Patterns for Very Expressive
Pattern Classes,” Proc. Sixth Int’l Conf. Discovery Science, pp. 486-
493, 2003.

[10] D. Shinozaki, T. Akutsu, and O. Maruyama, “Finding Optimal
Degenerate Patterns in DNA Sequences,” Bioinformatics, vol. 19,
pp. 206ii-214ii, 2003.

[11] H.J. Bussemaker, H. Li, and E.D. Siggia, “Regulatory Element
Detection Using Correlation with Expression,” Nature Genetics,
vol. 27, pp. 167-171, 2001.

[12] H. Bannai, S. Inenaga, A. Shinohara, M. Takeda, and S. Miyano,
“A String Pattern Regression Algorithm and Its Application to
Pattern Discovery in Long Introns,” Genome Informatics, vol. 13,
pp. 3-11, 2002.

[13] E.M. Conlon, X.S. Liu, J.D. Lieb, and J.S. Liu, “Integrating
Regulatory Motif Discovery and Genome-Wide Expression
Analysis,” Proc. US Nat’l Academy Sciences, vol. 100, no. 6,
pp. 3339-3344, 2003.

[14] H. Bannai, S. Inenaga, A. Shinohara, M. Takeda, and S. Miyano,
“Efficiently Finding Regulatory Elements Using Correlation with
Gene Expression,” J. Bioinformatics and Computational Biology,
vol. 2, no. 2, pp. 273-288, 2004.

[15] C.B. -Z. Zilberstein, E. Eskin, and Z. Yakhini, “Using Expression
Data to Discover RNA and DNA Regulatory Sequence Motifs,”
First Ann. RECOMB Satellite Workshop on Regulatory Genomics, 2004.

[16] D. Gusfield, Algorithms on Strings, Trees, and Sequences. Cambridge
Univ. Press, 1997.

[17] Y.Wang,C. Liu, J. Storey,R. Tibshirani,D.Herschlag, andP. Brown,
“Precision and Functional Specificity in mRNA Decay,” Proc. US
Nat’l Academy of Sciences, vol. 99, no. 9, pp. 5860-5865, 2002.

[18] E.Yang, E. vanNimwegen,M.Zavolan,N.Rajewsky,M. Schroeder,
M. Magnasco, and J. Darnell Jr., “Decay Rates of Human mRNAs:
Correlation with Functional Characteristics and Sequence Attri-
butes,” Genome Research, vol. 13, no. 8, pp. 1863-1872, 2003.

[19] H. Bannai, H. Hyyrö, A. Shinohara, M. Takeda, K. Nakai, and
S. Miyano, “Finding Optimal Pairs of Patterns,” Proc. Fourth
Int’l Workshop Algorithms in Bioinformatics, pp. 450-462, 2004.

[20] U. Manber and G. Myers, “Suffix Arrays: A New Method for On-
Line String Searches,” SIAM J. Computing, vol. 22, no. 5, pp. 935-
948, 1993.

[21] D.K. Kim, J.S. Sim, H. Park, and K. Park, “Linear-Time
Construction of Suffix Arrays,” Proc. 14th Ann. Symp. Combinatorial
Pattern Matching, pp. 186-199, 2003.

[22] P. Ko and S. Aluru, “Space Efficient Linear Time Construction of
Suffix Arrays,” Proc. 14th Ann. Symp. Combinatorial Pattern
Matching, pp. 200-210, 2003.

[23] J. Kärkkäinen and P. Sanders, “Simple Linear Work Suffix Array
Construction,” Proc. 30th Int’l Colloquium Automata, Languages and
Programming, pp. 943-955, 2003.

[24] T. Kasai, H. Arimura, and S. Arikawa, “Efficient Substring
Traversal with Suffix Arrays,” Technical Report 185, Dept. of
Informatics, Kyushu Univ., 2001.

[25] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “The Enhanced
Suffix Array and Its Applications to Genome Analysis,” Proc.
Second Int’l Workshop Algorithms in Bioinformatics, pp. 449-463, 2002.

[26] M.A. Bender and M. Farach-Colton, “The LCA Problem Revis-
ited,” Proc. Latin American Theoretical Informatics, pp. 88-94, 2000.

[27] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe, “Nearest
Common Ancestors: A Survey and a New Distributed Algo-
rithm,” Proc. 14th Ann. ACM Symp. Parallel Algorithms and
Architectures, pp. 258-264, 2002.

[28] L. Hui, “Color Set Size Problem with Applications to String
Matching,” Proc. Third Ann. Symp. Combinatorial Pattern Matching,
pp. 230-243, 1992.

[29] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-
Time Longest-Common-Prefix Computation in Suffix Arrays and
Its Applications,” Proc. 12th Ann. Symp. Combinatorial Pattern
Matching, pp. 181-192, 2001.

[30] C.J. Wilusz, M. Wormington, and S.W. Peltz, “The Cap-to-Tail
Guide to mRNA Turnover,” Nature Reviews: Molecular Cell Biology,
vol. 2, pp. 237-246, 2001.

[31] J. Graber, “Variations in Yeast 3’-Processing Cis-Elements Corre-
late with Transcript Stability,” Trends in Genetetics, vol. 19, no. 9,
pp. 473-476, http://harlequin.jax.org/yeast/turnover, 2003.

[32] M. Wickens, D.S. Bernstein, J. Kimble, and R. Parker, “A PUF
Family Portrait: 3’ UTR Regulation as a Way of Life,” Trends in
Genetics, vol. 18, no. 3, pp. 150-157, 2002.

[33] M.J. Ruiz-Echevarria, R. Munshi, J. Tomback, T.G. Kinzy, and
S.W. Peltz, “Characterization of a General Stabilizer Element that
Block Deadenylation-Dependent mRNA Decay,” J. Biological
Chemistry, vol. 276, no. 33, pp. 30995-31003, 2001.

[34] A. Kasprzyk, D. Keefe, D. Smedley, D. London, W. Spooner, C.
Melsopp, M. Hammond, P. Rocca-Serra, T. Cox, and E. Birney,
“EnsMart: A Generic System for Fast and Flexible Access to
Biological Data,” Genome Research, vol. 14, pp. 160-169, 2004.

[35] S. Inenaga, H. Bannai, H. Hyyrö, A. Shinohara, M. Takeda, K.
Nakai, and S. Miyano, “Finding Optimal Pairs of Cooperative and
Competing Patterns with Bounded Distance,” Proc. Seventh Int’l
Conf. Discovery Science, pp. 32-46, 2004.

Hideo Bannai received the BS and MS degrees
in computer science from the University of Tokyo
in 1998 and 2000, respectively. He is currently a
research associate at the Laboratory of DNA
Information Analysis, Human Genome Center,
Institute of Medical Science, The University of
Tokyo. His current research interests include
pattern discovery from biological sequence data.

Heikki Hyyrö received the MS degree in 2000
and the PhD degree in 2003 from the Depart-
ment of Computer Sciences at the University of
Tampere, Finland. He was a postdoctoral re-
search fellow of the Japan Science and Technol-
ogy Agency during this work, positioned in the
Department of Informatics at Kyushu University.
His current research interests lie mainly within
the general field of string algorithms.

BANNAI ET AL.: AN OðN2Þ ALGORITHM FOR DISCOVERING OPTIMAL BOOLEAN PATTERN PAIRS 169

Ayumi Shinohara received the BS degree in
1988 in mathematics, the MS degree in 1990 in
information systems, and the Doctor of Sciences
degree in 1994, all from Kyushu University. He is
now an associate professor in the Department of
Informatics at Kyushu University. His current
interests include discovery science, machine
learning, bioinformatics, and pattern matching
algorithms.

Masayuki Takeda received the BS degree in
1987, the MS degree in 1989, and the PhD
degree in 1996 from Kyushu University. He is
currently a professor in the Department of
Informatics, Kyushu University. His current
interests include string pattern matching, tree
pattern matching, and computational knowledge
discovery.

Kenta Nakai received the PhD degree from
Kyoto University in 1992. He is now a professor
at the Human Genome Center, Institute of
Medical Science, University of Tokyo. His
research interest is mainly focused on the
development of computational methods to inter-
pret genomic sequence data, such as the
development of PSORT, a predictor of protein
subcellular localization sites.

Satoru Miyano received the BS degree in 1977,
the MS degree in 1979, and the PhD degree in
mathematics from Kyushu University. He is now
a professor at the Human Genome Center,
Institute of Medical Science, University of Tokyo.
His current interests include computational gene
network inference methods, modeling and simu-
lation of biological systems, and computational
knowledge discovery. He is on the editorial
board of Bioinformatics, the Journal of Bioinfor-

matics and Computational Biology, and Theoretical Computer Science
and is the chief editor of Genome Informatics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

170 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

