
Discrete Applied Mathematics 155 (2007) 180–193
www.elsevier.com/locate/dam

Polynomial time approximation schemes and
parameterized complexity

Jianer Chena,b,1, Xiuzhen Huangc,2, Iyad A. Kanjd,3, Ge Xiae,4

aDepartment of Computer Science, Texas A&M University, College Station, TX 77843, USA
bCollege of Information Science and Engineering, Central South University, Changsha 410083, PR China

cDepartment of Computer Science, Arkansas State University, State University, AR 72467, USA
dSchool of CTI, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604, USA

eDepartment of Computer Science, Lafayette College, Easton, PA 18042, USA

Received 13 September 2004; received in revised form 4 September 2005; accepted 20 April 2006
Available online 3 July 2006

Abstract

In this paper, we study the relationship between the approximability and the parameterized complexity of NP optimization
problems. We introduce a notion of polynomial fixed-parameter tractability and prove that, under a very general constraint, an NP
optimization problem has a fully polynomial time approximation scheme if and only if the problem is polynomial fixed-parameter
tractable. By enforcing a constraint of planarity on the W-hierarchy studied in parameterized complexity theory, we obtain a
class of NP optimization problems, the planar W-hierarchy, and prove that all problems in this class have efficient polynomial time
approximation schemes (EPTAS). The planar W-hierarchy seems to contain most of the known EPTAS problems, and is significantly
different from the class introduced by Khanna and Motwani in their efforts in characterizing optimization problems with polynomial
time approximation schemes.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Approximation algorithm; Polynomial time approximation scheme; Parameterized complexity; W-hierarchy

1. Introduction

According to the NP-completeness theory [16], many optimization problems of theoretical interest and practical
importance are NP-hard, thus cannot be solved optimally in polynomial time unless P=NP. Many approaches have been
proposed to cope with the NP-hardness of such problems. The most celebrated among these approaches is polynomial
time approximation, which involves compromising an optimal solution for a “good” solution that is computable in
polynomial time.

1 Supported in part by US NSF Grants CCR-0311590 and CCF-4030683, and by China NNSF Grants no. 60373083 and no. 60433020.
2 Supported in part by US NSF Grant CCR-0000206.
3 Supported in part by DePaul University Competitive Research Grant.
4 Supported in part by US NSF Grant CCF-4030683.

E-mail addresses: chen@cs.tamu.edu (J. Chen), xzhuang@csm.astate.edu (X. Huang), ikanj@cs.depaul.edu (I.A. Kanj), gexia@cs.lafayette.edu
(G. Xia).

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.04.040

http://www.elsevier.com/locate/dam
mailto:chen@cs.tamu.edu
mailto:xzhuang@csm.astate.edu
mailto:ikanj@cs.depaul.edu
mailto:gexia@cs.lafayette.edu

J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193 181

A notable class of NP-hard optimization problems has fully polynomial time approximation schemes (FPTAS),
which are efficient approximation algorithms whose approximation ratio is bounded by 1 + � and whose running time
is bounded by a polynomial in both input size and 1/�, where the relative error bound � can be any positive real
number. Examples of FPTAS problems include the well-known KNAPSACK problem and the MAKESPAN problem on
a fixed number of processors [19]. A more general class of NP-hard optimization problems admits polynomial time
approximation schemes (PTAS), which have polynomial time approximation algorithms of approximation ratio 1 + �
for each fixed relative error bound � > 0. A large number of NP-hard optimization problems, including, based on the
recent research, the well-known EUCLIDEAN TRAVELING SALESMAN problem [2] and GENERAL MULTIPROCESSOR JOB

SCHEDULING problem [11], belong to the class PTAS [19].
Contrary to the efficiency of FPTAS algorithms, the running time of a general PTAS algorithm of approximation

ratio 1 + � can be of the form O(nt(�)), where n is the input size and t (�) is a function of � that can be very large
even for moderate values of �. Downey [12] (see also [14]) examined many recently developed PTAS algorithms for
NP-hard optimization problems, and discovered that for the relative error bound value of �= 20%, most of these PTAS
algorithms have t (�) > 106, i.e., the running time of these PTAS algorithms exceeds the order of n100 000! Obviously,
these PTAS algorithms are not practically feasible.

Observing this fact, recent research has proposed to further refine the class PTAS. We say that an optimization
problem Q has an efficient polynomial time approximation scheme (EPTAS) if for any � > 0, there is an approximation
algorithm of ratio 1 + � for Q whose running time is bounded by a polynomial of the input size whose degree is
independent of �. In particular, all FPTAS problems belong to the class EPTAS.

Clearly, EPTAS algorithms are superior to PTAS algorithms of running time of the form O(nt(�)) in the efficiency
of the algorithms. In fact, many PTAS algorithms developed for NP-hard optimization problems are actually EPTAS
algorithms. Moreover, there are a number of well-known NP-hard optimization problems, such as the EUCLIDEAN

TRAVELING SALESMAN problem [2], the GENERAL MULTIPROCESSOR JOB SCHEDULING problem [11], and the MAKESPAN

problem on unbounded number of processors [19], for which early developed PTAS algorithms had running time of
form O(nt(�)), but later were improved to EPTAS algorithms. On the other hand, Cai et al. [7] recently studied the
syntactic characterizations of PTAS problems proposed by Khanna and Motwani [21], and showed strong evidence
that there are PTAS problems that have no EPTAS.

Therefore, it is interesting to investigate the characterization of EPTAS problems. The current paper attempts a
study of EPTAS problems in terms of their parameterized complexity. Parameterized complexity theory [13] is a
recently proposed new approach dealing with NP optimization problems, which studies the computational com-
plexity of optimization problems in terms of both instance size and a properly selected parameter. The class FPT
of fixed-parameter tractable problems has been introduced to characterize such parameterized problems that be-
come feasible for small parameter values. On the other hand, a hierarchy, the W -hierarchy ∪i �1W [i], has been
introduced to capture the fixed-parameter intractability of optimization problems. Parameterized complexity theory
has drawn considerable attention recently because of its applications in developing practical algorithms and in de-
riving computational lower bounds for NP optimization problems (see the surveys [12,14] for recent progress in
the area).

We start by identifying a subclass, PFPT, of the class FPT, and prove that under a very general condition (the scal-
ability condition, see Section 3 for a formal definition), a problem has FPTAS if and only if it is in PFPT. This
provides the characterization for a very large subclass of the FPTAS problems in terms of parameterized com-
plexity. This result seems to have advantages over the previous studies for the class FPTAS. Compared to Paz
and Moran’s characterization of the class FPTAS based on certain polynomial time computable functions [24]
(see also [4]), our characterization seems easier to verify: the scalability condition seems to be satisfied by most
NP optimization problems. Compared to Woeginger’s recent study [26] on a subclass of the FPTAS problems based
on a dynamic programming formulation, our characterization seems more general and to include more FPTAS
problems.

We then study the characterization of the class EPTAS. We enforce a constraint of planarity on the W-hierarchy
in parameterized complexity theory, and introduce the syntactic classes PLANAR MIN-W [h], PLANAR MAX-W [h], and
PLANAR W [h]-SAT (this approach is similar to that of Khanna and Motwani [21] in their efforts in characterizing the
class PTAS). These syntactic classes capture many NP optimization problems in the class EPTAS, such as PLANAR

VERTEX COVER, PLANAR INDEPENDENT SET, and PLANAR MAX-SAT. By extending Baker’s techniques [5] and techniques
more recently developed in the study of parameterized algorithms [1,15], we prove that all problems in these syntactic

182 J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193

classes belong to the class EPTAS. These syntactic classes seem to form the core for a significant class of EPTAS
problems. Finally, we point out that our syntactic classes are significantly different from the PTAS syntactic classes
introduced by Khanna and Motwani [21]: our syntactic classes contain only EPTAS problems while the syntactic
classes in [21] seem to include PTAS problems that are not in EPTAS [7], while on the other hand, our syntactic classes
contain EPTAS problems that cannot be characterized by the syntactic classes in [21].

Our results combined with a result by Cesati and Trevisan [8] show that all problems in our syntactic classes are
fixed-parameter tractable. Moreover, a byproduct derived from an immediate result in our discussion shows that the
PLANAR h-NORMALIZED WEIGHTED SATISFIABILITY problem is solvable in polynomial time, which answers an open
problem posed by Downey and Fellows [13].

2. Preliminaries and further definitions

We review the necessary background in parameterized computation and in computational optimization. For more
detailed discussions on these topics, the readers are referred to [3,13,16].

A parameterized problem Q is a subset of �∗ × N , where � is a fixed alphabet and N is the set of all non-negative
integers. Therefore, each instance of the parameterized problem Q is a pair (x, k), where the second component, i.e., the
non-negative integer k, is called the parameter. We say that the parameterized problem Q is fixed-parameter tractable
[13] if there is a (parameterized) algorithm that decides whether an input (x, k) is a member of Q in time O(f (k)|x|O(1)),
where f (k) is any recursive function. Let FPT denote the class of all fixed parameter tractable problems.

Fixed-parameter intractability has been studied based on satisfiability problems on bounded-depth circuits. We review
the related terminologies here. A (unbounded fan-in) circuit is a directed acyclic graph. The nodes of in-degree 0 are
called inputs, and are labeled either by a positive literal xi or by a negative literal xi . The nodes of in-degree larger
than 0 are called gates and are labeled with a Boolean operator AND or OR. A special gate of out-degree 0 is designated
as the output node. A circuit represents a Boolean function in a natural way. Without loss of generality, we can assume
that circuits are of a special leveled form where all inputs are in level 0, and all AND and OR gates are organized into
alternating levels with edges only going from a level to the next level [9]. The depth of a node v is d if v is at the dth
level. The depth of a circuit is d if its output node has depth d. A circuit is a �h-circuit if it has depth h and its output
node is an AND gate. We say that an input vector x of a circuit � satisfies a gate g in � if x makes the gate g have value
1, and that x satisfies the circuit � if x satisfies the output gate of �. The weight of an input vector x is the number of 1’s
in x. For a fixed integer h�2, define the following parameterized problem:

WCS(h) = {(�, k) | the �h-circuit � is satisfied by an input vector of weight k}.
The parameterized intractability classes, the W-hierarchy

∑
h�1 W [h], are defined based on the problems WCS(h) via

the fpt-reduction (see [13] for the definition for the fpt-reduction): a parameterized problem Q is in the class W [h] if
it is fpt-reducible to the WCS(h) problem.5 A parameterized problem Q is W [h]-hard if every parameterized problem
in W [h] is fpt-reducible to Q, and is W [h]-complete if in addition Q itself is also in W [h]. It is widely believed that no
W [1]-hard problem is fixed-parameter tractable [13].

An NP optimization problem Q is a 4-tuple (IQ, SQ, fQ, optQ), where

1. IQ is the set of input instances. It is recognizable in polynomial time.
2. For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which is defined by a polynomial p and a

polynomial time computable predicate � (p and � only depend on Q) as SQ(x) = {y : |y|�p(|x|)&�(x, y)}.
3. fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x) to a non-negative integer. The function

fQ is computable in polynomial time.
4. optQ ∈ {max, min}. Q is called a maximization problem if optQ = max, and a minimization problem if optQ = min.

We will denote by optQ(x) the value optQ{fQ(x, z) | z ∈ SQ(x)}.
Note that since the length of a solution y to an instance x in Q is bounded by a polynomial of |x|, and the objective

function fQ is computable in polynomial time, the values of the objective function fQ, in particular the value optQ(x),
are bounded by 2q(|x|) for a fixed polynomial q.

5 The definition of the class W [1] is different and somehow more technical. Since it is not directly related to our discussion, we refer the readers
to [13] for the formal definition.

J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193 183

An algorithm A is an approximation algorithm for an NP optimization problem Q if, for each input instance x in IQ,
the algorithm A returns a feasible solution yA(x) in SQ(x). The solution yA(x) has an approximation ratio r(n) if it
satisfies the following condition:

optQ(x)/fQ(x, yA(x))�r(|x|) if Q is a maximization problem,

fQ(x, yA(x))/optQ(x)�r(|x|) if Q is a minimization problem.

The approximation algorithm A has an approximation ratio r(n) if for any instance x in IQ, the solutionyA(x) constructed
by the algorithm A has an approximation ratio bounded by r(|x|).

An NP optimization problem Q has a PTAS if there is an algorithm AQ that takes a pair (x, �) as input, where x is
an instance of Q and � > 0 is a real number, and returns a feasible solution y for x such that the approximation ratio
of the solution y is bounded by 1 + �, and for each fixed � > 0, the running time of the algorithm AQ is bounded by a
polynomial of |x|.6 Finally, an NP optimization problem Q has an FPTAS if it has a PTAS AQ such that the running
time of AQ is bounded by a polynomial of |x| and 1/�.

Observe that the time complexity of a PTAS algorithm may be of the form O(21/�|x|2) or of the form O(|x|1/�).
Obviously, the latter type of computations with small � values will turn out to be practically infeasible. This leads to
the following definition [8].

Definition. An NP optimization problem Q has an EPTAS if it admits a PTAS whose time complexity is bounded by
O(f (1/�)|x|O(1)), where f is a recursive function.

There is an essential difference between approximation algorithms and parameterized algorithms: an approxima-
tion algorithm for an NP optimization problem constructs a solution for a given instance of the problem, while a
parameterized algorithm only provides a “yes/no” decision on an input. To make a meaningful comparison between
approximability and parameterized complexity, we introduce a formal procedure that parameterizes an optimization
problem and extend the definition of parameterized algorithms accordingly (see [6] for a similar treatment).

Definition. Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem.

• If optQ = max, then the parameterized version of Q is Q� = {(x, k) | x ∈ IQ&optQ(x)�k}.
• If optQ = min, then the parameterized version of Q is Q� = {(x, k) | x ∈ IQ&optQ(x)�k}.

A parameterized algorithm AQ solves the parameterized version of Q if

• in case optQ = max, on an input (x, k) ∈ Q� , AQ returns “yes” with a solution y in SQ(x) such that fQ(x, y)�k,
and on any input not in Q� , AQ simply returns “no”;

• in case optQ = min, on an input (x, k) ∈ Q� , AQ returns “yes” with a solution y in SQ(x) such that fQ(x, y)�k,
and on any input not in Q� , AQ simply returns “no”.

The above definition allows us to consider the parameterized complexity of an NP optimization problem, which is
the parameterized complexity of the parameterized version of the problem.

3. FPTAS and polynomial-FPT

Recall that a fixed-parameter tractable problem has an algorithm of running time of the form f (k)nO(1), where f
is an arbitrary recursive function. By enforcing a further constraint on the function f (k), we introduce the following
subclass of the class FPT.

Definition. An NP optimization problem Q is polynomial fixed-parameter tractable (PFPT) if its parameterized version
is solvable in time O(|x|O(1)kO(1)).

6 There is an alternative definition for PTAS in which each � > 0 may correspond to a different approximation algorithm A� for Q [16]. The
definition we adopt here may be called the uniform PTAS, by which a single approximation algorithm takes care of all values of �. Note that most
PTAS developed in the literature are uniform PTAS.

184 J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193

Note that polynomial fixed-parameter tractability does not necessarily imply polynomial time computability: an NP
optimization problem Q may have its optimal value optQ(x) much larger than the instance size |x|. In consequence,
the parameterized version of the problem Q may have its parameter values k larger than any polynomial of its instance
size |x|.

The class of PFPT contains many important problems. For example, Cai and Chen [6] proved that every FPTAS
problem is fixed-parameterized tractable. A more careful examination of their proof shows that in fact what they proved
was that every FPTAS problem is in the class PFPT. In particular, a large variety of classical scheduling problems are
in the class FPTAS [20,25], thus belong to the class PFPT.

In this section, we prove that the condition PFPT actually coincides with the condition FPTAS when an NP opti-
mization problem is “scalable” in the following sense.

Definition. An optimization problem Q = (IQ, SQ, fQ, optQ) is scalable if there are polynomial time computable
functions g1 and g2 and a fixed polynomial q such that:

1. for any instance x ∈ IQ, and any integer d �1, xd = g1(x, d) is an instance of Q such that |xd |�q(|x|) and
|optQ(xd) − optQ(x)/d|�q(|x|); and

2. for any solution yd to the instance xd , y = g2(xd, yd) is a solution to the instance x such that |fQ(xd, yd) −
fQ(x, y)/d|�q(|x|).

We give some explanation on the scalability property for NP optimization problems. For many NP optimization
problems Q, an instance x consists of a set of weighted elements (plus certain logic structures on the elements). In
this case, the element weights can be “scaled” (e.g., by dividing the element weights by an integer d), resulting in a
new instance x′ of Q. This operation of “scaling element weights” is formulated by the function g1 given in the above
definition in a more general form. The scalability property of Q requires that there be an association between the solution
sets SQ(x) and SQ(x′) such that if we also scale the solution value for a solution y in SQ(x) by the integer d, then
the difference between the scaled solution value fQ(x, y)/d and the solution value fQ(x′, y′) for the corresponding
solution y′ for the scaled instance x′ is bounded by a polynomial of |x|. In particular, if the solutions of the instance x
consist of subsets of elements in x (such as weighted VERTEX COVER and DOMINATING SET), or of element ordering (such
as TRAVELLING SALESMAN and various scheduling problems), then the scalability property is satisfied. Moreover, if an
NP optimization problem Q has its optimal value optQ(x) bounded by a polynomial of |x| for all instances x, then the
problem Q is automatically scalable—simply let xd =g1(x, d)=x for any integer d, and for a solution yd to xd =x, let
g2(xd, yd) = yd .

To be more concrete, we pick Q = MAKESPAN as an example to illustrate how an NP optimization problem can be
scaled. An instance x of MAKESPAN consists of n jobs of integral processing times t1, t2, . . . , tn, respectively (we will
refer to the jth job by tj), and an integer m, the number of identical processors, and asks to construct a scheduling
of the jobs on the m processors so that the completion time (i.e., the makespan) is minimized. For a given instance
x = (t1, t2, . . . , tn; m) of MAKESPAN and a given integer d �0, we define

xd = g1(x, d) = (t ′1, t ′2, . . . , t ′n; m),

where t ′i = �ti/d� for i = 1, 2, . . . , n, which is also an instance for MAKESPAN. A solution yd to the instance xd is a
scheduling that partitions the n jobs in xd into m subsets: yd = (T ′

1, . . . , T
′
m), where T ′

i is the set of jobs in xd that are as-
signed to the ith processor. We define y=g2(xd, yd) to be the same index partitioning of the jobs in x : y=(T1, . . . , Tm)

(i.e., a job tj is in Ti if and only if the job t ′j is in T ′
i). Obviously, y = g2(xd, yd) is a solution for the instance x, and the

functions g1 and g2 are computable in polynomial time. To see the relation between the solution y = (T1, . . . , Tm) for
x and the solution yd = (T ′

1, . . . , T
′
m) for xd , note that the makespan of y is equal to maxi{∑tj ∈Ti

tj }, and the makespan

of yd is equal to maxi{∑t ′j ∈T ′
i
t ′j }.We have

fQ(xd, yd) = max
i

⎧⎪⎨
⎪⎩

∑
t ′j ∈T ′

i

t ′j

⎫⎪⎬
⎪⎭

= max
i

⎧⎨
⎩

∑
tj ∈Ti

�tj /d�
⎫⎬
⎭

� max
i

⎧⎨
⎩

∑
tj ∈Ti

tj /d

⎫⎬
⎭ = max

i

⎧⎨
⎩

∑
tj ∈Ti

tj

⎫⎬
⎭ /d = fQ(x, y)/d. (1)

J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193 185

On the other hand,

fQ(xd, yd) = max
i

⎧⎪⎨
⎪⎩

∑
t ′j ∈T ′

i

t ′j

⎫⎪⎬
⎪⎭

= max
i

⎧⎨
⎩

∑
tj ∈Ti

�tj /d�
⎫⎬
⎭

� max
i

⎧⎨
⎩

∑
tj ∈Ti

(tj /d + 1)

⎫⎬
⎭ � max

i

⎧⎨
⎩

∑
tj ∈Ti

tj

⎫⎬
⎭ /d + n = fQ(x, y)/d + n (2)

(note that the total number of jobs in each subset Ti is bounded by n). Combining (1) and (2), we get |fQ(xd, yd) −
fQ(x, y)/d|�n. Similarly, it can be verified that the instances x and xd satisfy |optQ(xd) − optQ(x)/d|�n. In con-
clusion, the MAKESPAN problem is scalable.

Theorem 3.1. Let Q = (IQ, SQ, fQ, optQ) be a scalable NP optimization problem. Then Q has an FPTAS if and only
if Q is in PFPT.

Proof. One direction of the theorem was implicitly proved in [6]. Suppose that Q has an FPTAS AQ, which
is an algorithm such that on any instance x of Q and any given � > 0, the algorithm AQ constructs a solution of ratio
bounded by 1 + � for x, in time p(1/�, |x|), where p(1/�, |x|) is a polynomial of 1/� and |x|. Cai and Chen proved
([6, Theorem 3.2]) that then the parameterized version of Q can be solved in time O(p(2k, |x|)). In consequence, the
problem Q is in PFPT.

To show the converse, we consider specifically the case when Q is a maximization problem (a proof for minimization
problems can be similarly derived). Suppose that the problem Q is in PFPT, and the parameterized version Q� is
solvable in time p(k, |x|), which is a polynomial in k and |x|. Since Q is scalable, we let g1 and g2 be the polynomial
time computable functions, and q be the polynomial in the definition of the scalability of Q. For a given instance x of
Q and a real number � > 0, consider the following algorithm (assume n = |x|):

1. let x1 = g1(x, 1); if (x1, 3q(n)/�) is not in Q� , then try all instances (x, 1), (x, 2), . . . , (x, 3q(n)/� + q(n)) to
construct an optimal solution for x; STOP;

2. use binary search on d to find an integer d �1 such that (xd, 3q(n)/�) is in Q� , but (xd+1, 3q(n)/�) is not in Q� ,
where xd = g1(x, d) and xd+1 = g1(x, d + 1);

3. construct an optimal solution yd for the instance xd ;
4. let y0 = g2(xd, yd); output y0 as a solution for x.

We discuss the correctness and the complexity of the above algorithm. First note that by the definition, |xd |�q(n)

for any integer d. If (x1, 3q(n)/�) is not in Q� , then optQ(x1) < 3q(n)/�. Moreover, since Q is scalable, we have
|optQ(x1) − optQ(x)/1|�q(n). Combining these two relations, we get optQ(x)�optQ(x1) + q(n) < 3q(n)/� + q(n).
Thus, step 1 of the algorithm will correctly construct an optimal solution for the instance x (note by our definition, on
input (x, optQ(x)), the parameterized algorithm must return “yes” with an optimal solution to the instance x). Moreover,
since checking each instance (x, k) takes time p(k, n), where k = 1, 2, . . . , 3q(n)/� + q(n), step 1 of the algorithm
takes time bounded by O((3q(n)/� + q(n))p(3q(n)/� + q(n), n)), which is a polynomial of n and 1/�.

If (x1, 3q(n)/�) is in Q� , then we execute step 2 of the algorithm. First, we need to show that there must be an
integer d �1 such that (xd, 3q(n)/�) is in Q� but (xd+1, 3q(n)/�) is not in Q� . We already know that (xd, 3q(n)/�)
is in Q� for d = 1. Thus, we only need to show that there must be a d such that (xd, 3q(n)/�) is not in Q� .
Since Q is an NP optimization problem, we have optQ(x) < 2r(n), where r(n) is a polynomial in n. Therefore, if we let
d =2r(n), then from the scalability of the problem Q, we have |optQ(xd)−optQ(x)/d|�q(n), which gives immediately
optQ(xd) < 1+q(n)�3q(n)/� (here we assume without loss of generality that q(n)�1 and 0 < � < 1). Thus, the integer
d in step 2 of the algorithm must exist and d �2r(n). Since we use binary search on d, the total number of instances
(xd, 3q(n)/�) we check in step 2 is bounded by r(n). By our assumption, each instance (xd, 3q(n)/�) of Q� can be
tested in time p(3q(n)/�, q(n)) (note that |xd |�q(n)). Therefore, the running time of step 2 of the algorithm is also
bounded by a polynomial of n and 1/�.

186 J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193

Now consider step 3. Since (xd+1, 3q(n)/�) is not in Q� , we have optQ(xd+1) < 3q(n)/�. By the scalability of Q,
we have

|optQ(xd) − optQ(x)/d|�q(n) and |optQ(xd+1) − optQ(x)/(d + 1)|�q(n).

From this we get (note since d �1, we have (d + 1)/d �2)

optQ(xd)�
optQ(x)

d
+ q(n) = d + 1

d
· optQ(x)

d + 1
+ q(n)

� d + 1

d
(optQ(xd+1) + q(n)) + q(n)�2 · optQ(xd+1) + 3q(n)� 6q(n)

�
+ 3q(n).

Thus, by checking all instances (xd, k), where k = 1, 2, . . . , 6q(n)/� + 3q(n), each taking time p(k, q(n)), we will
be able to construct the optimal solution yd for the instance xd . In conclusion, step 3 of the algorithm also takes time
polynomial in n and 1/�.

Summarizing the above discussion, we conclude that the running time of the algorithm is bounded by a polynomial
in n and 1/�. What remains is to bound the approximation ratio for the solution y0 of the instance x.

By our construction, fQ(xd, yd) = optQ(xd) and y0 = g2(xd, yd). By the scalability of Q,

|optQ(xd) − fQ(x, y0)/d| = |fQ(xd, yd) − fQ(x, y0)/d|�q(n). (3)

Thus, fQ(x, y0)�d · optQ(xd) − d · q(n). Since (xd, 3q(n)/�) is in Q� , we have optQ(xd)�3q(n)/�, which gives
(note 0 < � < 1 thus d/��d):

fQ(x, y0)�3d · q(n)/� − d · q(n) = q(n)(3d/� − d)�2dq(n)/�. (4)

Now from (3) and the inequality |optQ(xd) − optQ(x)/d|�q(n), we get

|optQ(x)/d − fQ(x, y0)/d|� |optQ(xd) − optQ(x)/d| + |optQ(xd) − fQ(x, y0)/d|�2q(n).

Thus optQ(x) − fQ(x, y0)�2dq(n). This gives us

optQ(x)/fQ(x, y0)�1 + 2dq(n)/fQ(x, y0)�1 + �.

The last inequality is from (4). In conclusion, the approximation ratio of the solution y0 for the instance x is bounded
by 1 + �.

This proves that the algorithm above is an FPTAS for the problem Q. This completes the proof of the theorem. �

We make a few remarks on Theorem 3.1. Since the first group of publications on FPTAS for NP optimization problems
[20,25], there has been a line of research trying to characterize problems in FPTAS [4,24,26]. Most of the early work
in this direction [4,24] characterizes the class FPTAS in terms of certain polynomial time computable functions. These
characterizations do not provide any clue on how to detect the existence of such functions, or on how to develop FPTAS
for the problems (the interested readers are referred to [24], Theorem 4.20, for a more detailed discussion on this line
of research). More recently, Woeginger [26], in an effort to overcome this difficulty, considered a class of optimization
problems that can be formulated via dynamic programming of certain structures. He showed that as long as the cost and
transition functions of such problems satisfy certain arithmetical and structural conditions, the problems have FPTAS.

Theorem 3.1 follows the same line of research as [26] but seems to have the following advantages when compared
with previous works. First, as we have shown for the MAKESPAN problem, the scalability property of an NP optimization
problem is satisfied in most cases and, in general, can be checked in a straightforward manner. Thus, in most cases,
the existence of FPTAS for an NP optimization problem is reduced to the development of an PFPT algorithm for the
problem. Moreover, the proof of Theorem 3.1 describes in detail how an PFPT algorithm is converted into an FPTAS
algorithm. On the other hand, Theorem 3.1 seems to cover more FPTAS problems than Woeginger’s formulation [26]:
intuitively, and generally, a dynamic programming formulation for an NP optimization problem directly implies an
PFPT algorithm for the problem.

J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193 187

4. Planar W-hierarchy and EPTAS

In the previous section, we have shown how a subclass, PFPT, of the parameterized class FPT provides a nice
characterization for the approximation class FPTAS. In this section, we study the approximation class EPTAS in terms
of the parameterized class, the W-hierarchy.

We note that a significant amount of research has been done on studying the approximation properties in terms of their
syntactic descriptions. For instance, Papadimitriou and Yannakakis [23] introduced the syntactic classes MAXNP and
MAXSNP of optimization problems, which, via proper approximation ratio preserving reductions, turn out to be exactly
the class of NP optimization problems that can be approximated in polynomial time with constant approximation ratios
[22]. Khanna and Motwani [21] proposed the syntactic classes MPSAT, TMAX, and TMIN by enforcing a planar structure
on first order Boolean formulas of depth 3, and showed that most known PTAS problems are expressible by these
classes.

In a parallel approach to that of Khanna and Motwani [21], we study the approximation class EPTAS by enforcing
a planar structure on the W-hierarchy in parameterized complexity. A �h-circuit is a �+

h -circuit if all of its inputs are
labeled by positive literals, and is a �−

h -circuit if all of its inputs are labeled by negative literals. A �h-circuit � is
planar if � becomes a planar graph after removing the output gate in �.

Definition. We define the following syntactic optimization classes:
PLANAR MIN-W [h]: Consists of every optimization problem Q such that each instance of Q can be expressed as a

planar �+
h -circuit �, and the problem is to look for a satisfying assignment of minimum weight for �.

PLANAR MAX-W [h]: Consists of every optimization problem Q such that each instance of Q can be expressed as a
planar �−

h -circuit �, and the problem is to look for a satisfying assignment of maximum weight for �.
PLANAR W [h]-SAT: Consists of every optimization problem Q such that each instance of Q can be expressed as a

planar �h-circuit �, and the problem is to look for an assignment that satisfies the largest number of depth-(h − 1)

gates in the circuit �.

We make a few remarks on the above definitions. The classes PLANAR MIN-W [h], PLANAR MAX-W [h], and PLANAR

W [h]-SAT are optimization versions, with a planarity constraint, of the problem WCS(h), which is the representative com-
plete problem for the hth level W [h] of the W-hierarchy in parameterized complexity theory. Strictly speaking, PLANAR

MIN-W [h], PLANAR MAX-W [h], and PLANARW [h]-SAT are optimization problems. We call them optimization classes
because they characterize a large number of optimization problems (sometimes probably via a proper reduction).7

The class PLANAR W [h]-SAT captures the optimization problems where the objective is to construct a solution that
satisfies the maximum number of constraints. In particular, the problem PLANAR MAXSAT formulated by Khanna and
Motwani [21] belongs to the class PLANAR W [2]-SAT. The classes PLANAR MIN-W [h] and PLANAR MAX-W [h] capture
the optimization problems where the objective is to construct an optimal (minimum or maximum) solution that satisfies
all the constraints. Most optimization problems on planar graphs belong to the classes PLANAR MIN-W [h] or PLANAR

MAX-W [h]. For example, for an instance G of the MINIMUM VERTEX COVER problem on planar graphs, we can convert
G into a planar �+

2 -circuit �G by making each vertex v in G an input of �G and replacing each edge [v, w] in G by
an OR gate with the two inputs v and w, which is connected to the unique output AND gate of the circuit �G. It is easy
to see that the minimum vertex covers of the graph G correspond to the minimum weight assignments that satisfy the
circuit �G, and vice versa.

In the rest of this section, we show that all optimization problems in our syntactic classes have EPTAS. EPTAS
algorithms for these problems are developed based on methods similar to that in [5]. We provide the details below,
emphasizing on the differences. Moreover, since the algorithms for the three classes are similar, we will concentrate on
PLANAR MIN-W [h], and give brief explanations on how the algorithms can be modified to apply to PLANAR MAX-W [h]
and PLANAR W [h]-SAT.

Let G be a planar graph (not necessarily connected) and �(G) be a planar embedding of G. A vertex v is in layer-1
in �(G) if v is on the boundary of the unbounded region of �(G). We define G1 to be the subgraph of G induced by
all layer-1 vertices. Inductively, a vertex v is in layer-i, i > 1, if v is on the boundary of the unbounded region of the

7 This is similar to the approaches that have been adopted by Papadimitriou and Yannakakis in their study of the class SNP [23] and that by
Khanna and Motwani in their study of the PTAS class [21].

188 J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193

embedding of the graph G − (G1 ∪ · · · ∪ Gi−1) induced by the embedding �(G). Define Gi to be the subgraph of G
induced by all layer-i vertices. The embedding �(G) is q-outerplanar if it has at most q layers.

Now consider a planar �+
h -circuit �w with output gate w. Let � = �w − w be the subgraph of �w with the output

gate w removed. By the definition, the graph � has a planar embedding �(�). Let G be a subgraph of � that is induced
by q consecutive layers in �(�), where q �2h, and let �(G) be the embedding of G induced from �(�). Obviously, the
embedding �(G) is q-outerplanar. We consider the following optimization problem:

MIN (h, q)-SAT: Given the planar graph G and the q-outerplanar embedding �(G) of G, as defined above, construct
an assignment of minimum weight for the input variables in G so that all depth-(h − 1) gates in �w that are in
the middle q − 2h layers in �(G) (i.e., the (h + 1)st, . . ., and the (q − h)th layers in �(G)) are satisfied.

We point out that assigning all input variables in G the value 1 will satisfy all depth-(h − 1) gates in the middle
q − 2h layers in �(G). This is because all literals in �w are positive, and �w has depth h. So any input variable or any
gate that is connected via a path in �w to a depth-(h − 1) gate in the middle q − 2h layers in �(G) must necessarily be
contained in G, and hence, when all these input variables in G are assigned the value 1, all the depth-(h − 1) gates in
the middle q − 2h layers in �(G) will be satisfied.

Lemma 4.1. The problem MIN(h, q)-SAT can be solved in time O(81qn).

Proof. The proof proceeds based on the techniques proposed by Baker [5]. Starting with the q-outerplanar embedding
�(G), we can recursively decompose the graph G into “slices”. Each slice S is a subgraph of G with at most q “left
boundary vertices” and at most q “right boundary vertices”, which are the only vertices in S that may be adjacent to
vertices not in S (the left and right boundaries are not necessarily disjoint). A trivial slice is simply an edge in G. Two
slices S1 and S2 can be “merged” into a larger slice S if the right boundary of S1 is identical to the left boundary of
S2. Baker [5] presented a linear-time algorithm to show how a q-outerplanar graph G is recursively decomposed into
trivial slices and how the slices, starting from trivial slices, are recursively merged to reconstruct the original graph G.

Each vertex in the graph G is either an input variable or a gate in the original circuit. Therefore, in order to solve
the problem MIN (h, q)-SAT, for each slice S, we need to assign proper values to the input variables in S and determine
the corresponding values for gates in S. For this, starting from the trival slices, we recursively examine every possible
value assignment to the boundary vertices of each slice S, and record the minimum weight assignment to the input
variables in S that induces the boundary vertex assignment and satisfies all depth-(h − 1) gates in S that are in the
middle q − 2h layers in �(G) (as long as such an assignment exists). Note that the value of a boundary vertex v in S
may be determined by an input of v that is not in S. For example, an AND gate v in S may have value 0 because an input
of v not in S has value 0 (and all inputs of v in S have value 1). To indicate this special case, we introduce the values
0̃ and 1̃ as follows: an AND gate in the slice S has value 0̃ if all of its inputs in S have value 1 but an input of it not in
S has value 0; and an OR gate in S has value 1̃ if all of its inputs in S have value 0 but an input of it not in S has value
1. Note that the gate values 0̃ and 1̃ cannot be verified until the slice S is merged with other slices. Therefore, when we
work on the slice S, each boundary vertex v in S may have one of the following values:

• If v is an input variable, then v has value either 0 or 1.
• If v is an OR gate, then v has one of the following values:

(1) value 0 (assuming all inputs of v, in particular all those in S, have value either 0 or 0̃);
(2) value1 (assuming an input of v in S has value 1); or
(3) value 1̃ (assuming no input of v in S has value 1 but an input of v not in S has value 1).

• If v is an AND gate, then v has one of the following values:
(1) value 1 (assuming all inputs of v, in particular all those in S, have value either 1 or 1̃);
(2) value 0 (assuming an input of v in S has value 0); or
(3) value 0̃ (assuming no input of v in S has value 0 but an input of v not in S has value 0).

We point out that since an input to an OR gate is either an input variable or an AND gate, no input of an OR gate can
have value 1̃. Similarly, no input of an AND gate can have value 0̃.

We call a possible value assignment to all vertices in a (left or right) boundary of a slice a “configuration” of the
boundary. Each slice S with left boundary L and right boundary R is associated with a “table” TS . For each configuration

J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193 189

fL of L and each configuration fR of R, the table TS records a minimum weight assignment Amin(S, fL, fR) to the
input variables in the slice S that realizes the configurations fL and fR on the boundaries L and R, and satisfies all
depth-(h − 1) gates that are in S and belong to the middle q − 2h layers in �(G). Since each vertex in L and R may
have at most three different values and the total number of vertices in L ∪ R is bounded by 2q, the table TS has at most
32q items.

If S is a trivial slice, then the table TS can be constructed by brute force. Now we illustrate how the value
Amin(S, fL, fR) is computed for a larger slice S, where S is obtained from merging two smaller slices S1 and S2.
Inductively, assume that the tables TS1 and TS2 have been constructed. Let the left and right boundaries of S1 and S2 be
L1 and R1, and L2 and R2, respectively. By the construction described in [5], R1 =L2, and the left and right boundaries
of the larger slice S are L = L1 and R = R2.

Let fR1 and fL2 be configurations of the boundaries R1 and L2, respectively, and let v be a vertex on R1 = L2. We
say that the assignments of fR1 and fL2 on v are “consistent” if:

(C1) fR1(v) = fL2(v) = 0 or fR1(v) = fL2(v) = 1; or
(C2) v is an OR gate, fR1(v) = fL2(v) = 1̃, and v has an input not in S1 ∪ S2; or
(C3) v is an AND gate, fR1(v) = fL2(v) = 0̃, and v has an input not in S1 ∪ S2; or
(C4) v is an OR gate, and one of fR1(v) and fL2(v) is 1 and the other is 1̃; or
(C5) v is an AND gate, and one of fR1(v) and fL2(v) is 0 and the other is 0̃.

Note that if the vertex v is also a boundary vertex for the slice S after merging S1 and S2, then v also naturally gets
a value: by the definitions, in cases (C1)–(C3), the vertex v will have value fR1(v) = fL2(v), while in case (C4) v gets
value 1 and in case (C5) v gets value 0.

Finally, we say that the configurations fR1 and fL2 are consistent if their value assignments to every vertex on
R1 = L2 are consistent.

The key observation is that every assignment to the input variables in the slice S corresponds to an assignment to the
input variables in the slice S1 and an assignment to the input variables in the slice S2. Therefore, the minimum weight
assignment Amin(S, fL, fR) for the slice S can be derived from a minimum weight assignment Amin(S1, fL, fR1) in
TS1 and a minimum weight assignment Amin(S2, fL2 , fR) in TS2 for some consistent configurations fR1 and fL2 . Since
inductively the tables TS1 and TS2 are already available, we can enumerate all consistent configurations fR1 and fL2 and
the corresponding minimum weight assignments Amin(S1, fL, fR1) in TS1 and Amin(S2, fL2 , fR) in TS2 , then derive
the minimum weight assignment Amin(S, fL, fR). Since each boundary vertex v may have three possible values, and
each (left or right) boundary has at most q vertices, for a fixed pair of configurations fL and fR of the boundaries L and
R, there are at most 3q · 3q possible pairs of configurations on the boundaries R1 and L2. Thus, the minimum weight
assignment Amin(S, fL, fR) can be constructed in time O(9q). In consequence, the table TS , which has a record for
each pair of configurations fL andfR of the boundaries L and R, can be constructed in time O(9q · 9q) = O(81q).

Using Baker’s linear-time algorithm that recursively decomposes the q-outerplanar graph G into slices and recon-
structs the graph G from its trivial slices by recursively merging slices, we conclude that in time O(81qn), we can
construct a minimum weight assignment to the input variables in G that satisfies all depth-(h − 1) gates that are in the
middle q − 2h layers in G, thus solving the MIN (h, q)-SAT problem. This completes the proof.8 �

Downey and Fellows [13, p. 482] posed an open problem for the parameterized complexity of the following problem:

PLANAR h-NORMALIZED WEIGHTED SATISFIABILITY: Given a �h-circuit � that is a planar graph in the strict sense
(i.e., it is planar even without removing the output gate) and a parameter k, does � have a satisfying assignment
of weight k?

Using the techniques presented in Lemma 4.1, we can solve this open problem completely.

8 We remark that based on the approach of graph tree decomposition and more careful slice merging [1], the complexity of the algorithm
described in Lemma 4.1 can be improved to O(cqn) for a constant c much smaller than 81. However, this will not affect our main results in this
paper.

190 J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193

Theorem 4.2. For each integer h, the PLANAR h-NORMALIZED WEIGHTED SATISFIABILITY problem is solvable in poly-
nomial time.

Proof. Fix a planar embedding �(�) of the circuit �. Suppose the output gate of � is contained in the ith layer Li in �(�).
Since the depth of� is bounded by h, every gate in�must be contained in one of the 2h+1 layersLi−h, . . . , Li, . . . , Li+h.
In consequence, the embedding �(�) must be (2h + 1)-outerplanar. Thus, similar to the proof of Lemma 4.1, we can
construct a satisfying assignment of weight k to the circuit � based on the slice structure of �(�) (or report that no such
an assignment exists). The only difference is that now for each boundary configuration (fL, fR) of a slice S, we should
record all possible weights w, 0�w�k, such that there is a weight-w assignment to the input variables in the slice
S that satisfies all the depth-(h − 1) gates in S and implements the boundary configuration (fL, fR). Now merging
two slices should also consider combining all possible weights recorded in the two slices, which increases the time
complexity by a factor of O((2h+1)2). Therefore, for a fixed integer h, this induces a linear-time algorithm (of running
time O(812h+1(2h + 1)2n)) for PLANAR h-NORMALIZED WEIGHTED SATISFIABILITY. �

Now we return back to the discussion of the problem PLANAR MIN-W [h].

Theorem 4.3. For every h�1, PLANAR MIN-W [h] is a subclass of the class EPTAS.

Proof. We present an EPTAS algorithm for a given PLANAR MIN-W [h] problem Q.
For a given constant � > 0 and an instance Gw of the problem Q, where Gw is a planar �+

h -circuit with output gate
w, we first construct a planar embedding �(G) for the graph G=Gw −w, and let q = 2h(�1/��+ 1). By adding empty
layers to the embedding �(G), we can assume without loss of generality that the layers of the embedding �(G) are
L1, L2, . . . , Lr , where r > 2q+2h, and the first q+h layers L1, . . . , Lq+h, and the last q+h layers Lr−q−h+1, . . . , Lr

are all empty.
For each fixed integer d, where 0�d �q/(2h) − 2, we construct a decomposition Dd of overlapping “chunks” of

the graph G. Each chunk consists of q consecutive layers of the embedding �(G), and two overlapping chunks share
2h common layers. More formally, for i�0, the ith chunk of the decomposition Dd consists of the q layers Lj , where
2hd + i(q − 2h)+ 1�j �2hd + i(q − 2h)+ q, and i satisfies 2hd + i(q − 2h)+ q �r . By our assumption, the layers
that do not belong to any chunk in Dd are all empty layers, and the first h layers in the 0th chunk in Dd , and the last h
layers in the last chunk in Dd are also empty layers.

Let Ui be the ith chunk of G and �(Ui) be the q-outerplanar embedding of Ui induced from the embedding �(G).
According to Lemma 4.1, in time O(81qni)we can construct a minimum weight assignmentfd,Ui

to the input variables in
Ui that satisfies all depth-(h−1) gates in the middle q−2h layers in �(Ui), where ni is the total number of vertices in Ui .

Now merge the assignments fd,Ui
over all chunks Ui of Dd to obtain an assignment fd for the input variables in

G (i.e., if v belongs to a single chunk Ui in G, then fd(v) = fd,Ui
(v), while if v is shared by two consecutive chucks

Ui and Ui+1 in G, then fd(v) = fd,Ui
(v) ∨ fd,Ui+1(v)). Since two consecutive chunks overlap with 2h layers, every

depth-(h − 1) gate in G belongs to the middle q − 2h layers for some chuck. Moreover, the circuit Gw is monotone in
the sense that if an assignment f satisfies a gate v then changing any 0 bit in f into 1 also makes an assignment satisfying
the gate v. Therefore, the assignment fd to the input variables in G satisfies all depth-(h − 1) gates in G, thus satisfies
the circuit Gw. It is easy to see from the above discussion that the assignment fd can be constructed in time O(81qn),
where n is the total number of vertices in G.

For each integer d, 0�d �q/(2h) − 2, we construct the assignment fd to the input variables in Gw that satisfies the
circuit Gw. We pick the one fd with minimum weight over all d and output it as our solution fapx. Let the weight of
fapx be |fapx|.

Thus, in time O(81qn) = O(812h/�n), the above algorithm constructs an assignment fapx that satisfies the given
planar �+

h -circuit Gw. What remains is to show that the approximation ratio of the solution fapx is bounded by 1 + �.
Let Dd be a chunk decomposition of G. A layer L is called a “boundary layer” for Dd if L is either one of the first 2h

layers or one of the last 2h layers in a chunk in Dd . Note that a boundary layer is either an empty layer (if it is one of
the first 2h layers in the 0th chunk or one of the last 2h layers in the last chunk in the decomposition Dd), or is shared
by two consecutive chunks in Dd . By the construction of the chunk decompositions, every layer in �(G) is a boundary
layer for exactly one chunk decomposition. Therefore, the layers in �(G) can be partitioned into disjoint layer sets Si ,
0� i�q/(2h) − 2, where Si consists of all boundary layers in the chunk decomposition Di .

J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193 191

Now suppose that fopt is a minimum weight assignment of weight |fopt| to the input variables in Gw that satisfies
the circuit Gw. Let Vopt be the set of input variables which are assigned value 1 by fopt (thus, |fopt| = |Vopt|). Since
the layer sets Si , 0� i�q/(2h) − 2, are disjoint, one of the layer sets contains at most |fopt|/(q/(2h) − 1)�� · |fopt|
input variables in Vopt. Let this set be Sd , and let V d

opt be the set of input variables in both Vopt and Sd , |V d
opt|�� · |fopt|.

We consider the chunk decomposition Dd . Let fd be the assignment to the input variables in Gw constructed by our
algorithm based on the chunk decomposition Dd .

Let U0, U1, . . . , Up be the chunks in Dd . Let fd,Ui
be the input assignment we construct for the chunk Ui , and let

fopt,Ui
be the input assignment in Ui induced from fopt. Note that the assignment fopt,Ui

also satisfies all depth-(h−1)

gates in the middle q − 2h layers in Ui , and by our construction, fd,Ui
is a minimum weight assignment that satisfies

all depth-(h − 1) gates in the middle q − 2h layers in Ui . Thus, if we let |fopt,Ui
| and |fd,Ui

| be the weights of these
two assignments, we have |fopt,Ui

|� |fd,Ui
|. Therefore,

p∑
i=0

|fopt,Ui
|�

p∑
i=0

|fd,Ui
|.

Since for each input variable v, we have fd(v) = fd,Ui
(v) if v is in the middle q − 2h layers of the chunk Ui , and

fd(v)=fd,Ui
(v)∨fd,Ui+1(v) if v is in a boundary layer shared by two chunks Ui and Ui+1, we have

∑p
i=0 |fd,Ui

|� |fd |.
Moreover, in the summation

∑p
i=0 |fopt,Ui

|, each input variable in the set V d
opt counts exactly twice and each input

variable in Vopt − V d
opt counts exactly once, thus

p∑
i=0

|fopt,Ui
| = |fopt| + |V d

opt|� |fopt|(1 + �).

Finally, since the assignment fapx constructed by our algorithm is the assignment fd with minimum weight over all d,
we derive immediately:

|fapx|� |fd |�
p∑

i=0

|fd,Ui
|�

p∑
i=0

|fopt,Ui
|� |fopt|(1 + �),

and conclude that the approximation ratio of our algorithm is bounded by 1 + �. �

We briefly describe how Lemma 4.1 and Theorem 4.3 are modified to apply to the classes PLANAR MAX-W [h] and
PLANAR W [h]-SAT.

Given an instance Gw of a PLANAR MAX-W [h] problem and a real number � > 0, where Gw is a planar �−
h -circuit

with the output gate w, we let q = h(�1/�0� + 1), where �0 = �/(1 + �), and construct a planar embedding �(G) of the
graph G = Gw − w. Now each chunk decomposition Dd partitions the graph G into disjoint chunks, each consists of
q consecutive layers in �(G). The first h layers and the last h layers in a chunk will be called the boundary layers of
the chunk. Assign value 1 to input gates that are in boundary layers of the chunks. Since all input gates are labeled by
negative literals, this assignment is equivalent to assigning value 0 to the corresponding input variables. According to
this assignment, if a gate g1 has an input from a gate g2 such that g1 and g2 belong to two different chunks, then the
gate g2 must have value 1 since all input gates that can affect the gate g2 are in boundary layers and hence have been
assigned value 1.

With this initial assignment, now we work on each chunk U in Dd . Note that it is always possible to assign the
remaining input gates in the chunk U to satisfy all depth-(h − 1) gates in U (e.g., assigning all remaining input gates
in U value 1, or equivalently, assigning all remaining input variables in U value 0). Since the chunk U is given as its
q-outerplanar embedding induced from �(G), using the techniques similar to that of Lemma 4.1, we can construct
a maximum weight assignment to the remaining input variables in U that satisfies all depth-(h − 1) gates in U. As
shown in Lemma 4.1, such an assignment can be constructed in time O(81qnU), where nU is the number of vertices
in U. Doing this for all chunks in the chunk decomposition Dd gives an assignment fd to the input variables that
satisfies all depth-(h−1) gates in Gw, thus satisfying the circuit Gw. Now we apply this process to each possible chunk
decomposition Dd , each gives an assignment fd satisfying the circuit Gw. We pick the one, denoted by fapx, with the

192 J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193

largest weight among all fd ’s and output it as the approximation solution to the problem. The assignment fapx can be
constructed in time O(81qn2) = O(81O(1/�)n2).

Similar to the analysis given in Theorem 4.3, if we fix an optimal assignment fopt to the circuit Gw, then there is a
chunk decomposition Dd in which the number md of variables that are in the boundary layers of Dd and are assigned
value 1 by the assignment fopt is bounded by �0|fopt|. Moreover, the weight of the assignment fd constructed based
on the chunk decomposition Dd is at least |fopt| − md . Since the weight of the assignment fapx is the largest among
all fd ’s, we conclude that the assignment fapx has weight at least |fopt| − md . In consequence, the ratio |fapx|/|fopt| is
at least 1 − �0. Replacing �0 by �/(1 + �) gives the approximation ratio |fopt|/|fapx|�1 + �. This completes the proof
that every problem in PLANAR MAX-W [h] is in the class EPTAS.

The EPTAS algorithm for a problem in PLANAR W [h]-SAT is similar. Again we use chunk decompositions of disjoint
chunks, but do not apply any initial assignments. For each chunk U, we construct an assignment to the input variables
in U to satisfy the largest number of depth-(h − 1) gates that are in the middle q − 2h layers in U (note that no input
gates outside chunk U can affect these gates). We leave the verification of the details to the interested readers.

Theorem 4.4. For every h�1, PLANAR MAX-W [h] and PLANAR W [h]-SAT are subclasses of the class EPTAS.

Cesati and Trevisan [8] proved that if an optimization problem is in the class EPTAS then its parameterized version
is fixed-parameter tractable. Combining this with Theorem 4.3 and Theorem 4.4, we get the following:

Corollary 4.5. For every positive integer h, the classes PLANAR MIN-W [h], PLANAR MAX-W [h], and PLANAR W [h]-SAT

are subclasses of FPT.

Finally, we point out that our syntactic classes PLANAR MIN-W [h], PLANAR MAX-W [h], and PLANAR W [h]-SAT are
significantly different from the classes TMIN, TMAX, and MPSAT proposed by Khanna and Motwani [21] in the following
sense. First, Corollary 4.5 proves that all optimization problems in our syntactic classes are fixed-parameter tractable,
while Cai et al. [7] recently proved that there are W [1]-hard problems in the syntactic classes introduced in [21], which
therefore should not be contained in our syntactic classes unless an unlikely collapse in parameterized complexity
theory occurs. On the other hand, our classes are not subclasses of that of Khanna and Motwani’s: the classes TMIN,
TMAX, and MPSAT are defined based on circuits of depth 3, while ours are defined based on circuits of any constant
depth. According to the well-known research on constant depth circuits [18], the classes PLANAR W [h]-SAT, PLANAR

MIN-W [h], and PLANAR MAX-W [h] for h > 3 cannot be expressed by the syntactic classes TMIN, TMAX, and MPSAT.

References

[1] J. Alber, H. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier, Fixed parameter algorithms for dominating set and related problems on planar
graphs, Algorithmica 33 (2002) 461–493.

[2] S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems, J. ACM 45 (1998)
753–782.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and Approximation, Combinatorial
Optimization Problems and Their Approximability Properties, Springer, Berlin, 1999.

[4] G. Ausiello, A. Marchetti-Spaccamela, M. Protasi, Toward a unified approach for the classification of NP-complete optimization problems,
Theoret. Comput. Sci. 12 (1980) 83–96.

[5] B. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM 41 (1994) 153–180.
[6] L. Cai, J. Chen, On fixed-parameter tractability and approximability of NP optimization problems, J. Comput. System Sci. 54 (1997) 465–474.
[7] L. Cai, M. Fellows, D. Juedes, F. Rosamond, On efficient polynomial-time approximation schemes for problems on planar structures, Preprint,

2002.
[8] M. Cesati, L. Trevisan, On the efficiency of polynomial time approximation schemes, Inform. Process. Lett. 64 (1997) 165–171.
[9] J. Chen, Characterizing parallel hierarchies by reducibilities, Inform. Process. Lett. 39 (1991) 303–307.

[11] J. Chen, A. Miranda, A polynomial time approximation scheme for general multiprocessor job scheduling, SIAM J. Comput. 31 (2001) 1–17.
[12] R. Downey, Parameterized complexity for the skeptic, in: Proceedings of the 18th IEEE Annual Conference on Computational Complexity

(CCC’03), 2003, pp. 132–153.
[13] R. Downey, M. Fellows, Parameterized Complexity, Springer, Berlin, 1999.
[14] M. Fellows, Parameterized Complexity: the Main Ideas and Some Research Frontiers, Lecture Notes in Computer Science, vol. 2223

(ISAAC’01), Springer, Berlin, 2001, pp. 291–307.
[15] M. Frick, M. Grohe, Deciding first-order properties of locally tree-decomposable structures, J. ACM 48 (2001) 1184–1206.
[16] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, New York, 1979.

J. Chen et al. / Discrete Applied Mathematics 155 (2007) 180–193 193

[18] J. Hastad, Computational Limitations for Small-Depth Circuits, The MIT Press, Cambridge, MA, 1986.
[19] D. Hochbaum, Approximation Algorithms for NP-hard Problems, PWS Publishing Company, Boston, MA, 1997.
[20] O. Ibarra, C. Kim, Fast approximation algorithms for the knapsack and sum of subset problems, J. ACM 22 (1975) 463–468.
[21] S. Khanna, R. Motwani, Towards a syntactic characterization of PTAS, in: Proceedings of the 28th Annual ACM Symposium on Theory of

Computing (STOC’96), 1996, pp. 468–477.
[22] S. Khanna, R. Motwani, M. Sudan, U. Vazirani, On syntactic versus computational views of approximability, SIAM J. Comput. 28 (1998)

164–191.
[23] C. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci. 43 (1991) 425–440.
[24] A. Paz, S. Moran, Non deterministic polynomial optimization problems and their approximations, Theoret. Comput. Sci. 15 (1981) 251–277.
[25] S. Sahni, Algorithms for scheduling independent tasks, J. ACM 23 (1976) 116–127.
[26] G. Woeginger, When does a dynamic programming formulation guarantee the existence of an FPTAS?, in: Proceedings of the 10th Annual

ACM–SIAM Symposium on Discrete Algorithms (SODA’99), 2001, pp. 820–829.

	Polynomial time approximation schemes andparameterized complexity
	Introduction
	Preliminaries and further definitions
	FPTAS and polynomial-FPT
	Planar =W-hierarchy and EPTAS
	References

