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Scheduling two-stage jobs on multiple two-stage flowshops is studied. A new formulation 
for configurations of the scheduling is proposed, leading directly to improvements on 
complexity of scheduling algorithms for the problem. Motivated by observations in practice, 
we present a deeper study on the structures of the problem that leads to a new approach 
that gives very significant improved scheduling algorithms for the problem when the costs 
of the two stages differ significantly.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A (two-stage) flowshop consists of an R-processor and a T -processor that can run in parallel. A two-stage job J consists of 
an R-operation and a T -operation such that the T -operation of J cannot start on the T -processor of a two-stage flowshop 
M until the R-operation of J has been completed on the R-processor of the same flowshop M . The current paper studies 
scheduling algorithms for two-stage jobs on multiple two-stage flowshops.

The research was motivated by the current needs from data centers and cloud computing. Recently, a cloud paradigm, 
TransCom, was proposed [23], which takes not only application software and data but also system software such as operating 
systems as resources. As a consequence, client devices in the system can be very light and significantly diversified. Clients 
dynamically request resources via networks from the cloud (see [23] for details).

In such a system, a significant amount of resources requested by clients are codes of system/application software, which 
in general are large in size, thus, stored in secondary memory. When a server receives a request from a client for a resource, 
it will have to first read the resource from secondary memory into main memory, then send to the client via networks. As a 
result, the request consists of a disk-read operation and a network-transmission operation. It is also natural to require that 
the network-transmission do not start until the requested resource has been brought into main memory. Therefore, in such 
a system, resource requests become two-stage jobs, consisting of the disk-read and the network-transmission operations, 
while each server becomes a two-stage flowshop (note that the disk-read and network-transmission can run in parallel in 
the same server). We should remark that the times for disk-read and for network-transmission in a typical server are in 
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general comparable, and, due to the impact of cache systems, they need not have a linear relation [22]. Therefore, neither 
can be simply ignored if we want to maintain good performance for the cloud system.

We give a brief review on the results in the scheduling literature that are related to the above problem. The classical
Makespan problem can be regarded as scheduling one-stage jobs on multiple one-stage machines [12], while the classical
Two-Stage Flowshop problem is scheduling two-stage jobs on a single two-stage flowshop [10]. Other scheduling models 
that deal with multiple-stage jobs include various “hybrid” shop scheduling problems [13], which allow multiple machines 
for each job stage, but have no specific bonding for the machines that execute the stages of the same job. See also [14] and 
references therein for further study on shop scheduling algorithms. A model that also deals with multiple-stage jobs is that 
of scheduling jobs with setup costs [1], where, however, a machine cannot run the setup stage for one job and the regular 
processing stage for another job in parallel.

Kovalyov [11] studied the problem of scheduling two-stage jobs on multiple two-stage flowshops. He et al. [8] proposed 
a heuristic algorithm. Vairaktarakis and Elhafsi [16] considered the problem in their study on the hybrid flowshops and 
proposed a pseudo-polynomial time algorithm for scheduling two-stage jobs on two flowshops. Zhang and van de Velde 
[21] developed approximation algorithms for scheduling two-stage jobs on two and three flowshops. Recently, Dong et 
al. [4] proposed a pseudo-polynomial time algorithm for scheduling two-stage jobs on a fixed number of flowshops, and 
developed a fully polynomial-time approximation scheme based on the pseudo-polynomial time algorithm, a result similar 
to that of [11] but developed independently (see [5] for details). Approximation algorithms for k-stage jobs on multiple 
k-stage flowshops for general k have also been studied [15].

Recently, the scheduling problem has been studied when the number of flowshops is a part of input. Wu et al. developed 
an 2.6-approximation algorithm for the problem [18]. They also considered two special cases of the problem where the jobs 
are inclined, and proposed two 11/6-approximation algorithms [19]. The relationship between the problem and the classical
Makespan problem has also been studied [20].

The current paper, worked out independently of [4], presents more efficient algorithms for scheduling two-stage jobs on 
a fixed number of flowshops. We propose a new formulation for configurations for schedules of two-stage jobs on multiple 
flowshops, which is very different from previous ones [4,16]. We show that dynamic programming based on our formulation 
leads to improvements on algorithm complexity for the scheduling problem.

Our further study on the problem was motivated by the observation that in many cases in practice, the execution times 
for the two stages can differ very significantly. We present a deeper study on the structures of the problem that leads 
to a more carefully designed algorithm. With more thorough analysis, we are able to show that the new approach will 
give a very significantly improved scheduling algorithm for the problem when the costs of the two stages are significantly 
different.

A fully polynomial-time approximation scheme (FPTAS) for the problem on a fixed number of two-stage flowshops is 
also developed, based on our new configurations of the schedules. Our FPTAS has improved time complexity compared with 
previously proposed FPTASs [11,4].

2. Single flowshop scheduling and dual scheduling

Consider n two-stage jobs { J1, . . . , Jn} to be scheduled on m identical two-stage flowshops {M1, . . . , Mm}, where each 
job J i is given by a pair (ri, ti) of integers, where the R-time ri (resp. T -time ti) is the time for processing the R-operation 
(resp. T -operation) of J i by the R-processor (resp. T -processor) of a flowshop. A schedule S of a job set on m flowshops 
consists of an assignment of each job to a flowshop, and, for each flowshop, the execution orders of the R- and T -operations 
of the jobs assigned to that flowshop in its corresponding processors. The completion time of a flowshop M is the time 
when M finishes the execution of the last T -operation for the jobs assigned to M . The makespan Cmax of a schedule S on 
multiple flowshops is the largest flowshop completion time under the schedule S over all flowshops. The objective of our 
scheduling is to construct a schedule that minimizes the makespan. Following the three-field notation α|β|γ suggested by 
Graham et al. [7], this scheduling model can be written as P |2FL|Cmax, or Pm|2FL|Cmax if the number m of flowshops is a 
fixed constant.

For m = 1, the problem P1|2FL|Cmax becomes the classical two-stage flowshop problem. It is well-known [10] that if 
we are only concerned with the completion time of the flowshop, then we can consider only schedules that are given by 
ordered sequences of the jobs such that both executions of the R- and T -operations of the jobs strictly follow the given 
order. Under this condition, for each job J i , the T -processor of the flowshop should start executing the T -operation of J i

as soon as the R-operation of J i and the T -operation of J i−1 are both completed. Note that the R-operations of the jobs 
can be executed continuously. Thus, if our interests are in minimizing the makespan of schedules, then we can make the 
following assumptions.

Lemma 2.1. Let S = 〈 J1, . . . , Jt〉 be a two-stage job schedule on a single flowshop, where J i = (ri, ti) for all i. Let ρ̄h and τ̄h, resp., be 
the times at which the R- and T -operations of job Jh are started. Then for h ≥ 1, we can assume (with τ̄0 = t0 = 0) ρ̄h = ∑h−1

i=1 ri and 
τ̄h = max{ρ̄h + rh, τ̄h−1 + th−1}.
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Fig. 1. Schedules for a job set and its dual.

Thus, the configuration of a schedule of a job set on a flowshop can be given by a pair (ρ, τ ), which gives the finish 
times of the R-operation and the T -operation of the last job assigned to the flowshop. The pair (ρ, τ ), which will be called 
the status of the schedule, can be easily updated by Lemma 2.1.

Using the classical Johnson’s algorithm, scheduling two-stage jobs on a single two-stage flowshop can be solved optimally
in time O (n log n) [10]. Johnson’s algorithm can be described as follows:

Johnson’s Algorithm [10]. Divide the jobs into two groups G1 and G2, where G1 contains jobs (rh, th) with rh ≤ th , and G2
contains jobs (rg , tg) with rg > tg . Order the jobs in a sequence that starts with the jobs in G1, sorted in nondecreasing 
order of R-times, followed by the jobs in G2, sorted in nonincreasing order of T -times.

The job order described in Johnson’s Algorithm is called Johnson’s order. In scheduling two-stage jobs on multiple two-
stage flowshops, once we determined how the jobs are assigned to the flowshops, Johnson’s order of the jobs assigned to 
each flowshop will give an optimal execution order for the flowshop. As a result, what remains unsolved is how we de-
termine the assignment of the jobs to the flowshops. Unfortunately, this task is intractable: when all jobs have R-time 0, 
the problem becomes the classical Makespan problem, which is NP-hard even for two machines [2], and becomes strongly 
NP-hard when the number of machines is given as part of the input [6].

The dual job of a two-stage job J i = (ri, ti) is J d
i = (ti, ri). For a schedule S = 〈 J1, J2, . . . , Jn〉 of two-stage jobs on a 

two-stage flowshop, the dual schedule of S on the dual jobs of S is Sd = 〈 J d
n, . . . , J d

2, J
d
1〉, where J d

i is the dual job of J i for 
1 ≤ i ≤ n. It is easy to verify that if the schedule S follows Johnson’s order, then the dual schedule Sd also follows Johnson’s 
order. In fact, we have a more general result, as given in the following theorem.

Theorem 2.2. On a single two-stage flowshop, optimal schedules of a job set G = { J1, . . . , Jn} and optimal schedules of the dual job 
set Gd = { J d

1, . . . , J
d
n} have the same completion time. Moreover, if a schedule S is optimal for the job set G then its dual schedule Sd

is optimal for the dual job set Gd.

Proof. The dual job of job Jh = (rh, th) is J d
h = (th, rh). Let S = 〈 J1, . . . , Jn〉 be an optimal schedule for G with completion 

time τ ∗ . Consider the schedule Sd
1 = 〈 J d

n, . . . , J d
1〉 for the dual job set Gd , which will be called “flipping” of S , where the 

R-operation (resp. T -operation) of J d
i starts at time τ ∗ − t if the T -operation (resp. R-operation) of J i ends at time t (see 

Fig. 1).
Obviously, Sd

1 is a valid schedule for Gd and the schedules S and Sd
1 have the same completion time. Thus, optimal 

schedules for Gd have completion time not larger than that of optimal schedules for G . On the other hand, flipping an 
optimal schedule for Gd gives a schedule for G with the same completion time, so optimal schedules for Gd have completion 
time not smaller than that of optimal schedules for G . This gives the first part of the lemma.

Observe that flipping the optimal schedule S for G gives an optimal schedule Sd
1 for Gd , whose completion time is not 

smaller than that of the dual schedule Sd for Gd . Thus, Sd is also an optimal schedule for Gd . �
When we study scheduling two-stage jobs on multiple two-stage flowshops, Theorem 2.2 directly implies the following 

theorem.

Theorem 2.3. On multiple two-stage flowshops, the optimal schedule of the job set G and the optimal schedule of the dual job set Gd

have the same makespan. Moreover, an optimal schedule for the job set G can be easily obtained from an optimal schedule for the dual 
job set Gd.

3. On Pm|2FL|Cmax: general case

In this section, we study the problem Pm|2FL|Cmax for a fixed constant m. Given a set G of two-stage jobs, with a 
preprocessing, we can assume that G = 〈 J1, . . . , Jn〉 is in Johnson’s order, where J i = (ri, ti) for all i.

3.1. Pseudo-polynomial time algorithm

Let R0 = ∑n
i=1 ri , T0 = ∑n

i=1 ti , and for each k, let Gk = { J1, J2, . . . , Jk} be the set of the first k jobs in G in Johnson’s 
order. Thus, if we follow the order of G and assign the jobs to the flowshops, then, the subsequence received by each 
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flowshop is also in Johnson’s order, giving an optimal schedule of the jobs assigned to the flowshop. Therefore, the status 
of a flowshop Mh at any moment can be given by a pair (ρh, τh), where ρh and τh , respectively, are the completion times 
of the R- and T -processors of Mh . The status (ρh, τh) of Mh can be updated by Lemma 2.1 when a new job (r, t) is 
added to Mh: the new completion time of the R-processor is ρh + r, and the new completion time of the T -processor is 
max{ρh + r, τh} + t . For a schedule Sk for the job set Gk , the tuple (k; ρ1, τ1, . . . , ρm, τm) is called the configuration of Sk if 
under the schedule Sk , for each h, the status of the flowshop Mh is (ρh, τh).

A simple but important observation is that for each k > 0, we have:

Fact A. The tuple (k; ρ1, τ1, . . . , ρm, τm) is a configuration of a schedule for the job subset Gk if and only if for some d, 
1 ≤ d ≤ m, the tuple (k − 1; ρ1, τ1, . . . , ρd−1, τd−1, ρ ′

d, τ
′
d, ρd+1, τd+1, . . . , ρm, τm) is a configuration of a schedule for the 

job subset Gk−1, where ρ ′
d and τ ′

d satisfy ρd = ρ ′
d + rk and τd = max{ρ ′

d + rk, τ ′
d} + tk .

Fact A suggests that we can apply a dynamic programming algorithm [6] to construct an optimal schedule for the 
two-stage job set G . A straightforward implementation of the algorithm would run in time O (nm2 Rm

0 (R0 + T0)
m). In the 

following, we study how to improve the algorithm complexity.
For the status (ρh, τh) of a flowshop Mh , by definition, ρh ≤ τh . It is also easy to see that τh − ρh ≤ T0. This observation 

suggests that we can use the pair (ρh, δh) instead of the pair (ρh, τh), where δh = τh − ρh , and 0 ≤ δh ≤ T0. Note that the 
pair (ρh, τh) can be easily obtained from the pair (ρh, δh). Therefore, the configuration (k; ρ1, τ1, . . . , ρm, τm) of a schedule 
Sk for Gk can be represented as the tuple (k; ρ1, δ1, . . . , ρm, δm), where for all h, δh = τh − ρh with 0 ≤ δh ≤ T0, which will 
be called the s-configuration of Sk .

Remark. Our configurations and s-configurations defined above are very different from those proposed in the literature [16,
4]. We will see that our definitions of the configurations lead to faster algorithms.

Our next improvement is to reduce the dimension of the s-configurations. Let Sk = (k; ρ1, δ1, . . . , ρm, δm) be an s-
configuration for the job subset Gk . Let Rk

0 = ∑k
i=1 ri . By Lemma 2.1, the R-processors of the flowshops run continuously 

without idle time. Therefore, 
∑m

h=1 ρh = Rk
0. This gives

Fact B. ρ1 can be computed from ρ2, . . ., ρm: ρ1 = Rk
0 − ∑m

h=2 ρh .

Let Sk = (k; ρ1, δ1, ρ2, δ2, . . . , ρm, δm) and S ′
k = (k; ρ1, δ′

1, ρ2, δ2, . . . , ρm, δm) be s-configurations for the job subset Gk
that only differ in the third component, with δ1 < δ′

1. It is easy to see that if we can assign the rest of the jobs Jk+1, . . ., Jn

to S ′
k to build a minimum makespan schedule for the entire job set G , then the same way of assigning the jobs Jk+1, . . ., 

Jn to Sk will also give a minimum makespan schedule of G . Therefore, when all other components are identical, we really 
only have to record the smallest completion time (thus the smallest value δ1) for the T -processor of the flowshop M1.

Thus, we can use a (2m − 1)-dimensional array H to represent all “useful” s-configurations for Gk such that 
H[k; ρ2, δ2, . . . , ρm, δm] = (δ1, d) if by letting ρ1 = Rk

0 −∑m
h=2 ρh , the value δ1 is the smallest δ′

1 such that (k; ρ1, δ′
1, ρ2, δ2, . . . ,

ρm, δm) is a valid s-configuration for the job subset Gk (where d gives the flowshop to which the job Jk is assigned).
Our algorithm for Pm|2FL|Cmax is given in Fig. 2, in which steps 3.4–3.7 add the job Jk+1 to the d-th flowshop in the 

schedule for the job subset Gk with an s-configuration S = (k; ρ1, δ1, ρ2, δ2, . . . , ρm, δm). Thus, before adding Jk+1, the d-th 
flowshop has status (ρd, ρd + δd). By Lemma 2.1, after adding Jk+1, for the d-th flowshop, the completion time ρ ′

d of the 
R-processor is ρd + rk+1, and the completion time τ ′

d of the T -processor is max{ρd + rk+1, ρd + δd} + tk+1. Therefore, by the 
definition, after adding the job Jk+1, we should have, as shown in step 3.5 of the algorithm:

δ′
d = τ ′

d − ρ ′
d = max{rk+1, δd} + tk+1 − rk+1.

The last row H[n; ∗, . . . ,∗] of the array H includes all s-configurations of the schedules for the job set G = Gn on the m
flowshops, and the value max1≤h≤m{ρh + δh} for an element H[n; ρ2, δ2, . . . , ρm, δm] = (δ1, d) (where ρ1 = R0 − ∑m

h=2 ρh) 
gives the makespan of the schedule described by the element. Therefore, step 4 of the algorithm gives a schedule for 
the job set G on the m flowshops that has the minimum makespan. Also note that the value H[k; ρ2, δ2, . . . , ρm, δm] =
(δ1, d) records that the last job Jk in Gk was added to the flowshop Md to obtain the s-configuration corresponding to 
H[k; ρ2, δ2, . . . , ρm, δm] = (δ1, d). Thus, the actual schedule corresponding to the s-configuration can be re-constructed by 
back-tracking in the array H .

Since 0 ≤ k ≤ n, and 0 ≤ ρh ≤ R0, 0 ≤ δh ≤ T0, for all h, the array H has O (nRm−1
0 T m−1

0 ) elements. Steps 3.2–3.7 of the 
algorithm, which is applied on each element of H , take time O (m2). This gives the following theorem.

Theorem 3.1. Problem Pm|2FL|Cmax is solvable in time O (nm2 Rm−1
0 T m−1

0 ) and space O (nRm−1
0 T m−1

0 ).

The previously best algorithm for Pm|2FL|Cmax, based on a very different definition of schedule configurations, runs in 
time O (nm2(R0 + T0)

2m−1) and space O (m(R0 + T0)
2m−2) [4]. For running time, our algorithm in Theorem 3.1 not only 

replaces the larger factor R0 + T0 by smaller factors R0 and T0, but also reduces the exponent from 2m − 1 to 2m − 2. 
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Algorithm DynProg-I
input: a set G = { J1, . . . , Jn} of two-stage jobs, in Johnson’s order
output: an optimal schedule of G on m two-stage flowshops
1. for all 0 ≤ k ≤ n, 0 ≤ ρh ≤ R0, 0 ≤ δh ≤ T0, 2 ≤ h ≤ m do

H[k;ρ2, δ2, . . . , ρm, δm] = (+∞,0);
2. H[0;0,0, . . . ,0,0] = (0,0);
3. for k = 0 to n − 1 do
3.1 for each H[k,ρ2, δ2, . . . , ρm, δm] = (δ1,dk) with δ1 	= +∞ do
3.2 ρ1 = Rk

0 − ∑m
h=2 ρh;

3.3 for d = 1 to m do
3.4 for (1 ≤ h ≤ m) & (h 	= d) do { ρ ′

h = ρh; δ′
h = δh; }

3.5 ρ ′
d = ρd + rk+1; δ′

d = max{rk+1, δd} + tk+1 − rk+1;
3.6 if H[k + 1;ρ ′

2, δ′
2, . . . , ρ ′

m, δ′
m] = (δ1,dk+1) with δ′

1 < δ1

3.7 then H[k + 1;ρ ′
2, δ′

2, . . . , ρ ′
m, δ′

m] = (δ′
1,d);

4. return the H[n;ρ2, δ2, . . . , ρm, δm] = (δ1,dn) with min{maxh{ρh + δh}}.

Fig. 2. An improved algorithm for Pm|2FL|Cmax.

Algorithm Approx
input: a set { J1, . . . , Jn} of two-stage jobs, ε > 0, where ∀k, Jk = (rk, tk)

output: a schedule of G on m identical two-stage flowshops

1. let Tmax = max{R0, T0} and K = ε · Tmax/(nm);
2. for i = 1 to n do { r′

i = �ri/K�; t′
i = �ti/K� };

3. let G ′ = { J ′
1, . . . , J ′

n}, where for each i, J ′
i = (r′

i , t′
i);

4. call algorithm DynProg-I to obtain an optimal schedule S ′ for G ′;
5. return S that is the schedule S ′ with each J ′

i replaced with J i .

Fig. 3. An approximation algorithm for Pm|2FL|Cmax.

For space complexity, our algorithm seems to use more space because in general n > m. However, a careful examination 
shows that the algorithm in [4] only returns the value of the makespan of an optimal schedule without giving the actual 
schedule. In order to return a schedule, the algorithm in [4] seems to have to increase its space complexity to at least 
O (nm(R0 + T0)

2m−2). If we are only interested in the value of the optimal makespan, we can easily modify our algorithm 
to run in space O (Rm−1

0 T m−1
0 ). Thus, our algorithm in Theorem 3.1 improves both time complexity and space complexity of 

the algorithm given in [4].

3.2. Approximation algorithms

There is a fairly standard procedure to develop polynomial-time approximation algorithms based on pseudo-polynomial 
time algorithms for a problem [9] (see also [3] for a formal description of the conditions on the applicability of the proce-
dure). Using this method, we can develop a polynomial-time approximation algorithm for Pm|2FL|Cmax based on the results 
in subsection 3.1. Essentially, the procedure first scales the problem instance so that values in the instance become bounded 
by a polynomial of the instance size, and applies the pseudo-polynomial time algorithm on the scaled instance, whose re-
sult then is converted into a solution to the original instance. The approximation algorithm for the Pm|2FL|Cmax problem is 
given in Fig. 3.

Since the analysis for the approximation ratio for the algorithm Approx is very similar to that for the standard procedure 
[9,6], we give the conclusion directly in the following theorem, with the detailed verification omitted. Readers who are 
interested in the details are referred to [17].

Theorem 3.2. There is an algorithm for Pm|2FL|Cmax that on a set G of n two-stage jobs and for any real number ε > 0, constructs a 
schedule for G on m two-stage flowshops with a makespan bounded by Opt(G)(1 + ε). Moreover, the running time of the algorithm 
is O (n2m−1m2m/ε2m−2).

Compared to the algorithm in [4] that produces schedules with makespan bounded by Opt(G)(1 + ε) but runs in time 
O (22m−1n2mm2m+1/ε2m−1), our algorithm gives an obvious improvement on the running time.

4. On Pm|2FL|Cmax: when R0 and T0 differ significantly

In certain cases in practice, the values R0 and T0 can differ very significantly. Consider the situation in data centers 
as described in Section 1. In order to improve the process of data-read/network-transformation, severs in the center may 
keep certain commonly used software in the main memory so that the time-consuming data-read process can be avoided 
[22]. Thus, client requests for the code will become two-stage jobs J i = (ri, ti) with ri = 0. As a consequence, the value 
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R0 = ∑n
i=1 ri can be significantly smaller than the value T0 = ∑n

i=1 ti . On the other hand, certain data centers may consist 
of a large number of slow-speed servers (e.g., PC’s) but are equipped with high-speed networks [23], which may make T0
much smaller than R0.

We study how to improve the complexity of scheduling algorithms when R0 and T0 differ significantly. We divide the 
study into two cases: (1) T0  R0 and (2) T0 � R0. We first consider the case T0  R0.

Since all flowshops are identical, we can re-order the flowshops. An s-configuration (k; ρ1, δ1, . . . , ρm, δm) is canonical if 
ρ1 ≥ · · · ≥ ρm . An s-configuration can be made canonical by re-ordering the flowshops.

Let (k; ρ1, δ1, . . . , ρm, δm) be a canonical s-configuration for a schedule Sk for the job subset Gk . By Lemma 2.1, the 
R-processors of the flowshops run continuously without idle time, so 

∑m
h=1 ρi ≤ R0. This gives reduced upper bounds for 

the completion time of the R-processors of the flowshops:

Fact C. In a canonical s-configuration (k; ρ1, δ1, . . . , ρm, δm), ∀h, ρh ≤ R0/h.

If our objective is to minimize the makespan, then when all the values k, ρ1, ρ2, δ2, . . ., ρm , δm are given, we only need 
to record the smallest δ′

1 such that (k; ρ1, δ′
1, ρ2, δ2, . . . , ρm, δm) corresponds to a valid schedule for Gk . This reduces the 

number of dimensions for the s-configurations by 1.
In contrast to Fact C, the values δh can be very large (recall T0  R0). We now consider how to deal with the situations 

when the values δh are large.
Fix an h, and consider the h-th flowshop. By Fact C, the completion time of the R-processor of the flowshop can never be 

larger than R0/h ≤ R0. If the completion time ρh +δh of the h-th flowshop is larger than or equal to R0, then for any further 
job J p assigned to the flowshop, the T -operation of J p can always start immediately when the T -processor is available. 
Therefore, all further jobs assigned to the flowshop can have their T -operations executed consecutively with no execution 
gaps in the T -processor of the flowshop. Thus, the completion time of the flowshop will only depend on the T -operations of 
the further assigned jobs, while it is independent of the R-operations of these jobs. We can use a single value ρh = R0/h +1
to record this situation so that the pair (R0/h + 1, δh) represents a real status (ρ ′

h, δ′
h) of the flowshop where ρ ′

h + δ′
h ≥ R0, 

and δh = ρ ′
h + δ′

h − R0. Note that when a new job J p = (rp, tp) is added to the flowshop, the corresponding pair of the 
flowshop is simply changed to (R0/h + 1, δh + tp).

Thus, we can represent the status of the h-th flowshop by a pair (ρh, δh), where either 0 ≤ ρh ≤ R0/h and 0 ≤ ρh +
δh < R0 (which implies 0 ≤ δh < R0), or ρh = R0/h + 1 and 0 ≤ δh ≤ T0 (which implies that the completion time for the 
T -processor is R0 + δh). A pair is valid for the flowshop if it satisfies these conditions. The total number of valid pairs for a 
flowshop is bounded by (R0/h +1)R0 + (T0 +1) = O (R2

0/h + T0). Note that all valid pairs can be given by a two-dimensional 
array (i.e., a matrix) with R0/h + 2 rows in which each of the first R0/h + 1 rows contains R0 elements and the last row 
contains T0 + 1 elements (if you like, you can also regard this matrix as an (R0/h + 1) × R0 matrix plus a one-dimensional 
array of size T0 + 1).

Summarizing the above discussions, we conclude that all “useful” canonical s-configurations for the job subset 
Gk , for all k, can be represented by a (2m)-dimensional array H ′ whose elements are (m + 1)-tuples, such that if 
H ′[k; ρ1, ρ2, δ2, . . . , ρm, δm] = (dk, δ′

1, ρ
′
2, . . . , ρ

′
m), where 0 ≤ ρ1 ≤ R0, and for 2 ≤ h ≤ m, (ρh, δh) is a valid pair for the 

h-th flowshop, then there is a canonical s-configuration (k; ρ ′
1, δ′

1, ρ
′
2, δ

′
2, . . . , ρ

′
m, δ′

m) for a valid schedule for the job subset 
Gk , where ρ ′

1 = ρ1 and δ′
1 is the smallest when all other parameters satisfy their conditions, such that for each h, 2 ≤ h ≤ m,

(1) if ρh ≤ R0/h, then ρh + δh < R0, ρ ′
h = ρh and δ′

h = δh , and
(2) if ρh = R0/h + 1, then ρ ′

h + δ′
h ≥ R0, and δh = ρ ′

h + δ′
h − R0.

Finally the value dk in the array element, 1 ≤ dk ≤ m, indicates that the last job Jk in the job subset Gk is assigned to 
the dk-th flowshop.

Note that in the case ρh = R0/h + 1, there can be many different values for ρ ′
h that thus correspond to many different 

canonical s-configurations that satisfy the above conditions. As explained earlier, in this case, different choices of the values 
ρ ′

h will not affect the makespan of the final schedule of the job set G . Thus, we can pick any valid values (not necessarily 
the smallest) for these ρ ′

h , as long as their sum plus ρ1 is equal to 
∑k

i=1 ri .
Since the total number of valid pairs for the h-th flowshop is O (R2

0/h + T0), and k ≤ n, we conclude that the number of 
elements in the array H ′ is (note that m is a fixed constant):

O ((n + 1)(R0 + 1)

m∏

h=2

(R2
0/h + T0)) = O (n(R2m−1

0 + R0T m−1
0 )).

Finally, since each element of H ′ is an (m + 1)-tuple, we conclude that the array H ′ takes space O (n(R2m−1
0 + R0T m−1

0 )).
We explain how to extend a schedule for Gk to a schedule for Gk+1 when the job Jk+1 is added. Let Sk =

(k; ρ ′
1, δ

′
1, ρ

′
2, δ

′
2, . . . , ρ

′
m, δ′

m) be a canonical s-configuration for Gk given by the element of the array H ′:

H ′[k;ρ1,ρ2, δ2, . . . , ρm, δm] = (dk, δ
′
1,ρ

′
2, . . . , ρ

′
m),

as explained above. Note that the s-configuration Sk can be completely re-constructed when the corresponding element of 
H ′ is given:
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(1) the status (ρ ′
1, δ

′
1) for the first flowshop is (ρ1, δ′

1);
(2) for 2 ≤ h ≤ m, (a) if 0 ≤ ρh ≤ R0/h, then the status (ρ ′

h, δ′
h) of the h-th flowshop is (ρh, δh); and (b) if ρh = R0/h + 1, 

then the status(ρ ′
h, δ′

h) of the h-th flowshop is (ρ ′
h, R0 + δh − ρ ′

h).

Note that in case (2b), what matters is that the completion time of the T -processor is equal to ρ ′
h + (R0 + δh −ρ ′

h) = R0 + δh , 
while the value ρ ′

h may vary as long as it satisfies ρ1 + ∑m
h=2 ρ ′

h = R0.
Now suppose we add the job Jk+1 = (rk+1, tk+1) to the d-th flowshop in the s-configuration Sk . Then the resulting 

configuration for Gk+1 will become

(k + 1;ρ ′′
1 , δ′′

1 ,ρ ′′
2 , δ′′

2 , . . . , ρ ′′
m, δ′′

m),

where ρ ′′
d = ρ ′

d + rk+1 and δ′′
d = max{rk+1, δ′

d} + tk+1 − rk+1 (see the explanation given for algorithm DynProg-I in the 
previous section), and for h 	= d, ρ ′′

h = ρ ′
h and τ ′′

h = τ ′
h . This, after properly sorting the flowshops using the values of ρ ′′

h , 
becomes a canonical s-configuration

Sk+1 = (k + 1; ρ̄ ′
1, δ̄

′
1, ρ̄

′
2, δ̄

′
2, . . . , ρ̄

′
m, δ̄′

m)

for the job subset Gk+1. Assume the d-th flowshop in Sk becomes the dk+1-th flowshop in Sk+1. Now let ρ̄1 = ρ̄ ′
1, and 

for each h, 2 ≤ h ≤ m, if ρ̄ ′
h + δ̄′

h < R0 then let ρ̄h = ρ̄ ′
h and δ̄h = δ̄′

h , and if ρ̄ ′
h + δ̄′

h ≥ R0 then let ρ̄h = R0/h + 1 and 
δ̄h = ρ̄ ′

h + δ̄′
h − R0. With these values, look at the array element

H ′[k + 1; ρ̄1, ρ̄2, δ̄2, . . . , ρ̄m, δ̄m].
If the element has not been assigned a value, yet, then assign it the value (dk+1, ̄δ′

1, ρ̄
′
2, . . . , ρ̄

′
m). If the element already 

has a value (d′, ̄δ′′
1 , ρ̄ ′′

2 , . . . , ρ̄ ′′
m) but δ̄′

1 < δ̄′′
1 , then change its value to (dk+1, ̄δ′

1, ρ̄
′
2, . . . , ρ̄

′
m). This completes the process of 

extending the canonical s-configuration given by the array element H ′[k, ρ1, ρ2, δ2, . . . , ρm, δm], when job Jk+1 is added to 
the d-th flowshop, to an array element for a canonical s-configuration for the job subset Gk+1 . It is easy to see that this 
process takes time O (m).

Using the above description to replace the steps 3.1–3.7 in the algorithm DynProg-I gives the procedure of extending a 
canonical s-configuration for Gk to a canonical s-configuration for Gk+1. This, plus certain obvious modifications in other 
steps, gives a new algorithm DynProg-II for the Pm|2FL|Cmax problem. Since the number of elements of the array H ′ is 
bounded by O (n(R2m−1

0 + R0T m−1
0 )), we conclude that the time complexity of the algorithm DynProg-II is O (n(R2m−1

0 +
R0T m−1

0 )). Similarly as we explained for the algorithm DynProg-I, once we apply algorithm DynProg-II and find the array 
element of H ′ that gives a minimum makespan schedule of the job set G , we can use the array to construct the actual 
schedule by backtracking the array in the same amount of time.

Now we describe the job sets G with T0 � R0. Let Gd be the dual job set of G , and let R ′
0 and T ′

0 be the sums of 
the times of the R- and T -operations, respectively, of the jobs in Gd . By definition, R ′

0 = T0, T ′
0 = R0. Therefore, T ′

0  R ′
0. 

Applying algorithm DynProg-II on Gd will construct an optimal schedule Sd for Gd in time O (n((R ′
0)

2m−1 + R ′
0(T ′

0)
m−1)) =

O (n(T 2m−1
0 + T0 Rm−1

0 )). By Theorem 2.3, an optimal schedule S for the job set G can be easily constructed from Sd . In 
summary, we have

Theorem 4.1. Optimal schedules for a two-stage job set { J1, . . . , Jn} on m flowshops, where Jk = (rk, tk), can be constructed in time 
O (n(T 2m−1

min + TminT m−1
max )) and space O (n(T 2m−1

min + TminT m−1
max )), where Tmin and Tmax are the smaller and the larger, respectively, 

of the values 
∑n

k=1 rk and 
∑n

k=1 tk.

When Tmax  Tmin, Theorem 4.1 provides significant improvements. For example, if Tmax = T 2
min, then the algorithm 

given in Theorem 4.1 runs in time O (nT 2m−1
min ) = O (nT m−1/2

max ), which almost matches the best pseudo-polynomial time 
algorithm for the Makespan problem Pm||Cmax [12], which can be regarded as a much simpler version of the Pm|2FL|Cmax
problem. On the other hand, the time complexity of algorithm DynProg-I given in the previous section is of the order 
O (nT 3m−3

min ) = O (nT m−1
min T m−1

max ).

5. Conclusion and future research

Motivated by the research in data centers and cloud computing, we studied the scheduling problem of two-stage jobs on 
multiple two-stage flowshops, which in particular addresses the scheduling issues of data transmissions between clients and 
servers in data centers in the cloud framework based on the principle of transparent computing. The problem is NP-hard. 
Pseudo-polynomial time algorithms for the problem were presented for the case where the number of flowshops is a 
fixed constant. With thorough analysis, we show that for certain cases, much faster pseudo-polynomial time algorithms 
can be achieved. Approximation algorithms for the problem were also developed. Our algorithms improve previous known 
algorithms for the problem.
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Needs and considerations in data centers and cloud computing suggest many research topics for future study of our 
scheduling model.

A cloud computing center may have many servers with different powers, ranging from large mainframe computers to 
small PC’s. The disks connected to the servers and the network bandwidth available for the servers can also differ. Moreover, 
the disk-read on a server at some moment may not even be needed if the requested data is already in the server’s main 
memory. This calls for the study of scheduling two-stage jobs on heterogeneous two-stage flowshops. Our scheduling model 
can be easily extended to include this situation: suppose that we need to schedule n jobs J1, . . ., Jn on m flowshops M1, 
. . ., Mm that may not be identical, then we can represent each two-stage job J i by m pairs {(ri, j, ti, j) | 1 ≤ j ≤ m}, where 
(ri, j, ti, j) gives the R-time and the T -time, respectively, for the job J i to be processed by the flowshop M j . Of course, 
constructing optimal schedules and developing good approximation algorithms on this more general model become more 
challenging. We are currently working on this extended version of the scheduling model.

A data request from a client can be for a file consisting of data blocks stored in either secondary or main memory. The 
disk-read and network-transmission of the file can be executed in a pipeline manner in units of data blocks. Thus, once 
a data block of the file is read into the main memory, the block can be transmitted via networks to the client even if 
some other data blocks for the file have not been in the main memory, yet. In such a model, preemption of processing 
data transmissions from servers to clients becomes possible: after transmitting a few data blocks for a file F , a server may 
switch to processing a different task, and come back later to continue transmitting the remaining data blocks for the file 
F . In this case, a client request can be given by data size (i.e., the number of data blocks), and can be decomposed into a 
continuous sequence of two-stage jobs, each corresponding to the disk-read and network-transmission of a data block, with 
preemptions allowed. However, frequent preemptions should be avoided since restarting disk-read for a file will require 
new disk search, which is significantly more time-consuming compared to reading a data block. Therefore, when we study 
scheduling on this model, penalty on preemptions should be considered.

Scheduling with job precedences is very common in cloud computing practice. For example, a user who wants to run 
a Microsoft application on a transparent computing platform may need from the cloud both the code of the application as 
well as the code of Microsoft Windows software. However, the application cannot be installed until the Windows software 
is installed on the client device. As a consequence, there is a need to study the scheduling problems under our model in 
which job precedence is presented.

Of course, the more general problem P |2FL|Cmax, where the number of flowshops is given as part of the input, is also 
theoretically interesting and challenging, and practically meaningful.
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