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Streaming Algorithms for Graph k-Matching

with Optimal or Near-Optimal Update Time

Jianer Chen∗, Qin Huang∗, Iyad Kanj†, Qian Li‡, and Ge Xia§

Abstract

We present streaming algorithms for the graph k-matching problem in both the insert-
only and dynamic models. Our algorithms, with space complexity matching the best upper
bounds, have optimal or near-optimal update time, significantly improving on previous re-
sults. More specifically, for the insert-only streaming model, we present a one-pass algorithm
with optimal space complexity O(k2) and optimal update time O(1), that w.h.p. (with high
probability) computes a maximum weighted k-matching of a given weighted graph. The up-
date time of our algorithm significantly improves the previous upper bound of O(log k), which
was derived only for k-matching on unweighted graphs. For the dynamic streaming model,
we present a one-pass algorithm that w.h.p. computes a maximum weighted k-matching in
O(Wk2 · polylog(n)) space1 and with O(polylog(n)) update time, where W is the number of
distinct edge weights. Again the update time of our algorithm improves the previous upper
bound of O(k2 · polylog(n)). This algorithm, when applied to unweighted graphs, gives a
streaming algorithm on the dynamic model whose space and update time complexities are
both near-optimal. Our results also imply a streaming approximation algorithm for max-
imum weighted k-matching whose space complexity matches the best known upper bound
with a significantly improved update time.

keywords. streaming algorithm; graph matching; parameterized algorithm; lower bound

1 Introduction

Streaming algorithms for graph matching have been studied extensively. A graph stream S for
an underlying graph G is a sequence of edge operations. In the insert-only streaming model,
each operation is an edge-insertion, while in the dynamic streaming model each operation is
either an edge-insertion or an edge-deletion (with a specified weight if G is weighted). Most
of the previous work on the graph matching problem in the streaming model have focused on
approximating a maximum matching, with the majority of the work pertaining to the (simpler)
insert-only model (see, e.g., [2, 17, 19, 24, 25, 28]). More recently, streaming algorithms for the
Graph k-Matching problem (i.e., constructing a matching of k edges in an unweighted graph
or a maximum weighted matching of k edges in a weighted graph), in both the insert-only and
the dynamic models, have drawn increasing interests [3, 5, 6, 7, 14].

The performance of streaming algorithms is measured by the limited memory (space) and the
limited processing time per item (update time). For the space complexity, a lower bound of Ω(k2)
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1We denote by polylog(n) the function logO(1) n, where n is the size of the input.
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has been known for Graph k-Matching on unweighted graphs for randomized streaming al-
gorithms, even in the simpler insert-only model [5]. Nearly space-optimal streaming algorithms,
i.e., streaming algorithms with space complexity O(k2 · polylog(n)), have been developed for
Graph k-Matching on unweighted graphs [3, 5].

The current paper is focused on the update time of streaming algorithms for Graph k-
Matching. While there has been much work pertaining to the space complexity of streaming
algorithms for graph matching, much less is known about the update time complexity of the
problem. Note that the update time sometimes could be even more important than the space
complexity [23], since the data stream can come at a very high rate. If the update processing
rate does not catch the update arrival rate, the whole system may fail (see, e.g., [1, 31]). A major
contribution of the current paper is the development of a collection of streaming algorithms for
Graph k-Matching that, while keeping the optimal or near-optimal space complexity, also
reach optimal or near-optimal update time.

1.1 Previous work on Graph k-Matching

We start by reviewing the relevant previous work on the problem.
Fafianie and Kratsch [14] studied kernelization streaming algorithms in the insert-only model

for the NP-hard d-Set Matching problem (among others), which for d = 2, is equivalent to the
Graph k-Matching problem on unweighted graphs. Their result gives a one-pass (determin-
istic) kernelization streaming algorithm for Graph k-Matching on unweighted graphs. The
algorithm implies a streaming algorithm in the insert-only model for the Graph k-Matching

problem on unweighted graphs, with space complexity O(k2) and update time O(log k).
More recently, streaming algorithms in the dynamic model for the Graph k-Matching

problem have been studied [3, 5, 6, 7]. Under the assumption that at every instant the size (i.e.,
the cardinality) of a maximum matching of the graph stream is bounded by k, a randomized one-
pass dynamic streaming algorithm is given in [7], which was refined in [6]. The algorithm w.h.p.
computes a maximum matching in an unweighted graph stream, and runs in O(k2 · polylog(n))
space and O(k2 · polylog(n)) update time (see [7]).

The authors of [5] revisited the problem of constructing maximum matchings in the dynamic
streaming model. Under a slightly less restricted constraint that the size of a maximum matching
of the stream graph is bounded by k (we will call this constraint “the Size-k Constraint”), a
sketch-based streaming algorithm is presented in [5] that w.h.p. computes a maximum matching
of an unweighted graph. The algorithm retains the space complexity at O(k2 · polylog(n)) but
has an improved update time of O(polylog(n)).

For general graph streams that may not satisfy the Size-k Constraint, a randomized ap-
proximation algorithm was given in [5] for maximum matchings in unweighted graph streams.
Specifically, if the graph contains matchings of size larger than k, then for any 1 ≤ α ≤

√
k

and 0 < ǫ ≤ 1, there exists an O(k2/(α3ǫ2) · polylog(n))-space algorithm that w.h.p. returns a
matching of size at least (1−ǫ)k/(2α). The algorithm has O(k2 ·polylog(n)/(α2ǫ2)) update time
(see [5], Theorem 4.1). In particular, for a graph G in the stream in which the size of a maximum
matching is at least c0k for a constant c0 ≥ 1, the algorithm, by properly choosing α and ǫ (e.g.,
if c0 = 4 then let α = 1 and ǫ = 1/2), will w.h.p. construct a matching of size at least k in
the graph G. This streaming algorithm has space complexity O(k2 · polylog(n)) but its update
time is raised back to O(k2 · polylog(n)). When we combine this algorithm with the streaming
algorithm under the Size-k Constraint (more precisely, under the Size-(c0k) Constraint) given
in [5], we will obtain a streaming algorithm in the dynamic model for Graph k-Matching on
general unweighted graph streams (i.e., without the assumption of the Size-k Constraint), which
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runs in space complexity O(k2 · polylog(n)) and update time O(k2 · polylog(n)). Since Ω(k2) is
a lower bound on the space complexity of streaming algorithms for the Graph k-Matching

problem [7], the streaming algorithm described above for Graph k-Matching has near-optimal
space complexity (i.e., optimal modulo a poly-logarithmic factor).

As described in [5], streaming algorithms for Graph k-Matching on unweighted graph
streams can be extended to solve the Graph k-Matching problem on weighted graph streams
(i.e., constructing a maximum weighted matching of k edges in a weighted graph stream), with
space complexity increased by a factor of the number W of distinct edge weights. Thus, under
the Size-k Constraint, there is a streaming algorithm in the dynamic model for the Graph

k-Matching problem on weighted graph streams with space complexity O(k2W · polylog(n))
and update time O(polylog(n)), while without the assumption of the Size-k Constraint, there is
a streaming algorithm in the dynamic model for the Graph k-Matching problem on weighted
graph streams with space complexity O(k2W · polylog(n)) and update time O(k2 · polylog(n)).

The above described algorithms are the best known streaming algorithms for the Graph

k-Matching problem.

1.2 Our contributions

We start by discussing our results for the insert-only model. We present a one-pass randomized
streaming algorithm that constructs a maximum weighted k-matching in a weighted graph.
Our algorithm runs in O(k2) space and has O(1) update time, which both are optimal. Our
algorithm relies on the critical observation that there is a “compact” subgraph of size O(k2) that
contains a maximum weighted k-matching in the original graph. We show that using techniques
of universal hashing, w.h.p., we can identify the compact subgraph effectively, and that using
the technique of interleaving executions of multiple parts of the algorithm, we can efficiently
update the compact subgraph when new edges are inserted while keeping the O(1) update time.

Compared to the previous best result by Fafianie and Kratsch [14], who developed a (deter-
ministic) kernelization streaming algorithm that implies a one-pass streaming algorithm in the
insert-only model for Graph k-Matching on unweighted graphs with space complexity O(k2)
and update time O(log k), our algorithm is randomized, achieving the same (optimal) space
complexity, but also has optimal update time O(1). Most significantly, our streaming algorithm
solves the Graph k-Matching problem on weighted graphs, which is a much more difficult
problem compared to the problem on unweighted graphs.

We then study streaming algorithms for Graph k-Matching in the dynamic model. We
give a one-pass randomized streaming algorithm that, for a weighted graph G containing a
k-matching, w.h.p., constructs a maximum weighted k-matching of G. The algorithm runs
in O(k2W · polylog(n)) space and has O(polylog(n)) update time, where W is the number of
distinct edge weights in the graph. This result directly implies a one-pass randomized streaming
algorithm for Graph k-Matching on unweighted graphs, with near-optimal space complexity
O(k2 · polylog(n)) and near-optimal update time O(polylog(n)).

The faster update time of our streaming algorithm, while keeping the same (near-optimal)
space complexity, is achieved based on a technique of randomized construction of a many-to-
many mapping between a given large set U and a small integral interval. Note that this approach
is different from that of previous randomized streaming algorithms, which in general partition
the set U into disjoint subsets. Briefly speaking, for any (unknown) k-subset S of the set U we
construct a small collection H+ of O(log k) hash functions, each using O(k · polylog(n)) space.
The collection H+ makes a many-to-many mapping between U and an integral interval I of
size O(k · polylog(n)). We show that w.h.p. there are k integers in I whose pre-images in U
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are pairwise disjoint and each contains exactly one element in S. Compared to the popular
approach for graph matching, which uses universal hash functions for streaming algorithms, our
approach uses less space and achieves O(polylog(n)) update time. This technique combined
with the ℓ0-sampling techniques [10, 16] enables us to select a smaller subset of edges, from
the vertex subsets of our construction, that w.h.p. contains the desired k-matching. From this
smaller subset of edges, a maximum weighted k-matching can be extracted.

In comparison with the previous best results, Chitnis et al. [5], under the Size-k Constraint,
developed a randomized streaming algorithm in the dynamic model for Graph k-Matching

on unweighted graphs, that has the same space complexity O(k2 · polylog(n)) and update time
O(polylog(n)) as our algorithm. However, our algorithm is not restricted to the Size-k Con-
straint, which seems a rather strong assumption on graph streams. The previous best streaming
algorithm for Graph k-Matching on unweighted graphs without the assumption of the Size-k
Constraint, as given in [5] and explained above, runs in space O(k2 ·polylog(n)) and has update
time O(k2 · polylog(n)). Compared to this algorithm, our algorithm has a much faster update
time of O(polylog(n)). Similarly, compared with the best streaming algorithms in the dynamic
model for Graph k-Matching on weighted graphs as given in [5], our algorithm, while keeping
the space complexity matching that in [5], is applicable to a much larger class of graphs (i.e.,
without assuming the Size-k Constraint), and has significantly improved (and near-optimal)
update time O(polylog(n)).

A byproduct of our results is a one-pass streaming approximation algorithm that, for any
ǫ > 0, w.h.p. computes a k-matching in a weighted graph stream that is within a factor of
1− ǫ from a maximum weighted k-matching. The algorithm runs in O(k2 logRwt ·polylog(n)/ǫ)
space and has O(polylog(n)) update time, where Rwt is the ratio of the maximum edge-weight
to the minimum edge-weight in the graph. This result improves the update time complexity
over the approximation result in [5], which has the same space complexity but has update time
O(k2 · polylog(n)).

We mention that Chen et al. [4] studied algorithms for k-matching in unweighted and
weighted graphs in the RAM model with limited computational resources. Clearly, the RAM
model is very different from the streaming model. In order to translate their algorithm to the
streaming model, it would require Ω(nk) space and multiple passes, where n is the number of
vertices. However, we mention that one of the steps of our algorithm in the insert-only model
was inspired by an operation for constructing a reduced graph, which was introduced in [4].

Finally, there has been work on computing matchings in special graph classes, and with
respect to parameters other than the cardinality of the matching (see, e.g. [11, 21, 25, 26]).

2 Preliminaries

For a positive integer i, let [i] denote the set of integers {1, 2, . . . , i}, and let [i]− denote the set
{0, 1, . . . , i− 1}. We write “u.a.r.” as an abbreviation for “uniformly at random”.

All graphs discussed in this paper are undirected and simple. We write V (G) and E(G)
for the vertex set and edge set of a graph G, respectively, and write [u, v] for an edge with the
endpoints u and v. The size of a graph G, denoted by |G|, is equal to the number of vertices
plus the number of edges in the graph. A matching M ⊆ E(G) is a set of edges in which no two
edges share a common endpoint. A matching M is a k-matching if it consists of exactly k edges.
A weighted graph G is a graph associated with a weight function wt : E(G) −→ R; we denote
the weight of an edge e by wt(e). Let M be a matching in a weighted graph G. The weight of
M , wt(M), is the sum of the weights of the edges in M . A maximum weighted k-matching in a
weighted graph G is a k-matching whose weight is the maximum over all k-matchings in G.
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2.1 The graph streaming model

A graph stream S for an underlying graph G is a sequence of elements, each of the form (e, op),
where op is an update to an edge e in G. An update could be either an insertion or a deletion
of an edge (and would include the edge weight if the graph G is weighted). In the insert-only
graph streaming model, a graph G is given as a stream S of elements in which each operation is
an edge insertion, while in the dynamic graph streaming model a graph G is given as a stream
S of elements in which the operations could be either edge insertions or edge deletions. We will
assume that a graph stream always starts with an empty edge set.

Without loss of generality, we will assume that a graph G of n vertices has [n]− as its vertex
set, and that the length of a stream S for G is polynomial in n. Since the graph G can have at
most n(n− 1)/2 edges, each edge in G can be represented as a unique number in [n(n− 1)/2]−.

2.2 Problem definitions

The formulation of our problem is of a multivariate nature. An instance of our problem is of
the form (S, k), where S is a graph stream of some underlying graph G and k is an integer. The
goal is to construct a k-matching in G (if G is an unweighted graph) or a maximum weighted
k-matching in G (if G is a weighted graph). We will consider the problem in both the insert-only
and the dynamic streaming models. We formally define the problems under consideration:

p-Matching

Given: a graph stream S for an unweighted graph G and an integer k,
Goal: construct a k-matching in G or report that no k-matching exists in G.

p-wMatching

Given: a graph stream S for a weighted graph G and an integer k,
Goal: construct a maximum weighted k-matching in G or report that no

k-matching exists in G.

We will design streaming algorithms for the above problems.

2.3 Probability

For any probabilistic events E1, . . . , Er, the union bound states that Pr[
⋃r

i=1 Ei] ≤
∑r

i=1 Pr[Ei].
For any random variables X1, . . . ,Xr whose expectations are well-defined, the linearity of expec-
tation states that Exp[

∑r
i=1Xi] =

∑r
i=1 Exp[Xi]. A set of discrete random variables {X1, . . . ,Xj}

is λ-wise independent if for any subset J ⊆ {1, . . . , j} with |J | ≤ λ and for any values xi, i ∈ J ,
we have Pr[

∧

i∈J Xi = xi] =
∏

i∈J Pr[Xi = xi]. A random variable is a 0-1 random variable if it
only takes the values 0 and 1. The following theorem bounds the tail probability of the sum of
0-1 random variables with limited independence:

Proposition 2.1 (Theorem 2 in [30]) Given a set {X1, . . . ,Xj} of 0-1 random variables, let

X =
∑j

i=1 Xi and µ = Exp[X]. For any δ > 0, if {X1, . . . ,Xj} is ⌈µδ⌉-wise independent, then

Pr[X ≥ µ(1 + δ)] ≤
{

e−µδ2/3 if δ < 1

e−µδ/3 if δ ≥ 1
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2.4 ℓ0-samplers

Let 0 < δ < 1 be a parameter. Let S = (i1,∆1), (i2,∆2), . . . , (ip,∆p), . . . be a stream of updates
of an underlying vector x ∈ R

n, where for each j, ij ∈ [n], ∆j ∈ R, and the update (ij ,∆j)
updates the ij-th coordinate of x by setting xij = xij +∆j. An ℓ0-sampler for x 6= 0 either fails
with probability at most δ, or conditioned on not failing, returns a pair (j,xj) with probability
1/||x||0 for any non-zero coordinate xj of x, where ||x||0 is the ℓ0-norm of x, which is the number
of non-zero coordinates of x. For more details, we refer to [10].

Based on the results in [10, 16], and as shown in [5], we can develop a sketch-based ℓ0-sampler
algorithm for a dynamic graph stream that samples an edge from the stream. More specifically,
the following result was shown in [5]:

Proposition 2.2 (Proof of Theorem 2.1 in [5]) Let 0 < δ < 1 be a parameter. There exists
an ℓ0-sampler algorithm that, given a dynamic graph stream, either returns fail with probability
at most δ, or returns an edge chosen u.a.r. amongst the edges of the stream that have been inserted
and not deleted. This ℓ0-sampler algorithm can be implemented using O(log2 n · log(δ−1)) bits of
space and O(polylog(n)) update time, where n is the number of vertices of the graph stream.

2.5 Hash functions

Let U be a finite set of n elements (without loss of generality, we will assume that U = [n]−). A
hash function h from U is perfect w.r.t. a subset S of U if it is injective on S, i.e., h(x) 6= h(y)
for any two distinct x and y in S. For a family H of hash functions, we write h

u.a.r.←−−− H to
denote that the hash function h is chosen u.a.r. from H.

Let r be an integer, 0 < r ≤ |U |. A family H of hash functions, each mapping U to [r]−,
is called universal if for each pair of distinct elements x, y ∈ U , the number of hash functions
h ∈ H for which h(x) = h(y) is at most |H|/r, or equivalently, for a hash function h

u.a.r.←−−− H,
we have Pr[h(x) = h(y)] ≤ 1/r.

The following universal family of hash functions has been well-known (see Chapter 11, [9]):

Proposition 2.3 The collection H = {ha,b,r | 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1} is a universal
family of hash functions from U to [r]−, where p ≥ |U | is a prime number, and ha,b,r is defined
as ha,b,r(x) = ((ax+ b) (mod p)) (mod r).

A perfect hash function can be retrieved from a universal family of hash functions, as given
in the following proposition.

Proposition 2.4 (Theorem 11.9 in [9]) Let H be a universal family of hash functions, each
mapping the finite set U to [r2]−. For any set S of r elements in U , the probability that a hash
function h

u.a.r.←−−− H is perfect w.r.t. S is larger than 1/2.

A family H of hash functions mapping U to [r]− is κ-wise independent if for any κ distinct
elements x1, x2, . . . , xκ in U , and any (not necessarily distinct) a1, a2, . . . , aκ in [r]−, we have

Pr
h

u.a.r.←−−−H

[(h(x1) = a1) ∧ (h(x2) = a2) ∧ · · · ∧ (h(xκ) = aκ)] = 1/rκ.

Proposition 2.5 (Corollary 3.34 in [32]) For each integer κ > 0, there is a family of κ-
wise independent functions H = {h : U → [r]−} such that choosing a random function h from
H takes space O(κ log |U |). Moreover, evaluating a function h from H on an element x in U ,
i.e., computing the value h(x), takes time polynomial in κ and log |U |.2

2In the original statement of this theorem in [32], the hash functions h in the family H map binary strings of
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3 Streaming algorithms on the insert-only model

In this section, we give a streaming algorithm for p-wMatching, and hence for p-Matching

as a special case, in the insert-only model. We start with some notations.
Let G = (V,E) be a weighted graph with a weight function wt : E → R≥0, where V = [n]−.

We define a new function β : E → R≥0 × V × V that on an edge e = [u, v] in G, where
u < v, β(e) = (wt(e), u, v). Observe that each edge in G has a distinct β-value, and that the
lexicographic order w.r.t. β defines a total order of the edges in G. The i-th heaviest edge in
an edge set E′ is the edge that has the i-th largest β-value among all edges in E′. Because
each edge has a distinct β-value, the i-th heaviest edge in E′ is uniquely defined. Note that the
“heaviness” of edges is defined in terms of the edge β-values, while the “weight” of edges, which
is used to measure the weight of matchings in the graph, is defined in terms of the original edge
weight function wt of the graph.

Let f : V → [4k2]− be a hash function. The function f partitions the vertex set V of G into
a collection of subsets V = {V0, V1, . . . , V4k2−1}, where for each i ∈ [4k2]−, the subset Vi consists
of the vertices v in V such that f(v) = i. A matching M in G is said to be nice w.r.t. f if no
two vertices of M belong to the same subset Vi for any i. If the hash function f is clear from
the context, we will simply say that M is nice.

For a subgraph H of the graph G, we define the compact subgraph of H under f , denoted
Cf (H), as the subgraph of H consisting of the edges e of H such that the two endpoints of e
belong to two distinct subsets Vi and Vj in the collection V, and that β(e) is maximum over all
edges between Vi and Vj in H.

Furthermore, we define the reduced compact subgraph ofH under f , denotedRf (H), obtained
from the compact subgraph Cf (H) using the following procedure:

(1) Delete the edges [u, v] in Cf (H), where u ∈ Vi and v ∈ Vj for some i 6= j, if [u, v] is
either not among the 2k heaviest edges incident to vertices in Vi or not among the
2k heaviest edges incident to vertices in Vj . Let the resulting graph be R′

f (H).

(2) Delete all edges e in R′
f (H) if e is not among the 4k2 heaviest edges in R′

f (H).

The resulting graph is the reduced compact subgraph Rf (H).

Lemma 3.1 The compact subgraph Cf (H) has nice k-matchings if and only if the reduced com-
pact subgraph Rf (H) has nice k-matchings. If this is the case, then the weight of a maximum
weighted nice k-matching in Cf (H) is equal to that in Rf (H).

Proof. From the definition, the reduced compact subgraph Rf (H) is a subgraph of the compact
subgraph Cf (H). Thus, every nice k-matching in Rf (H) is also a nice k-matching in Cf (H). In
particular, the weight of a maximum weighted nice k-matching in Rf (H) cannot be larger than
that in Cf (H).

For the other direction, suppose that Cf (H) has nice k-matchings. For convenience, we will
say that an edge e is “incident” to a subset Vi if an endpoint of e is in Vi, and that a k-matching
M “covers” a subset Vi if M has an edge incident to Vi. Let Mc be a maximum weighted nice
k-matching in Cf (H) that contains the largest number of edges in R′

f (H), which is the graph
given in the construction of the reduced compact subgraph Rf (H) from the compact subgraph
Cf (H). We prove that Mc is entirely contained in the graph R′

f (H).

length n to binary strings of length m for some fixed integers n and m. Here we have simplified the expressions.
Thus, by j = h(x), we really mean that j is the integer whose binary representation jbin is the result of h(xbin),
where xbin is the binary representation of x.
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To the contrary, suppose that there is an edge e in the matching Mc in Cf (H) that is not
in R′

f (H). Then e is incident to a subset Vi1 but is not among the 2k heaviest edges incident
to Vi1 in the graph Cf (H). Thus, there are more than 2k edges incident to Vi1 in the graph
Cf (H). Since the nice k-matching Mc covers only 2k subsets in the collection V, there must be
an edge e1 in Cf (H) among the 2k heaviest edges incident to Vi1 whose other end is incident to
a subset Vi2 not covered by Mc. Note that we have β(e) < β(e1). The edge e1 cannot be among
the 2k heaviest edges incident to Vi2 — otherwise, e1 would be in R′

f (H) and Mc \ {e} ∪ {e1}
would be a maximum weighted k-matching in Cf (H) that contains more edges in R′

f (H) than
Mc does, contradicting the assumption of Mc. Using the same argument on the subset Vi2 , we
can find an edge e2 among the 2k heaviest edges incident to Vi2 whose other endpoint is in a
subset Vi3 not covered by Mc such that e2 is not among the 2k heaviest edges incident to Vi3 and
that β(e1) < β(e2). Continuing this process will produce a sequence of edges e1, e2, · · · , with
β(eh) < β(eh+1) for all h. Since the graph Cf (H) is finite, we must have some edges repeating in
this sequence, i.e., we will find es and et in the sequence with s < t such that es = et. However,
this would imply that

β(es) < β(es+1) < · · · < β(et−1) < β(et) = β(es),

which is impossible. This contradiction shows that the maximum weighted nice k-matching Mc

is entirely contained in the graph R′
f (H). As a consequence, Mc is a maximum weighted nice

k-matching in R′
f (H).

If R′
f (H) contains no more than 4k2 edges, then R′

f (H) = Rf (H) and Mc is also a maximum
weighted nice k-matching in Rf (H).

If R′
f (H) contains more than 4k2 edges, then the reduced compact subgraphRf (H) contains

exactly the 4k2 heaviest edges in R′
f (H). Now consider a maximum weighted k-matching M ′

c in
R′

f (H) that contains the maximum number of edges in the reduced compact subgraph Rf (H).
If there is an edge e′ in M ′

c that is not in Rf (H), then delete all vertices in Rf (H) that are in the
subsets of V covered byM ′

c\{e′}. This will delete no more than 2(k−1)·2k < 4k2 edges inRf (H),
because each subset Vi is incident to at most 2k edges in Rf (H). Therefore, there is at least
one edge e′′ left in Rf (H), and by definition, β(e′′) > β(e′). Thus, the matching M ′

c \{e′}∪{e′′}
would be a maximum weighted nice k-matching in R′

f (H) that contains more edges in Rf (H)
than M ′

c does, but this contradicts the assumption of the matching M ′
c. This contradiction

shows that the maximum weighted nice k-matching M ′
c in R′

f (H) is also a maximum weighted
nice k-matching in Rf (H). This completes the proof.

The following lemma shows how we construct the reduced compact subgraph Rf (H) when
the subgraph H has been stored in memory.

Lemma 3.2 Let f be a hash function mapping the vertex set of a graph G to [4k2]−. There is
an algorithm that, for any subgraph H of G, constructs the subgraph Rf (H) in time and space
both bounded by O(|H|+ k2).

Proof. For each i ∈ [4k2]−, remember that Vi is the subset of vertices in G whose image under
f is i. The algorithm on a subgraph H of G works as follows. By going through the edges of
the graph H and using the hash function f , the algorithm deletes, in time O(|H|+k2), all edges
whose two endpoints have the same image under f , and puts each [u, v] of the remaining edges
in the sets Ei and Ej, where i = f(u) and j = f(v). Now for each set Ei, the algorithm sorts,
using Radix-Sort in linear time, the edges [u, v] in Ei in terms of the pairs (f(u), f(v)), identifies
the heaviest edge (i.e., the edge with the maximum β-value) between the sets Vi and Vj , for
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each j, and deletes all other edges between Vi and Vj . The result of this process is the compact
subgraph Cf (H). Now using the linear-time selection algorithm [9] on each set Ei, the algorithm
can identify the (2k)-th heaviest edge in the set Ei, and, by going through all edges in Cf (H),
delete the edges [u, v] between Ei and Ej , for all i, j ∈ [4k2]−, if [u, v] is either not among the 2k
heaviest edges in Ei or not among the 2k heaviest edges in Ej. This gives the subgraph R′

f (H).
Finally, using the linear-time selection algorithm one more time, the algorithm can delete the
edges in R′

f (H) that are not among the 4k2 heaviest, and obtain the reduced compact subgraph

Rf (H). This shows that the running time of the algorithm is bounded by O(|H| + k2), which
also bounds the space complexity of the algorithm.

We now describe our streaming algorithm in the insert-only model for the p-wMatching

problem. Let (S, k) be an instance of the problem, where S = {(e1, wt(e1)), . . . , (es, wt(es)), . . .}
is the stream of inserting edges of a graph G. For each s, let Gs be the subgraph of G consisting
of the first s edges e1, . . . , es of S, and for r ≤ s, let Gr,s be the subgraph of G consisting of the
edges er, er+1, . . . , es. Let f be a hash function mapping the vertex set of the graph G to [4k2]−.
For each integer s, we denote by ŝ the largest multiple of 4k2 that is strictly smaller than s, i.e.,
ŝ = 4k2 · i for an integer i and s = ŝ+ q with 1 ≤ q ≤ 4k2. Note that even when s is a multiple
of 4k2, we still have ŝ < s.

Let Gf
0 = ∅. For each s > 0, we define, recursively, a subgraph Gf

s of the graph Gs as

Gf
s = Rf (G

f
ŝ ∪Gŝ+1,s). (1)

Lemma 3.3 For each s ≥ 0, the graph Gf
s has at most 4k2 edges. Moreover, Gf

s = Rf (Gs).

Proof. The bound on the size of the graph Gf
s comes directly from the definition of the reduced

compact subgraphs under the hash function f .
To prove the equality Gf

s = Rf (Gs), we first prove the following claim:

Claim. Let H1 be a subgraph of H2 and let e be an edge in H1. Then e ∈ Rf (H2)
implies e ∈ Rf (H1).

Consider the edge e in H1 that is in Rf (H2). Then (1) e is the heaviest edge in H2 between
two vertex sets Vi and Vj in the partition by the hash function f (i.e., e is in the compact
subgraph Cf (H2)); and (2) e is among the 2k heaviest edges incident to Vi and among the 2k
heaviest edges incident to Vj in the graph Cf (H2) (i.e., e is in the graph R′

f (H2)); and (3) e is

among the 4k2 heaviest edges in R′
f (H2). Since H1 is a subgraph of H2 and e ∈ H1, by the

conditions (1)-(3) above, it is easy to verify that (1’) e is in the compact subgraph Cf (H1); (2’)
e is in the graph R′

f (H1); and (3’) e is among the 4k2 heaviest edges in R′
f (H1), i.e., the edge

e must be in the reduced compact subgraph Rf (H1). This proves the claim.

Now we get back to the proof of Gf
s = Rf (Gs). Our proof goes by induction on s ≥ 0. The

equality obviously holds true for s ≤ 4k2, since in this case ŝ = 0 so Gŝ = ∅. Thus, we will
assume s > 4k2. Note that Gs = Gŝ ∪Gŝ+1,s.

Let e be an edge in Rf (Gs). If e is in Gŝ \Gf
ŝ . Then since e ∈ Rf (Gs) and Gŝ is a subgraph

Gs, by the Claim we proved above, we would have e ∈ Rf (Gŝ) = Gf
ŝ , contradicting the assumed

condition. Thus, this case is not possible, and we must have e ∈ Gf
ŝ ∪Gŝ+1,s. Since G

f
ŝ ∪Gŝ+1,s

is a subgraph of Gs and e ∈ Rf (Gs), by the Claim above, e ∈ Rf (G
f
ŝ ∪ Gŝ+1,s) = Gf

s . Since e

is an arbitrary edge in Rf (Gs), this proves that Rf (Gs) is a subgraph of Gf
s .
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For the other direction, let e be an edge in Gf
s = Rf (G

f
ŝ ∪ Gŝ+1,s) = Rf (Rf (Gŝ) ∪Gŝ+1,s),

where the second equality is by the inductive hypothesis, and assume that e is an edge between
two vertex sets Vi and Vj in the vertex partition by the hash function f . Then, (1) e is the
heaviest edge between Vi and Vj in the graph Rf (Gŝ) ∪ Gŝ+1,s, thus, is also such an edge in
the graph Gŝ ∪ Gŝ+1,s = Gs, i.e., e is an edge in Cf (Gs); (2) e is among the 2k heaviest edges
incident to Vi in the graph Cf (Gs): if not, then there must be an edge e′ incident to Vi in
Cf (Gs) with β(e′) > β(e) and e′ 6∈ R′

f (Rf (Gŝ)∪Gŝ+1,s). However, this is impossible because e′

must be in Cf (Rf (Gŝ)∪Gŝ+1,s) and the edge e is among the 2k heaviest edges incident to Vi in
Cf (Rf (Gŝ)∪Gŝ+1,s). Similarly, e is among the 2k heaviest edges incident to Vj in Cf (Gs). Thus,
the edge e is in R′

f (Gs); and (3) e must be among the 4k2 heaviest edges in R′
f (Gs): if not,

there must be an edge e′′ in Rf (Gs) with β(e′′) > β(e) and e′′ 6∈ Rf (G
f
ŝ ∪Gŝ+1,s)). By the Claim

we proved above, e′′ cannot be in Gf
ŝ ∪ Gŝ+1,s. The remaining possibility is e′′ ∈ Gŝ \ Gf

ŝ , but

this, plus e′′ ∈ Rf (Gs) and the Claim above would give the contradiction e′′ ∈ Rf (Gŝ) = Gf
ŝ .

Therefore, the edge e must be in the graph Rf (Gs), proving that Gf
s is a subgraph of Rf (Gs).

Combining the above two cases proves that Gf
s = Rf (Gs).

Now we are ready to present the streaming algorithm w-Matchins in the insert-only model
for the p-wMatching problem, as given in Figure 1, where S = {e1, e2 . . . , es, . . .} is an edge
stream of a graph G (here we assume that the edge weight has been included in each edge es in
the stream), k is the parameter, and ǫ > 0 is a fixed constant that bounds the error probability.
Note that the algorithm has used some notations that are used in Lemma 3.3 and its proof.

Algorithm w-Matchins(S , k)
input: an edge stream S = {e1, e2, . . . , es, . . .} of a weighted graph G and parameter k
output: a maximum weighted k-matching in G, or report that no k-matching is in G.

\\ Preprocessing
1. let Hǫ be a set of ⌈log(1/ǫ)⌉ hash functions picked u.a.r. from a universal family of

hashing functions mapping V (G) to [4k2]−;
2. for (each hash function f in Hǫ) Gf

0 = ∅;
3. G1,s = {e1, e2, . . . , es}, where either s = 4k2, or s < 4k2 and es is the last edge in S ;

\\ Updating
4. while (the edge stream S is not ended)

interleave the executions of steps 4.1 and 4.2 so that the time between reading
two consecutive edges in S into Gs+1,s′ is bounded by O(1):

4.1 for (each hash function f in Hǫ) Gf
s = Rf (G

f

ŝ ∪Gŝ+1,s);
4.2 Gs+1,s′ = {es+1, es+2, . . . , es′},

where either s′ = s+ 4k2, or s′ < s+ 4k2 and es′ is the last edge in S ;
4.3 s = s′;

\\ Query
5. for (each hash function f in Hǫ)
5.1 Gf = Rf (G

f
ŝ ∪Gŝ+1,s);

5.2 construct the maximum weighted k-matching in Gf ;
6. if (a k-matching is constructed in step 5)

then return the k-matching with the largest weight constructed in step 5;
else return(”no k-matching exists in G”).

Figure 1: A streaming algorithm for p-wMatching in the insert-only model

Lemma 3.4 The algorithm w-Matchins(S, k) runs in space O(k2) and has update time O(1).
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Proof. Since ǫ > 0 is a fixed constant, the number of hash functions in the set Hǫ is a constant.
Thus, steps 1-2 of the algorithm w-Matchins(S, k) take constant time and need constant space
to store the hash functions in Hǫ.

Step 3 of the algorithm uses O(k2) space to store the s ≤ 4k2 edges in the subgraph G1,s.

Step 4 of the algorithm works with four subgraphs: Gf
ŝ , Gŝ+1,s, Gf

s , and Gs+1,s′ , where
s′ ≤ s + 4k2. By definition, each of Gŝ+1,s and Gs+1,s′ contains at most 4k2 edges, and, by

Lemma 3.3, each of the subgraphs Gf
ŝ and Gf

s contains at most 4k2 edges. Moreover, since the

size of the graph Gf
ŝ ∪Gŝ+1,s is bounded by O(k2), by Lemma 3.2, the computation of step 4.1

takes space O(k2). In summary, step 4 of the algorithm runs in space O(k2).
Similarly, for each hash function f in Hǫ, step 5.1 takes space O(k2). Since the size of the

graph Gf is bounded by O(k2), step 5.2 also takes space O(k2). Since the number of hash
functions in Hǫ is a constant, we conclude that step 5 of the algorithm runs in space O(k2).

This shows that the algorithm w-Matchins(S, k) runs in space O(k2). Now we consider the
update time of the algorithm. The update time for reading each of the first s ≤ 4k2 edges in
the stream S in step 3 is obviously O(1). The rest of the edges in the stream S are read in

step 4. Since the size of the graph Gf
ŝ ∪Gŝ+1,s is bounded by O(k2), by Lemma 3.2, step 4.1 of

the algorithm runs in time O(k2). Therefore, the execution of step 4.1 can be divided into 4k2

segments such that each segment takes time O(1). Now the interleaved execution of steps 4.1
and 4.2 can read an edge in the stream S in step 4.2 with the execution of a segment of step
4.1, until either the set Gs+1,s′ has 4k

2 edges or the stream end is encountered. This guarantees
an update time of O(1) for reading each of the edges in the input stream S.

We conclude this section with the following theorem.

Theorem 3.5 For any fixed ǫ > 0, the streaming algorithm w-Matchins(S, k), where S is a
stream for a weighted graph G in the insert-only model, runs in space O(k2) and update time
O(1), and (1) if G has k-matchings then the algorithm returns a maximum weighted k-matching
in G with probability ≥ 1− ǫ; and (2) if G has no k-matchings then the algorithm reports so.

Proof. First note that for each hash function f in Hǫ, the graph Gf constructed in step 5.1 is
a subgraph of the graph G. Therefore, if the graph G has no k-matchings, then the graph Gf

cannot have k-matchings. Thus, in this case, the algorithm reports correctly.
Now assume that the graph G has k-matchings. Let M be a maximum weighted k-matching

in G. The vertex set V (M) of the matching M has 2k vertices. By Proposition 2.4, each hash
function f in Hǫ, which is u.a.r. picked from a universal family of hash functions mapping V (G)
to [(2k)2]− = [4k2]−, has probability at least 1/2 to be perfect w.r.t. V (M). Since there are
⌈log(1/ǫ)⌉ hash functions in Hǫ, with probability at least 1−1/2⌈log(1/ǫ)⌉ ≥ 1− ǫ, there is a hash
function f0 in Hǫ that is perfect w.r.t. V (M). As a result, the maximum weighted k-matching M
in G is a maximum weighted nice k-matching in the compact subgraph Cf0(G). By Lemma 3.1,
the reduced compact subgraph Rf0(G) also has a k-matching M0 whose weight is equal to that
of M . Since Rf0(G) is a subgraph of G, M0 is also a maximum weighted k-matching in G.

By Lemma 3.3 and step 5.1 of the algorithm, we have Gf0 = Rf0(G). Therefore, the matching
M0 is a (maximum weighted) k-matching in the graph Gf0 , and the maximum weighted k-
matching constructed in step 5.2 for the graph Gf0 , which could be different from M0 but
must have the same weight as M0, is a maximum weighted k-matching in the graph G, which
will be returned in step 6 of the algorithm. This completes the proof that if the graph G has
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k-matchings, then with probability at least 1 − ǫ, the algorithm w-Matchins(S, k) returns a
maximum weighted k-matching in the graph G.

Note that the algorithm w-Matchins(S, k) given in Figure 1 queries and computes a max-
imum weighted k-matching at the end of the stream. It is easy to see that the algorithm can
be trivially modified so that it can query and compute a maximum weighted k-matching in the
graph Gs consisting of the first s edges in the stream for any s ≥ 0 after seeing the edge es,
keeping the same space and update time complexities.

4 Streaming algorithms on the dynamic model

In this section, we present a streaming algorithm for p-wMatching, thus also for p-Matching,
on the dynamic model. For this, we first develop a hashing scheme that uses O(k · polylog(n))
space and has a high success probability. The streaming algorithm on the dynamic model will
use the hashing scheme and the ℓ0-sampling technique discussed in Section 2.

4.1 Perfect hashing in O(k · polylog(n)) space with high probability

The hashing scheme developed in this subsection will be used in our streaming algorithm on the
dynamic model. We believe that the result should also be useful in other applications. Let S
be an (unknown) k-subset of a universal set U and suppose that we want to distinguish the k
elements of S by constructing a collection of subsets of U that contains k pairwise disjoint subsets,
each containing exactly one element in S. For example, by Proposition 2.4, a hash function h
picked u.a.r. from a universal family of hash functions from U to [k2]− has a probability ≥ 1/2
to be perfect w.r.t. S, and thus distinguishes S. The hash function h uses O(k2) space, which is
large and would directly impact the space complexity of our streaming algorithms. Moreover,
the success probability 1/2 of h is not sufficiently large for our purposes. An O(k)-space hash
function perfect w.r.t. S can be constructed using a 2-level hashing scheme (see [9], Section
11.5), in which, however, the construction of the hash functions in level 2 must know the set S
and the hashing result on S in level 1. Moreover, the scheme uses multiple hash functions from
universal hash families, which would significantly decrease the success probability.

We propose a hashing scheme that follows the ideas of 2-level hashing, but with a more
careful selection on the hashing methods and on the hashing parameters. Our scheme uses
O(k · polylog(n)) space but has a much higher success probability, and its construction in level
2 needs to know neither the set S nor the hashing results on S in level 1. The hashing scheme
is given in Figure 2.

HashScheme(U,k)

\\ construct a hashing scheme H+ of O(log k) hash functions from U to [d4]
−, where d4 = O(k log2 k).

Level-1: pick a hash function f u.a.r. from a ⌈12 ln k⌉-wise independent family of hash functions
mapping U to [d1]

−, where d1 = 2d and d is the smallest integer satisfying k/ ln k ≤ 2d;

Level-2: pick u.a.r. and independently a set H = {h1, h2, . . . , hd2} of d2 hash functions from a
universal family of hash functions mapping U to [d3]

−, where d2 = ⌈8 ln k⌉, d3 = ⌈13 ln k⌉2;
let H+ = {h+

1 , h
+
2 , . . . , h

+
d2
}, where each h+

i is defined as h+
i (x) = f(x)d2d3 + (i− 1)d3 + hi(x).

Figure 2: A hashing scheme that uses smaller space with higher success probability

We give some remarks on the hashing scheme in Figure 2. Suppose that the hash function
f in Level-1 partitions the universal set U into U0, U1, . . ., Ud1−1. To ensure the pairwise
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disjointness of the d1d2 sets h+i (Uj), 1 ≤ i ≤ d2, 0 ≤ j ≤ d1 − 1, we define h+i (Uj) to be the set
hi(Uj) plus an offset jd2d3+(i−1)d3. Therefore, for each x ∈ Uj , the function h+i has the value

h+i (x) = jd2d3 + (i− 1)d3 + hi(x) = f(x)d2d3 + (i− 1)d3 + hi(x).

Each h+i is a function mapping U to [d4]
−, where d4 = d1d2d3 = O(k log2 k).

Theorem 4.1 The hash function set H+ can be constructed in space O(log k log |U |). For each
x ∈ U and each h+i ∈ H+, the value of h+i (x) can be computed in time polynomial in log |U |.

Proof. By Proposition 2.5, constructing and storing the function f in Level-1, which is picked
u.a.r. from a ⌈12 ln k⌉-wise independent family of hash functions from U to [d1]

−, uses space
O(log k log |U |). Each hash function hi in Level-2 picked from the universal family of hash
functions from U to [d3]

−, which is of the form given in Proposition 2.3, takes O(1) space. Since
|H+| = d2 = O(log k), we conclude that the set H+ = {h+1 , h+2 , . . . , h+d2} of hash functions can
be constructed and stored in space O(log k log |U |).

By Proposition 2.5, computing the value j = f(x) takes time polynomial in log |U | and log k.
This, plus the O(1) time for computing the other parts of the function h+i , shows that the value
of h+i (x) can be computed in time polynomial in log |U |, after noting that k ≤ |U |.

For each value q ∈ [d4]
−, let H+

inv (q), i.e., the “inverse” of H+ on q, be the set of such an
element x in U such that h+i (x) = q for some hash function h+i in H+.

Theorem 4.2 For any subset S of U with |S| = k ≥ 2, with probability at least 1− 4/(k3 ln k),
there are k disjoint subsets H+

inv (q1), . . ., H+
inv (qk) of U such that |H+

inv (qi) ∩ S| = 1 for all
i ∈ [k].

Proof. Recall that the function f partitions the set U into d1 disjoint subsets U0, U1, . . ., Ud1−1.
We first show that, for each Uj , with a high probability, there is a hash function in the set
H = {h1, h2, . . . , hd2} that is perfect w.r.t. S ∩ Uj .

For an element x ∈ S, and for each j ∈ [d1]
−, let Xx,j be the 0-1 random variable such that

Xx,j = 1 if and only if f(x) = j. Let Xj =
∑

x∈S Xx,j, which is the number of elements in S
that are hashed to j by the hash function f . Thus, Xj = |S ∩ Uj|.

Since f is picked u.a.r. from a ⌈12 ln k⌉-wise independent family of hash functions, the
random variables Xx,j , for x ∈ S, are ⌈12 ln k⌉-wise independent and Pr[Xx,j = 1] = 1/d1.
Thus, Exp[Xj ] = |S|/d1. Since k/ ln k ≤ d1 < 2k/ ln k, so ln k/2 < Exp[Xj ] ≤ ln k. Applying
Proposition 2.1 with µ = Exp[Xj ] and δ = 12 ln k/Exp[Xj ] > 1, we get

Pr[Xj ≥ (1 + δ)Exp[Xj ]] ≤ e−δ·Exp[Xj ]/3 = 1/k4.

Since Exp[Xj ] ≤ ln k and δ = 12 ln k/Exp[Xj ], we have (1 + δ)Exp[Xj ] ≤ 13 ln k. Hence,

Pr[Xj ≥ 13 ln k] ≤ Pr[Xj ≥ (1 + δ)E[Xj ]] ≤ 1/k4.

Let E ′ denote the event that for all j ∈ [d1]
−, Xj < 13 ln k. By the union bound, we have

Pr[E ′] ≥ 1− d1/k
4 ≥ 1− 2/(k3 ln k),

where the last inequality holds since d1 < 2k/ ln k.
Assume the event E ′ that for all j ∈ [d1]

−, |S ∩ Uj| < 13 ln k holds for all j ∈ [d1]
−. For

each j ∈ [d1]
−, let Ej be the event that the set H does not contain a hash function perfect
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w.r.t. S ∩Uj . Since |S ∩Uj | < 13 ln k, and each hash function in H is picked independently and
u.a.r. from a universal family of hash functions from U to [d3]

− with d3 = ⌈13 ln k⌉2, which, by
Proposition 2.4, is perfect w.r.t. S ∩Uj with probability ≥ 1/2. Since H consists of d2 = ⌈8 ln k⌉
such hash functions, we derive Pr[Ej|E ′] ≤ 1/2d2 < 1/k4. Applying the union bound on all
j ∈ [d1]

−, we conclude that, under the event E ′, the probability that there is a j ∈ [d1]
− such

that the set H contains no hash function perfect w.r.t. S∩Uj is bounded by d1/k
4 < 2/(k3 ln k).

Now let E ′′ be the event that, under the event E ′, for every j ∈ [d1]
−, the set H contains a hash

function hij perfect w.r.t. S ∩ Uj . Then Pr[E ′′|E ′] ≥ 1− 2/(k3 ln k), which gives directly

Pr[E ′ ∩ E ′′] = Pr[E ′′|E ′] · Pr[E ′] ≥ (1− 2/(k3 ln k))2 ≥ 1− 4/(k3 ln k).

Since E ′ ∩ E ′′ is the event in which for every j ∈ [d1]
−, there is a hash function hij in the set H

that is perfect w.r.t. S ∩Uj , which implies immediately that the hash function h+ij in the set H+

is perfect w.r.t. S ∩Uj. Thus, under the event E ′ ∩E ′′, the union Qk of the pairwise disjoint sets
h+i0(S ∩ U0), . . ., h

+
id1−1

(S ∩ Ud1−1) contains exactly k values q1, . . ., qk in [d4]
−, such that each

subset H+
inv(qi) of U contains an element in S. To see the pairwise disjointness of the subsets

H+
inv(q1), . . ., H

+
inv(qk), observe that the d1d2 subsets h+i (Uj), for i ∈ [d2] and j ∈ [d1]

−, are
pairwise disjoint, so each value in Qk is in a unique subset h+i (Uj). Thus,

(1) if qs, qt in Qk, qs 6= qt, are in the same h+i (Uj), then, since no element in Uj can have
two different images under the same function h+i , the subsets H

+
inv(qs) and H+

inv(qt) are disjoint;
(2) if qs and qt in Qk are in two different h+i (Uj) and h+i′ (Uj′), respectively, then we must

have j 6= j′ because by the definition of Qk, if j = j′ then we must have i = i′ = ij . But this
implies that H+

inv (qs) ⊆ Uj and H+
inv (qt) ⊆ Uj′ so H+

inv(qs) and H+
inv (qt) must be disjoint.

4.2 The streaming algorithm for p-wMatching

Now we are ready for our streaming algorithm for the p-wMatching problem on the dynamic
model. We first give a high-level description of the algorithm. Let S be a dynamic stream
of a weighted graph G = (V,E) with a weight function wt, and let k be the parameter. Let
Mmax be any fixed maximum weighted k-matching in G. We first use a hashing scheme H+,
as given in Subsection 4.1, to hash the vertices of G into a range [r]−, where r = O(k log2 k).
By Theorem 4.2, w.h.p. there is a set B of 2k values in [r]− such that the collection H+

inv(B) =
{H+

inv (i) | i ∈ B} consists of 2k pairwise disjoint subsets of V (G) in which each subset contains
exactly one vertex in the matching Mmax. As a result, every edge in Mmax appears between
two different subsets in H+

inv (B), so we only need to consider the edges in G that are between
different subsets in the collection {H+

inv (i) | i ∈ [r]−}.
To handle edges between two given vertex subsets H+

inv (i) and H+
inv (j) in the graph G, we

can employ an ℓ0-sampler algorithm (see Section 2.4), which, by Proposition 2.2, can handle
dynamic edge changes and edge samplings between the two vertex subsets, efficiently in terms
of both space complexity and update time. This, however, does not take edge weights into
consideration, which can certainly impact the weight of the constructed k-matching. To address
this issue, instead of using a single ℓ0-sampler for a pair of values in [r]−, for each edge weight
value w, and for each pair (i, j) of values in [r]−, we employ an ℓ0-sampler Li,j,w to handle
the dynamic changes of weight-w edges between the two vertex subsets H+

inv(i) and H+
inv (j).

Now, for an edge [u, v] in the maximum weighted k-matching Mmax, the associated ℓ0-sampler
Li,j,wt(u,v), where u ∈ H+

inv (i), v ∈ H+
inv (j), and H+

inv (i) and H+
inv (j) are both in the collection

H+
inv(B), will sample an edge of weight wt(u, v) between H+

inv(i) and H+
inv(j). Since the subsets

in the collection H+
inv(B) are pairwise disjoint, the k ℓ0-samplers associated with the k edges in
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Mmax give a maximum weighted k-matching in G. Thus, the following collection of ℓ0-samplers

{Li,j,w | i, j ∈ [r]−, w is an edge weight value in G}

makes a sketch that is a subgraph of G containing a maximum weighted k-matching in G.
The formal description of our algorithm is given in Figure 3. Without loss of generality, we

will assume that the algorithm is queried at the end of the stream S, even though the query
could take place at any point in the stream.

Algorithm w-Matchdyn (S , k)
input: a dynamic edge stream S of a weighted graph G and a parameter k
output: a maximum weighted k-matching in G, or report no k-matching is in G.

\\ Preprocessing
1. L = ∅; \\ L is the collection of ℓ0-samplers;
2. δ = 1/(20k4 ln(2k)); \\ the parameter for the ℓ0-samplers;
3. H+ = {h+

1 , . . . , h
+
d2
} = HashScheme(V (G), 2k), where d2 = ⌈8 ln(2k)⌉.

\\ Updating
4. while (the edge stream S is not ended)
4.1 get the next element ([u, v], wt(u, v), op) in the stream S ; \\ assuming u < v
4.2 H+(u) = {h+

1 (u), . . . , h
+
d2
(u)}; H+(v) = {h+

1 (v), . . . , h
+
d2
(v)};

4.3 for (each i ∈ H+(u) and each j ∈ H+(v))
4.3.1 if (Li,j,wt(u,v) 6∈ L) create the ℓ0-sampler Li,j,wt(u,v), and add it to L;
4.3.2 run the ℓ0-sampler Li,j,wt(u,v) with update 〈[u, v], op〉 and the parameter δ.

\\ Query
5. E0 = ∅;
6. for (each Li,j,w in L)
6.1 apply the ℓ0-sampler Li,j,w with the parameter δ to sample an edge e;
6.2 if (Li,j,w does not fail) add e returned by Li,j,w to E0;
7. return a maximum weighted k-matching in the induced subgraph G(E0).

Figure 3: A streaming algorithm for p-wMatching in the dynamic model.

Lemma 4.3 If the graph G contains k-matchings, then, with probability ≥ 1−11/(20k3 ln(2k)),
the algorithm w-Matchdyn(S, k) returns a maximum weighted k-matching of the graph G.

Proof. Let Mmax = {[u1, v1], . . . , [uk, vk]} be a maximum weighted k-matching in the graph
G = (V,E), where uj < vj for all j. From the algorithm HashScheme(V (G), k), as given in
Figure 2, for a vertex u in the graph G, each value in the set H+(u) is in the range [r]−, where
r = O(k log2 k) = O(k · polylog(n)). Recall that for each i ∈ [r]−, H+

inv (i) is the set of vertices
u in G such that i ∈ H+(u). By Theorem 4.2, with probability at least 1 − 4/((2k)3 ln(2k)) =
1−1/(2k3 ln(2k)), there are 2k pairwise disjoint subsetsH+

inv (i1), H
+
inv (i

′
1), . . ., H

+
inv (ik), H

+
inv (i

′
k)

such that uj ∈ H+
inv (ij) and vj ∈ H+

inv(i
′
j), for 1 ≤ j ≤ k. Let E ′ be this event. Then

Pr[E ′] ≥ 1 − 1/(2k3 ln(2k)). Under the event E ′, for each j, 1 ≤ j ≤ k, step 4.3.1 of the
algorithm w-Matchdyn will feed an edge of weight wt(uj , vj) into the ℓ0-sampler Lij ,i′j ,wt(uj ,vj).

Now consider the sampling success probability for the ℓ0-samplers, under the condition of
the event E ′. For each edge [uj , vj ] in the matching Mmax, we call the ℓ0-sampler Lij ,i′j ,wt(uj ,vj)

in step 6.1 of the algorithm w-Matchdyn to sample an edge between the two subsets H+
inv (ij)

and H+
inv (i

′
j). Let E ′′ be the event that for all j, 1 ≤ j ≤ k, an edge ej is sampled successfully

by the ℓ0-sampler Lij ,i′j ,wt(uj ,vj). Note that ej may not be the edge [uj , vj ] in the maximum

weighted matching Mmax, but it must be an edge of weight wt(uj , vj) between the two subsets
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H+
inv(ij) and H+

inv (i
′
j). By Proposition 2.2, for each j, the ℓ0-sampler Lij ,i′j ,wt(uj ,vj) fails with

probability at most δ, which gives, by the union bound, Pr[E ′′] ≥ 1− k · δ ≥ 1− 1/(20k3 ln(2k)),
because δ = 1/(20k4 ln(2k)). Since the 2k subsets H+

inv (i1), H
+
inv (i

′
1), . . ., H

+
inv(ik), H

+
inv (i

′
k)

are pairwise disjoint under the event E ′, the k edges e1, . . ., ek sampled by the k ℓ0-samplers
Lij ,i′j ,wt(uj ,vj), 1 ≤ j ≤ k, respectively, share no common endpoints, i.e., the edge set {e1, . . . , ek}
is a k-matching in G. Moreover, because wt(ej) = wt(uj , vj) for all 1 ≤ j ≤ k, {e1, . . . , ek} is
actually a maximum weighted k-matching in G. As a consequence, under the event E ′ ∩ E ′′,
the subgraph G(E0) of the graph G induced by the edge set E0 constructed in step 6.2 of the
algorithm w-Matchdyn contains a maximum weighted k-matching in the graph G. Finally,
because Pr[E ′] ≥ 1− 1/(2k3 ln(2k)) and Pr[E ′′] ≥ 1− 1/(20k3 ln(2k)), by the union bound:

Pr[E ′ ∩ E ′′] ≥ 1− 1/(2k3 ln(2k)) − 1/(20k3 ln(2k)) = 1− 11/(20k3 ln(2k)).

In conclusion, under the event E ′∩E ′′, step 7 of the algorithm w-Matchdyn returns a maximum
weighted k-matching in the graph G. The lemma is proved.

Now we arrive at our conclusion for the algorithm w-Matchdyn(S, k).

Theorem 4.4 Let (S.k) be a stream of a weighted graph G in the dynamic model. Then

(1) if G contains a k-matching then, with probability at least 1−11/(20k3 ln(2k)), the algorithm
w-Matchdyn(S, k) returns a maximum weighted k-matching in G; and

(2) if G does not contain a k-matching then the algorithm w-Matchdyn(S, k) reports so.

Moreover, the algorithm w-Matchdyn(S, k) uses O(k2W ·polylog(n)) space and has O(polylog(n))
update time, where W is the number of distinct edge weight values in the graph G.

Proof. First observe that the graph G(E0) in step 7 induced by the edge set E0 constructed
by step 6.2 of the algorithm w-Matchdyn is a subgraph of G. Therefore, statement (2) in the
theorem clearly holds true. Statement (1) follows from Lemma 4.3.

To analyze the complexities of the algorithmw-Matchdyn(S, k), first recall that for a vertex v
in the graphG, the setH+(v) is a subset of [r]−, where r = d1d2d3, d1 = O(k/ ln k), d2 = O(ln k),
and d3 = O(ln2 k) (see the algorithm HashScheme in Figure 2). Thus, r = O(k ln2 k).

Consider the update time of the algorithm. The update on elements in the stream S is
processed by steps 4.2-4.3. By Theorem 4.1, step 4.2 takes time polynomial in log |V | (note
d2 = O(ln k)). For step 4.3, since each of the subsets H+(u) and H+(v) contains d2 = O(ln k)
values, step 4.3 examines O(ln2 k) pairs of the form (i, j). We can organize all the ℓ0-samplers
Li,j,w in a 2-dimensional array C[1..r, 1..r], where the element C[i, j] is a balanced search tree
for the weights of the edges between the subsets H+

inv (i) and H+
inv (j), which supports searching,

insertion, and deletion in logarithmic time per operation [9]. The array C[1..r, 1..r] of space
O(r2W ) supports searching a given ℓ0-sampler Li,j,w in step 4.3.1 in time O(logW ). This,
plus the time for updating the ℓ0-sampler Li,j,w in steps 4.3.1-4.3.2 (which is O(polylog(n)) by
Proposition 2.2), shows that steps 4.3.1-4.3.2 take time O(polylog(n)). As a result, step 4.3
takes time d22 · O(polylog(n)) = O(polylog(n)) because d2 = O(ln k). In conclusion, the update
time of the algorithm w-Matchdyn(S, k) on each element in the stream S, as given in steps
4.1-4.3 of the algorithm, is O(polylog(n)).

We analyze the space complexity of the algorithm. By Theorem 4.1, the space taken by
steps 1-3 of the algorithm is O(log k log |V |), which is used to initialize certain values and to
construct and store the hash functions in H+. For step 4, as we described above, we can
use a 2-dimensional array C[1..r, 1..r] to store the r2W ℓ0-samplers Li,j,w. Moreover, since
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δ = 1/(20k4 ln(2k)), by Proposition 2.2, each ℓ0-sampler Li,j,w uses O(log2 |V | · log k) space. As
a result, step 4 of the algorithm totally takes space O(r2W log2 |V | log k). Now consider steps
5-7 of the algorithm. The space complexity of steps 5-7 is dominated by the space used to store
the r2W ℓ0-samplers Li,j,w, which is bounded by O(r2W log2 |V | log k) as analyzed above, and
the space used to store the induced subgraph G(E0). Since at most one edge is sampled from
each ℓ0-sampler and there are r2W ℓ0-samplers, the number of edges in the set E0, thus the size
of the graph G(E0), is O(r2W ). Finally, step 7 of the algorithm uses space O(|E0|) = O(r2W ) to
construct a maximum weighted k-matching in the induced subgraph G(E0) [15]. Summarizing
all the discussions above, we conclude that the space complexity of the algorithm w-Matchdyn

is O(r2W log2 |V | log k) = O(k2W · polylog(n)), thus, complete the proof of the theorem.

Remark. When W = 1, Theorem 4.4 gives a streaming algorithm in the dynamic model for
the p-Matching problem, i.e., the k-matching problem on unweighted graphs. The algorithm
runs in O(k2 · polylog(n)) space and O(polylog(n)) update time, and has success probability at
least 1− 11/(20k3 ln(2k)). The known lower bounds for p-Matching, as we will discuss in the
next section, show that both the space complexity and update time of this algorithm are nearly
optimal, i.e., differing from the corresponding optimal bounds by at most a poly-logarithmic
factor.

The space complexity O(k2W · polylog(n)) of the streaming algorithm w-Matchdyn in the
dynamic model for weighted graphs is large if the number W of distinct edge weights is large.
Unfortunately, as we will prove in the appendix, the term W in space complexity for streaming
algorithms in the dynamic model for the p-wMatching problem is actually unavoidable. On the
other hand, as suggested in [5], by rounding the edge weights, algorithms such as w-Matchdyn

can be used to develop streaming approximation algorithms in the dynamic model for the p-
wMatching problem.

Under the Size-k Constraint, an approximation streaming algorithm for the p-wMatching

problem was presented in [5]. The algorithm approximates p-wMatching to within ratio
1 + ǫ, for any ǫ > 0, and has space complexity O(k2 logRwt · polylog(n)/ǫ) and update time
O(polylog(n)), where Rwt is the ratio of the maximum edge weight over the minimum edge
weight. Approximation streaming algorithms for p-wMatching in the dynamic model with no
assumption of Size-k Constraint were also studied and developed in [5], which are able to keep
the same space complexity but have to worsen the update time to O(k2 · polylog(n)).

Using Theorem 4.4, and following the same approach in [5], we obtain the following approxi-
mation streaming algorithm of ratio 1+ǫ for the p-wMatching problem in the dynamic model.
The algorithm has space complexity O(k2 logRwt ·polylog(n)/ǫ) and update time O(polylog(n)),
and does not need to assume the Size-k Constraint.

Theorem 4.5 For any 0 < ǫ < 1, there is an algorithm for the p-wMatching problem in the
dynamic model that on a stream (S, k) for a weighted graph G:

(1) returns a k-matching of weight at least (1− ǫ) of that of a maximum weighted k-matching
in G if G contains k-matchings; and

(2) reports no k-matching if G does not contain a k-matching.

Moreover, the algorithm uses O(k2 logRwt · polylog(n)/ǫ) space and has O(polylog(n)) update
time, where Rwt is the ratio of the maximum edge weight over the minimum edge weight.

Proof. For each edge e in the graph G, we assign e a new weight wt′(e) = t, where t is the
integer satisfying (1 + ǫ)t−1 < wt(e) ≤ (1 + ǫ)t. Thus, under the new edge weights, the graph G

17



has O(logRwt/ǫ) distinct edge weights. Now we run the algorithm w-Matchdyn on the graph
G with the new edge weights. By Theorem 4.4, the algorithm returns a k-matching M in G in
space O(k2 logRwt · polylog(n)/ǫ) and update time O(polylog(n)), with success probability at
least 1− 11/(20k3 ln(2k)).

We prove that in terms of the original edge weight function wt(·) of the graph G, the weight
wt(M) of the k-matching M returned by the above algorithm is at least (1 − ǫ) of the weight
wt(Mmax) of a maximum weighted k-matching Mmax = {e1, . . . , ek} in the graph G. Consider
the algorithm w-Matchdyn on the graph G with the new edge weights. As proved in Lemma 4.3,
with probability at least 1− 11/(20k3 ln(2k)), the induced subgraph G(E0) constructed by step
6 of the algorithm w-Matchdyn contains a k-matching M ′ = {e′1, . . . , e′k}, where for each s, the
edge e′s in M ′ and the edge es in the maximum weighted k-matching Mmax are processed by
the same ℓ0-sampler Li,j,w. Therefore, under the new edge weights of the graph G, the edges e′s
and es have the same weight wt′(e′s) = wt′(es) = w, which, by the definition of the new edge
weights, immediately gives the relation wt(es)/wt(e

′
s) ≤ 1+ ǫ on the original edge weights of the

graph G. Summarizing this over all 1 ≤ s ≤ k, we get

wt(Mmax)

wt(M ′)
=

∑k
s=1 wt(es)

∑k
s=1 wt(e

′
s)
≤ 1 + ǫ.

Therefore, with probability ≥ 1− 11/(20k3 ln(2k)), the induced subgraph G(E0) constructed by
step 6 of the algorithm w-Matchdyn contains the k-matching M ′ whose weight wt(M ′) is at
least wt(Mmax)/(1+ ǫ). As a result, the k-matching M returned by the algorithm w-Matchdyn ,
which is a maximum weighted k-matching in G(E0) in terms of the new edge weights, has its
weight wt(M) at least wt(Mmax)/(1 + ǫ) ≥ (1 − ǫ)wt(Mmax). This completes the proof of the
theorem.

5 Conclusions and final remarks

In this paper, we presented streaming algorithms for the fundamental graph k-matching prob-
lem, for both unweighted graphs and weighted graphs, and in both the insert-only and dynamic
streaming models. While matching the best space complexity of known algorithms, our algo-
rithms have much faster update times, significantly improving previous known results. In fact,
our algorithms are optimal or near-optimal for many cases for the graph k-matching problem.
We give below a brief discussion on the optimality of our algorithms when they are applied in
various cases of the graph k-matching problem.

A lower bound Ω(k2) on the space complexity for the p-Matching problem in the insert-only
streaming model to construct a k-matching in an unweighted graph has been developed in [5],
which shows that for any randomized streaming algorithm for the problem, there are instances
of size n and parameter k, such that the algorithm takes space of Ω(k2) bits. The more difficult
problem p-wMatching in the insert-only streaming model is to construct a maximum weighted
k-matching in a weighted graph, for which the Ω(k2) space lower bound certainly holds true. By
Theorem 3.5, our streaming algorithm w-Matchins given in section 3 solves the p-wMatching

problem in the insert-only model in space O(k2) and update time O(1). The optimality of
the update time O(1) of the algorithm w-Matchins is obvious. Thus, the streaming algorithm
w-Matchins solves the p-wMatching problem in the insert-only model in both optimal space
complexity and optimal update time. To the authors’ best knowledge, this is the first streaming
algorithm for the p-wMatching problem that achieves optimality in both space complexity
and update time complexity.

18



Similarly, the p-Matching problem in the dynamic streaming model is at least as hard as the
problem in the insert-only streaming model, so the space lower bound Ω(k2) also holds true for
the p-Matching problem in the dynamic model. As we remarked in the paragraph following
Theorem 4.4, our streaming algorithm w-Matchdyn given in section 4 has space complexity
O(k2 ·polylog(n)) and update time O(polylog(n)) when it is applied in solving the p-Matching

problem in the dynamic model. This presents the first streaming algorithm in the dynamic model
that solves the p-Matching problem in both near-optimal space complexity and near-optimal
update time complexity, where by “near-optimal”, we mean that the complexity bounds of the
algorithm differ from the corresponding optimal bounds only by a poly-logarithmic factor.

By Theorem 4.4, when the algorithm w-Matchdyn is applied to solve the p-wMatching

problem in the dynamic model, it still keeps the near-optimal update time O(polylog(n)), but
increases its space complexity to O(k2W · polylog(n)), which will be quite significant if the
number W of distinct edge weight values is large (note that W can be as large as the number of
edges in the input graph). Unfortunately, the dependency of the space complexity on the value
W for streaming algorithms solving the problem p-wMatching is actually unavoidable: in the
appendix, we give a proof that any randomized streaming algorithm in the dynamic model that
solves the p-wMatching problem has space complexity Ω(max{W logW,k2}). Readers who
are interested in space lower bounds for streaming algorithms are referred to [13, 18] for more
recent developments.

We believe that the hash scheme we developed in subsection 4.1 is of independent interests.
Different from the standard hashing techniques that partition the universal set U into pairwise
disjoint subsets, our hash scheme is actually a many-to-many mapping from the universal set
U to a set whose size is smaller than that for standard hashing. Therefore, our hash scheme
constructs a collection of (unnecessarily disjoint) subsets of U , but ensures that a subcollection of
disjoint subsets distinguishes a subset of k elements in U . Compared with the standard hashing
techniques, this approach uses less space and has a higher success probability. We believe that
the results and techniques can have wider applications in other fundamental graph problems.

When applied to the problem p-Matching for unweighted graphs, the space complexity
and update time of our streaming algorithm w-Matchdyn in the dynamic model are near-
optimal, which still differ from the corresponding proven lower bounds by a poly-logarithmic
factor. When the algorithm is applied to the problem p-wMatching for weighted graphs in
the dynamic model, the gap between the upper bound provided by the algorithm w-Matchdyn

and the proven lower bound is still quite significant. It will be interesting to study how much
we can further narrow down or even close the gaps between the upper bounds and the lower
bounds. In particular, is it possible to have streaming algorithms in the dynamic model for the
p-Matching problem with space complexity O(k2) and update time O(1)? This question is
also related to the space lower bounds on streaming approximation algorithms for maximum
matching in the dynamic model [13, 20].

Another interesting problem that deserves further study is the trade-off between the space
complexity and the update time of streaming algorithms. The O(1) update time of our streaming
algorithm w-Matchins for the p-wMatching problem in the insert-only model used a technique
of interleaving the process of updating a sketch, which is the subgraphGf

s of the input graph G in
our algorithm, with the process of reading the next input stream segment Gs+1,s′ (see Figure 1).
To make the time for reading the new input stream segment to “cover” that for updating the
sketch, smaller memory space for storing the (thus, shorter) new input stream segment would
require longer update time per element in the segment, while faster update time per element
in the stream would result in reading a longer new input stream segment that requires larger
memory space for storing the segment. Moreover, longer new input stream segment would make
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the sketch updating more time consuming to include the information brought in by the longer
new segment. It would be interesting to study the interaction/relation between these parameters
in streaming algorithms.
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A Lower Bounds

In this appendix, we study lower bounds on the space complexity of randomized streaming
algorithms for the problems p-Matching and p-wMatching, in both the insert-only model
and the dynamic model. These lower bound results, in conjunction with the algorithms given in
this paper, show that in many cases, the space complexity achieved by our algorithms is optimal
or near-optimal (i.e., optimal modulo a poly-logarithmic factor in the input size). Note that the
update times of our algorithms, which are O(1) in the insert-only model and O(polylog(n)) in
the dynamic model, are already optimal or near-optimal.

A lower bound Ω(k2) on the space complexity for p-Matching in the insert-only model has
been developed in [5], which shows that for any randomized streaming algorithm for the problem,
there are instances of size n and parameter k, where n = Θ(k2), such that the algorithm takes
space of Ω(n) = Ω(k2) bits. This result does not seem to address the following issues that are
special for parameterized streaming algorithms in which (1) the graph size n and the parameter
k in general are relatively independent, and (2) the graph size n can be much larger than the
parameter k.

In the following, we introduce a new definition for lower bounds for streaming problems,
which tries to address the above issues that are special for parameterized streaming algorithms.
The definition is given in terms of space complexity, but can be extended to other complexity
measures.

Definition A parameterized streaming problem Q has a space complexity lower bound Ω(g(k))
if for any streaming algorithm A for Q, there are infinitely many parameter values k such that
for each such parameter value k and for any integer n ≥ k (n does not depend on k), there are
instances of parameter k and size larger than n on which the algorithm A runs in space Ω(g(k)).

The definition above is consistent with the standard ones. In particular, a lower bound in
terms of this definition implies the same lower bound in terms of the standard definition.

As in the previous work such as [5], we will use the one-way communication model to prove
lower bounds on the space complexity of randomized streaming algorithms for p-Matching and
p-wMatching. In this model, there are two parties, Alice and Bob, each receiving x and y,
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respectively, who wish to compute f(x, y). Alice is permitted to send Bob a single message M ,
which only depends on x and Alice’s random coins. Then Bob outputs b, which is his guess of
f(x, y). Here, b only depends on y,M, and Bob’s random coins. We say the protocol computing
f with success probability 1− δ if Pr[b = f(x, y)] ≥ 1− δ for every x and y.

A.1 Lower bounds for p-Matching

We will use the lower bound on the communication complexity of the following problem:

The Index problem: Alice has an m-bit string x ∈ {0, 1}m and Bob has an integer
z ∈ [m]. The goal is to compute the z-th bit of x.

It is known [22] that any randomized communication protocol solving the Index problem with
success probability ≥ 2/3 has communication complexity of Ω(m) bits. The constant 2/3 can
be improved to any constant strictly greater than 1/2 [29].

Theorem A.1 Any randomized streaming algorithm for the p-Matching problem in the insert-
only model with success probability at least 2/3 uses Ω(k2) bits of space.

Proof. The proof follows the ideas of [5], with modifications to meet the additional conditions
in the lower bound definition given above. Let Amatch be any randomized streaming algorithm
for p-Matching in the insert-only model with success probability at least 2/3. We show how
to use the algorithm Amatch to construct a communication protocol for the Index problem. Let
(x, z) be an instance of the Index problem, where x ∈ {0, 1}m and z ∈ [m]. Define a subset of
[m] as S = {i | the i-th bit of x is 1}. The task is to decide whether or not z ∈ S.

Let k1 = ⌈
√
m ⌉. Fix an injection χ : [m] −→ [k1]× [k1]. Suppose χ(z) = (pz, qz). Construct

a graph G whose vertex set contains two disjoint subsets of 2k1 vertices: VL = {li, l∗i | i ∈ [k1]}
and VR = {ri, r∗i | i ∈ [k1]}. The edge set of G contains the following edge subsets:

(1) ES = {[l∗s , r∗t ] | if (s, t) = χ(y) for some y ∈ S}; and
(2) EL = {[ls, l∗s ] | s 6= pz}, and ER = {[rt, r∗t ] | t 6= qz}.

To make G a graph of at least n vertices for any n > 4k1, we add to the graph G a disjoint star
of n− 4k1 vertices given by the edge set Estar = {[v0, vi] | 1 ≤ i ≤ n− 4k1 − 1}. This completes
the structure of the graph G, which has n vertices, where n > 4k1 can be any integer. It is not
difficult to verify that the graph G has a (2k1)-matching if and only if z ∈ S. Now construct
an instance (S, k) for p-Matching, where k = 2k1 and S is a stream for the graph G that first
inserts the edges in the set ES ∪ Estar , then inserts the edges in the set EL ∪ ER.

A communication protocol for the instance (x, z) for the Index problem works as follows:
(1) Alice runs the streaming algorithm Amatch for p-Matching on the instance (S, k) for the
elements in S that insert the edges in ES ∪ Estar (Alice can generate these elements because
she knows S). After processing all edges in ES ∪Estar , Alice sends the memory contents of her
computation to Bob. Bob then uses the memory contents of Alice’s computation and continues
running the streaming algorithm Amatch on the rest of the elements in the stream S that insert
the edges in EL ∪ ER (Bob can generate these elements because he knows z). As we observed,
Bob claims z ∈ S if and only if the algorithm Amatch on (S, k) returns a k-matching in G. Thus,
by the assumptions on the algorithm Amatch , this is a randomized communication protocol
solving the Index problem with probability ≥ 2/3. By [22], the communication complexity of
the protocol is of Ω(m) bits. Since the communication complexity of the protocol is equal to
the size of the message Alice passed to Bob, which is the space used by Alice when she runs
the algorithm Amatch , we conclude that the algorithm Amatch on the instance (S, k) uses space
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of Ω(m) = Ω(k2) bits. The theorem is completed because Amatch is an arbitrary algorithm for
p-Matching, and the size of the stream S can be arbitrarily larger than the parameter k.

Obviously, the space lower bound given by Theorem A.1 also applies to streaming algorithms
for the p-Matching problem in the dynamic model.

A.2 Lower bounds for p-wMatching

We start with the necessary background in information theory. For more details, see [12].
For a random variable X, the (Shannon) entropy H(X) of X is defined as

H(X) = −
∑

x

Pr[X = x] · log(Pr[X = x]).

The binary entropy function H(q) is H(X) for a 0-1 random variable X with Pr[X = 1] = q.
For two random variables Z1 and Z, the conditional entropy H(Z1 | Z) of Z1 given Z is

H(Z1 | Z) =
∑

z

H(Z1 | Z = z) · Pr[Z = z],

and the mutual information I(Z1;Z) is

I(Z1;Z) = H(Z)−H(Z | Z1).

For random variables Z1, Z2, and Z, the conditional mutual information I(Z1;Z2 | Z) of Z1, Z2

given Z is
I(Z1;Z2 | Z) = H(Z1 | Z)−H(Z1 | Z2, Z).

Random variables X, Y , Z form a Markov chain in that order (denoted by X → Y → Z) if
the conditional distribution of Z depends only on Y and is conditionally independent of X.

Proposition A.2 (Theorem 2.6.4, [12]) For any random variable X, H(X) ≤ log |X |, where
X is the range of X, with equality if and only if X has a uniform distribution over X .

Proposition A.3 (Theorem 2.5.2, [12]) For random variables Z1, Z2, . . ., Zn, and Z, we
have the following chain rule: I(Z1, Z2, . . . , Zn;Z) =

∑n
i=1 I(Zi;Z | Zi−1, Zi−2, . . . , Z1).

Proposition A.4 (Fano’s Inequality, [12], p. 39) Given a Markov chain X → Y → X ′,
and let p = Pr[X 6= X ′], then H(X | Y ) ≤ H(p) + p · log(|X | − 1), where X is the range of X.

Now we are ready for the lower bound for p-wMatching. Consider the following problem:

Partial Maximization: Alice has a sequence A = 〈a1, a2, . . . , am〉 of numbers in
[m2], and Bob is given a set PB = {(i, ai) | i ∈ B} of pairs, where B is a subset of
[m]. The goal is to compute max{at | t 6∈ B}, i.e., to compute the largest number at
in the sequence A that is not given to Bob.

Theorem A.5 For any constant δ, 0 ≤ δ < 1, any randomized one-way communication protocol
for the Partial Maximization problem with success probability at least 1−δ has communication
complexity of Ω(m logm) bits, where m is the length of the sequence given to Alice. The lower
bound holds even when we assume that all numbers in the sequence given to Alice are distinct.
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Proof. The proof is similar to that for the Augmented Indexing problem [27, 8]. For each
j ∈ [m], consider the random variable Xj that picks its value uniformly at random from {(j −
1)m + 1, . . . , j · m}. Then X1 < X2 < · · · < Xm - so all numbers in the sequence given to
Alice are distinct, and H(Xj) = logm for all j. For each j ∈ [m], let Bj = {j + 1, . . . ,m}
and let X ′

j be Bob’s guess of maxi 6∈Bj
Xi = Xj . Let M be the message sent from Alice to Bob.

Since Pr[X ′
j = Xj ] ≥ 1 − δ and Xj → (M,Xj+1,Xj+2, . . . ,Xm) → X ′

j is a Markov chain, by
Proposition A.4, for all j ∈ [m], we have

H(Xj |M,Xj+1, . . . ,Xm) ≤ δ · logm+ 1.

Hence,

I(Xj ;M | Xj+1, . . . ,Xm) = H(Xj | Xj+1, . . . ,Xm)−H(Xj |M,Xj+1, . . . ,Xm)

= H(Xj)−H(Xj |M,Xj+1, . . . ,Xm)

≥ (1− δ) logm− 1,

where the second equality holds because Xj, Xj+1, . . ., Xm are mutually independent. By the
definition of the mutual information and using the chain rule (Proposition A.3),

H(M) ≥ I(X1,X2, . . . ,Xm;M)

=
m
∑

j=1

I(Xj ;M | Xj+1, . . . ,Xm)

= Ω(m logm).

Finally, by Proposition A.2, log |M| ≥ H(M) = Ω(m logm), where M is the range of the
message M , i.e., the message M has at least 2Ω(m logm) possibilities. As a result, the length of
the longest possible message M sent from Alice to Bob is Ω(m logm).

A space lower bound for streaming algorithms of the p-wMatching problem in the dynamic
model now can be derived by reducing Partial Maximization to p-wMatching.

Theorem A.6 Let 0 ≤ δ < 1 be any constant. Any randomized streaming algorithm in the
dynamic model for the p-wMatching problem that, with probability ≥ 1− δ, computes a maxi-
mum weighted 1-matching has space complexity of Ω(W logW ) bits, where W is the number of
distinct edge weights in the graph stream.

Proof. Let Amatch be any randomized streaming algorithm for p-wMatching that, with prob-
ability ≥ 1 − δ, computes a maximum weighted 1-matching. We show how to use Amatch to
develop a communication protocol for Partial Maximization. Let (A,PB) be an instance of
Partial Maximization, where A = 〈a1, a2, . . . , am〉 is the sequence given to Alice, in which
all numbers are distinct, and PB = {(i, ai) | i ∈ B} is the set of pairs given to Bob, B ⊆ [m].

Let S be a dynamic graph stream that first insertsm arbitrary but distinct edges {e1, . . . , em},
where for each i, the edge ei has weight ai, then deletes the edges ei for i ∈ B. Obviously, a maxi-
mum weighted 1-matching in the graphG of the stream S has its weight equal to max{at | t 6∈ B},
which is the solution to the instance (A,PB) of Partial Maximization.

The communication protocol for Partial Maximization on the instance (A,PB) works as
follows: (1) Alice runs the streaming algorithm Amatch on the instance (S, 1) of p-wMatching
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for the first m elements of edge insertions in the stream S (Alice can generate these elements
because she knows the sequence A), then sends the memory contents of her computation to
Bob; (2) After receiving the message from Alice, Bob uses the memory contents from Alice and
continues running the algorithm Amatch on (S, 1) for the rest elements in the stream S, which
are edge deletions (Bob can generate these elements because he knows the subset B), to get
the maximum weighted 1-matching, thus the solution to the instance (A,PB) of the Partial

Maximization problem. Under the assumption of the algorithmAmatch , this gives a randomized
communication protocol with success probability ≥ 1 − δ for Partial Maximization. By
Theorem A.5, the size of the message sent from Alice to Bob, which is not larger than the space
complexity of the algorithm Amatch on (S, 1), has Ω(m logm) bits. Moreover, by our assumption
on the sequence A, m is equal to the number W of distinct edge weights in the stream S. As a
conclusion, the algorithm Amatch on the instance (S, 1) uses space of Ω(W logW ) bits.

Note that here the number W of distinct edge weights is the parameter for which we have
derived a lower bound. To make the lower bound hold true for graphs of size larger than W ,
i.e., to meet the additional conditions in the lower bound definition given at beginning of this
section, we can simply let Alice add (many) more elements in the stream S that insert edges of
weight equal to the smallest value in the sequence A.

Since the space lower bound Ω(k2) for streaming algorithms for the p-Matching problem
in the insert-only model certainly applies for the p-wMatching problem in the dynamic model,
we obtain the following corollary.

Corollary A.7 Any randomized streaming algorithm for the p-wMatching problem with suc-
cess probability ≥ 2/3 in the dynamic model uses Ω(max{W logW,k2}) bits of space, where W
is the number of distinct edge weights in the graph stream.
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