
Information and Computation 289 (2022) 104951
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Linear-time parameterized algorithms with limited local
resources ✩

Jianer Chen a,b,∗, Ying Guo a, Qin Huang b

a School of Computer Science, Guangzhou University, Guangzhou 510006, PR China
b Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 March 2020
Received in revised form 6 May 2022
Accepted 21 August 2022
Available online 28 August 2022

Keywords:
Bigdata
Linear-time algorithm
Space complexity
Graph matching

We propose a new computational model for the study of massive data processing. Our
model measures the complexity of reading the input data in terms of their very large
size N and analyzes the computational cost in terms of a parameter k that characterizes
the computational power provided by limited local computing resources. We develop new
algorithmic techniques for solving well-known computational problems on the model. In
particular, randomized algorithms of running time O (N + g1(k)) and space O (k2), with very
high probability, are developed for the famous graph matching problem on unweighted
and weighted graphs. More specifically, our algorithm for unweighted graphs finds a k-
matching (i.e., a matching of k edges) in a general unweighted graph in time O (N + k2.5),
and our algorithm for weighted graphs finds a maximum weighted k-matching in a general
weighted graph in time O (N + k3 log k).

© 2022 Elsevier Inc. All rights reserved.

1. Motivations

Recent progress in data science has shown that classical algorithmic techniques may become inadequate when dealing
with data sets of enormous size. For example, Facebook has billions of users and trillions of links [21]. Thus, a traditionally
“efficient” algorithm of running time say O (n2) may turn out to be not practically feasible. There have been fast growing in-
terests in the study of massive data sets. The research has included the study of structures of massive data and data queries
(e.g., [15]), parallel and distributed processing of massive data (e.g., [23]), and preprocessing of massive data (e.g., [14]).
The research has been driven directly by practical applications in massive data processing, and is essentially heuristic-based.
There has also been very active research in the algorithmic community. The study of very fast (sublinear-time, linear-time, or
nearly linear-time) algorithms in dealing with massive data sets has drawn extensive attention. A number of computational
models for dealing with massive data sets have been proposed and studied. In particular, data streaming and semi-streaming
models [24,16] have been proposed and studied, where the massive data (e.g., “big graphs”) may dynamically change and
the algorithms must process the input stream in the order it arrives while using only a limited amount of memory. Very
recently, studies on streaming algorithms based on the framework of parameterized computation have appeared [6,5,7].

In the current paper, we propose a new (theoretical) computational model for the study of massive data processing with
limited “local” computing resources. Our model is of a multivariate nature, which measures the complexity of reading the

✩ This work is supported in part by the National Natural Science Foundation of China under grant 61872097.

* Corresponding author.
E-mail address: chen@cse.tamu.edu (J. Chen).
https://doi.org/10.1016/j.ic.2022.104951
0890-5401/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2022.104951
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2022.104951&domain=pdf
mailto:chen@cse.tamu.edu
https://doi.org/10.1016/j.ic.2022.104951

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
very large data sets in terms of the size of the data sets and analyzes the computational cost in terms of a parameter
that characterizes the computational power provided by limited local computing resources. In particular, problems in our
consideration have two parameters N and k, where N is the input size, which is assumed to be extremely large thus
superlinear-time (such as quadratic-time) algorithms would be considered impractical, while k gives the “size” of feasibility
such that the limited local computing resource (e.g., a normal computer) can handle problems with complexity (time and
space) bounded by a polynomial of k, in addition to the linear-time reading from the input data. More specifically, we will
study algorithms for processing massive data sets that run in linear-time in terms of the input size N , and polynomial time
and polynomial space in terms of the parameter k, i.e., algorithms running in time O (N + kO (1)) and space O (kO (1)).

We argue that the proposed model is theoretically interesting and practically meaningful. Insisting on strict linear time
(which is necessary to read the input) in terms of the size of input data sets allows us to process data sets of very large size.
On the other hand, there seems to be no simple functional relations between the size of input data sets and the power of
available computational resources. In many cases, problems in massive data processing (such as aggregations) on very large
data sets are looking for solutions of size manageable by local computational resources, where the size of solutions and the
size of input data sets are unnecessarily related proportionally. Therefore, it is meaningful and convenient by introducing
another parameter k to characterize the available computational resources. The constraint on the space complexity in terms
of the parameter k reflects the fact that although massive data sets are stored publicly, users can only read the data but do
not own the space for storing the data. Allowing the cost of local resources to be bounded by polynomials of the parameter
k offers new challenges in algorithmic research. We point out that optimizing the cost of local resources in terms of the
parameter k implies widening the applicability of the algorithms. For example, if k is the solution size, then algorithms
whose resources are bounded by lower-degree polynomials of k allow us to handle massive data problems with larger
solutions.

As examples, we consider a number of well-known problems that have been extensively studied in algorithmic research,
and demonstrate how these problems can be solved in the proposed model. In particular, we show how the famous graph
matching problems (on general unweighted and weighted graphs) can be solved on this model. We present a randomized
algorithm that finds a k-matching (i.e., a matching of k edges) in a general unweighted graph in time O (N + k2.5) and a
randomized algorithm that constructs a maximum weighted k-matching in a general weighted graph in time O (N +k3 log k).
Both algorithms have very high success probability and have their space complexity bounded by O (k2).

2. Definitions and related work

Let A be an algorithm that solves a computational problem Q . Inputs to the algorithm A take the form of pairs (x, k),
where x is a proper encoding of an instance of Q and k is a parameter. For example, inputs to an algorithm that solves
the maximum weighted k-matching problem are of the form (G, k), where G is a weighted graph given in an adjacency list,
encoded properly, and the instance is looking for a k-matching in G that has the maximum weight over all k-matchings in
the graph G .

We assume that our algorithms run on the word-RAM model, in which each basic operation (e.g., arithmetic operations
and comparison) on words (i.e., the basic elements in a problem instance) takes constant time. Moreover, we assume that
the instances are “word addressable” so that algorithms can read any word in an input instance in constant time. On the
other hand, we do not allow algorithms to write (i.e., to modify) on input data. We will be focused on algorithms whose
running time is bounded by O (N +kO (1)) and whose space is bounded by O (kO (1)), measured in word complexity, where N
is the “size” of the input, i.e., the number of words in the input instance, and k is a parameter independent of the input size
N that measures the “local complexity” of the algorithms. We remark that by definition, our algorithms will run in linear-
time in the size of the input data for both word complexity and bit complexity. In fact, under common assumptions, the N
words in the input can be given in O (N log N) bits. Since each basic word operation takes constant time in word complexity,
which is O (log N)-time in bit complexity, the O (N)-time word complexity of the algorithms implies O (N log N)-time bit
complexity, which is linear in terms of bit complexity of the input data. On the other hand, the word complexity O (kO (1))

in local time and space would have an additional log N factor if we use bit complexity. We remark that, unlike some other
proposed models (e.g. [6,24]), the complexity bounds given for an algorithm in our model are not allowed to have an
“implicit” poly-log (i.e., a polynomial of log N or log k) factor. Therefore, the time complexity of an algorithm in our model
counts up the number of “normal” computational steps of the algorithm.

There have been several computational models in the literature that are related to our model.
A well-known complexity class SC (Steve’s Class) that bounds both time and space complexities simultaneously was

proposed by Stephen Cook [8], which consists of problems that are solvable in polynomial time while, simultaneously, with
the space being bounded by O (logO (1) n). In particular, the set of deterministic context-free languages is in the class SC [8].
Because the model allows high-degree polynomials in its running time, it may not be suitable for the paradigm of massive
data processing.

Motivated by massive data processing, sublinear-time algorithms have been studied recently [29], which use random-
ization and inspect only a portion of the input data to give (in some sense imprecise) solutions. Quality of sublinear-time
algorithms is measured in terms of the input size N and an error bound ε . On the other hand, linear time and quasi-linear
time algorithms have been the focus in algorithmic research for years and have been studied extensively [9], where however
a simultaneous bound on space complexity was seldom considered.
2

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
In the study of parameterized computation, there have been recent interests in “linear-time kernelization” algorithms
[25]. A kernelization algorithm for a parameterized problem Q translates an instance (x, k) of Q into an “equivalent”
instance (x′, k′) of Q such that both |x′| and k′ are bounded by a function of k. In particular, linear-time kernelization
algorithms for maximum matching in unweighted graphs have been developed in terms of various parameters of the input
graph, such as the feedback edge number, the feedback vertex number, and the distance to chain graphs [25]. However, the
kernelization algorithms given in [25], as well as in other recent work in this direction, operate on the input graphs. As a
result, the working space of the algorithms is a function of the size N of the input. There has also been recent research on
parameterized and kernelization algorithms for NP-hard problems on dynamic inputs whose major concern is on bounding
the update time by f (k)N1+o(1) for a function f (k) of k [1].

The study of streaming/semi-streaming algorithms, in particular such algorithms for graph matching, has attracted much
attention in recent years (see, e.g., [24,28,16,12] and their references). In such algorithms, input data are given as a stream
of the data while the algorithms must process the input data in the order they arrive, within a given space bound. For
instance, streaming/semi-streaming graph algorithms in general are restricted to space bound O (n logO (1) n), where n is
the number of vertices in the input graph (thus can be sublinear in terms of the size of the graph). Another complexity
measure in streaming/semi-streaming algorithms is the “per-element process-time” (i.e., the update time) [28], which, when
multiplied by the number of elements in the input, gives an upper bound on the running time of the algorithms.

More recently, there are increasing interests in the study of streaming algorithms under the framework of parameter-
ized computation. Fafianie and Kratsch [13] considered polynomial-time kernelization algorithms for streaming graphs on
a number of NP-hard problems, where the algorithms are restricted to have space bounded by O (kO (1)). Classifications of
parameterized streaming algorithms in terms of space complexity have been studied in [4]. Parameterized streaming algo-
rithms for graph matching on the dynamic streaming model (in which the stream consists of both edge insertion and edge
deletion operations) have been studied, where the focus is on the graph k-matching problem (i.e., constructing a k-matching
in an unweighted graph or constructing a maximum weighted k-matching in a weighted graph) [5–7]. A lower bound on
space complexity for streaming algorithms for the graph k-matching problem has been derived [7]. Under the condition that
no graphs in the stream contain matchings of more than k edges, randomized streaming algorithms of O (k2 logO (1) N) space
and O (logO (1) N) update time for the graph k-matching problem have been developed for unweighted graphs [6,7]. Stream-
ing algorithms for the k-matching problem on unweighted graphs without the above assumption on the graph stream, and
on weighted graphs, have also been proposed and studied, but the space and update time complexities of the algorithms
are significantly worsened [5–7]. Very recently, streaming algorithms on the dynamic streaming model for the k-matching
problem on unweighted and weighted graphs with improved update time have been developed [3].

3. Case study I: matching in unweighted graphs

In this and the next sections, we provide thorough investigations on algorithms in our proposed model that solve the
famous graph matching problems. This section is focused on unweighted graphs, while the next section is on weighted
graphs.

All graphs in our discussion are undirected, which are given in the adjacency list format. A graph G is weighted if each
edge in G is associated with a weight, which is a real number.

A matching M in a graph G is a set of edges in G such that no two edges in M share a common end. A matching is
a k-matching if it consists of exactly k edges. A vertex v is covered by the matching M if v is an end of an edge in M .
Otherwise, the vertex v is uncovered.

The instances of the (parameterized) Unweighted Graph Matching problem (p-UGM) are pairs of the format (G, k),
where G is an unweighted graph and k is an integer (the parameter). An algorithm that solves the p-UGM problem on an
input (G, k), either returns a k-matching in the graph G , or reports that no k-matching exists in G .

Throughout this paper, we will let N = |V | + |E| be the “size” of a graph G = (V , E).
We remark that the trivial greedy algorithm that finds a maximal matching, i.e., the algorithm that repeatedly adds edges

with uncovered ends to the matching, cannot be directly used in our model: to check if an end of an edge is uncovered,
we need to search in the vertices that are already covered, which will take time up to O (log k), resulting in an algorithm
whose running time is at least O (N log k).

Let G be a graph and let k be an integer. A vertex v in G is a large-vertex if the degree of v is at least 2k. A vertex is a
small-vertex if it is not a large-vertex.1

Lemma 3.1. If a graph G has at least k large-vertices, then G has a k-matching, which can be constructed in time O (N + k2 log k) and
space O (k).

Proof. Let v1, v2, . . ., vk be k large-vertices in G . We simply pick k edges of the form [vi, wi], where for each 1 ≤ i ≤ k,
the vertex wi is not in the vertex set Q = {v1, v2, . . . , vk} ∪ {w1, w2, . . . , wi−1}. Note that this is always possible since the

1 We remark that the idea of classifying vertices by their degrees, although in different settings, has appeared in previous work on streaming algorithms
for graph matching [6,12]. For example, in the development of (unparameterized) streaming algorithms to estimate the maximum matching size [12],
vertices in a graph are divided into “heavy vertices” and “light vertices.”
3

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
large-vertex vi has at least 2k neighbors while the number of vertices in the set Q \ {vi} is (k − 1) + (i − 1) ≤ 2k − 2. Such
k edges [vi, wi], 1 ≤ i ≤ k, obviously make a k-matching in the graph G .

To implement this, we scan the graph G to identify the first k large-vertices v1, v2, . . ., vk in G and store them in
the set Q in space O (k). The set Q is organized as a balance search tree that supports searching and insertion in log-
arithmic time per operation. We then re-scan the graph G , and for each i, 1 ≤ i ≤ k, we work on the large-vertex vi .
Inductively, we have the set Q = {v1, v2, . . . , vk} ∪ {w1, w2, . . . , wi−1} stored in space O (k). Since the set Q \ {vi} has no
more than 2k − 2 vertices, to find an edge [vi, wi] where wi is not in the vertex set Q , we need to examine at most 2k − 1
neighbors of vi . After finding the edge [vi, wi], we add the vertex wi to the set Q , thus completing the process on the
i-th large-vertex vi . As a result, finding the edge [vi, wi] takes at most O (k) searching/insertion operations on the set Q ,
which is done in time O (k log k). In conclusion, it takes time O (N + k2 log k) and space O (k) to construct the k-matching
{[v1, w1], [v2, w2], . . . , [vk, wk]} in the graph G . �

Now we consider the situation where the graph G has only h large-vertices v1, v2, . . ., vh , where h < k. An h-reduced
graph Gh of G is constructed from G , using the following procedure:

1. For each large-vertex vi : pick arbitrary deg(vi) − 2k edges of the form [vi, wi], where wi is a small-vertex, and delete
these edges.

2. Delete all vertices of degree 0 in the resulting graph.

We give some remarks on the h-reduced graph Gh . First, for each large-vertex vi , it is always possible to find deg(vi) −2k
edges of the form [vi, wi], where wi is a small-vertex. This is because vi has at least 2k neighbors while there are only
h < k large-vertices. Secondly, since we only delete edges whose one end is a large-vertex and the other end is a small-
vertex, when we delete edges incident to a large-vertex, no other large-vertices would change their degrees. In particular,
all large-vertices in the h-reduced graph Gh have degree exactly 2k.

Lemma 3.2. Let G be a graph that has h large-vertices v1 , v2 , . . ., vh, with h < k, and let Gh be an h-reduced graph of G. Then the
graph G has a k-matching if and only if the h-reduced graph Gh has a k-matching.

Proof. Since the h-reduced graph Gh is a subgraph of the graph G , if Gh has a k-matching, then obviously the graph G has
a k-matching.

To prove the other direction, assume, to the contrary, that the graph G has a k-matching but the h-reduced graph Gh
has no k-matching. Suppose that a k-matching in G can have at most r edges in the h-reduced graph Gh . Thus, r < k. Let
Ar be the set of all k-matchings in G that have exactly r edges in the h-reduced graph Gh . We first study the properties
of k-matchings in the set Ar . Let M be any k-matching in Ar . Since the graph Gh has no k-matching, there is at least one
edge e0 in M that is not in Gh .

(1) The k-matching M must cover all large-vertices. To see this, suppose that M does not cover a large-vertex vi . Consider
the (k − 1)-matching M−

0 = M \ {e0}, where e0 is an edge in M that is not in Gh . The (k − 1)-matching M−
0 also contains

r edges in the h-reduced graph Gh . There are at most 2k − 2 neighbors of the large-vertex vi in Gh that are covered by
the (k − 1)-matching M−

0 . Since the large-vertex vi has 2k neighbors in Gh , there is a neighbor wi of vi in Gh that is not
covered by M−

0 . Therefore, M−
0 ∪ {[vi, wi]} gives a k-matching in G that has r + 1 edges in Gh , contradicting the assumption

that a k-matching in G can have at most r edges in Gh . This contradiction proves that the k-matching M must cover all
large-vertices.

(2) The k-matching M does not contain edges whose both ends are large-vertices. Suppose that M contains an edge
e1 = [vi, v j] whose both ends vi and v j are large-vertices. First note that the edge e1 must be in the graph Gh since in the
construction of the h-reduced graph Gh , we never delete edges whose both ends are large-vertices. Since at most 2k − 2
neighbors of the large-vertex vi can be covered by the (k − 1)-matching M−

1 = M \ {e1} and since the large-vertex vi has 2k
neighbors in Gh , at least one neighbor wi �= v j of vi in Gh is not covered by M−

1 . Thus, replacing the edge e1 = [vi, v j] by
the edge [vi, wi] gives a k-matching that has r edges in Gh but leaves the large-vertex v j uncovered. But this contradicts
what we have proved in (1) that a k-matching in Ar must cover all large-vertices.

(3) The k-matching M cannot contain an edge e2 = [vi, xi] in G that is not in the h-reduced graph Gh , where vi is a
large-vertex. Again if such an edge e2 exists, then there must be a neighbor wi of vi in Gh such that wi is not covered
by the (k − 1)-matching M−

2 = M \ {e2}. Thus, the k-matching M−
2 ∪ {[vi, wi]} would give a k-matching in G that has r + 1

edges in the h-reduced graph Gh , contradicting the definition of r.
Summarizing (1)-(3), we conclude that the k-matching M must contain h edges in the h-reduced graph Gh , with one

end being a large-vertex and the other end being a small-vertex. Since there are only h large-vertices in the graph G , the
other k − h edges in M must have their both ends being small-vertices. Because in the construction of the h-reduced graph
Gh , we never delete edges whose both ends are small-vertices, these k − h edges in M must also be in the h-reduced graph
Gh . Thus, the k-matching M in G is a k-matching in the h-reduced graph Gh , contradicting the assumption that Gh has no
k-matching, thus, proving the lemma. �
4

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
Fig. 1. The k-matching algorithm for unweighted graphs.

By Lemma 3.2, it suffices to consider how to construct a k-matching in the h-reduced graph Gh . Unfortunately, because
of the space limit, we cannot construct the h-reduced graph explicitly and store it in the working memory: the number
of edges whose both ends are small-vertices in the original G can be as large as �(N), which are all contained in the
h-reduced graph. In the following, we show how we can construct a k-matching in an “implicit” h-reduced graph Gh . For
simplicity, we will call an edge e a small-edge if both ends of e are small-vertices.

Lemma 3.3. Let h < k. If the h-reduced subgraph Gh has a subgraph G ′
h that contains all edges that are incident to the large-vertices

in Gh plus (4k − 3)(k − h) small-edges in Gh, then G ′
h has a k-matching that can be constructed in time O (k2 log k) and space O (k2).

Proof. First note that the graph G ′
h can be stored in space O (k2). We construct a k-matching in the graph G ′

h , as follows:
(1) start with an empty matching M; and (2) repeatedly pick an edge e from the remaining small-edges, include e in the
matching M , and delete the two ends of e (and all incident edges). Since there are at most 4k − 4 other small-edges that
can share common ends with e, with the (4k − 3)(k −h) small-edges in G ′

h , we will be able to construct a matching of k −h
edges in G ′

h . Now, as we did in Lemma 3.1, we proceed with each vi of the h large-vertices {v1, . . . , vh}, where we can find
an edge [vi, wi], where wi is a small-vertex not covered by M , so we can add the edge [vi , wi] to the matching M . This
gives a k-matching M in the graph G ′

h .
To achieve the time complexity given in the lemma, we store the edges and vertices of the graph G ′

h in balanced search
trees so that searching, insertion, and deletion take O (log k) time per operation, which leads to the O (k2 log k) running time
of the algorithm. �

Now we are ready for our matching algorithm for unweighted graphs, as given in Fig. 1, where Best-Match in step 5 is an
algorithm that solves the k-matching problem in the h-reduced subgraph Gh , whose complexity will be discussed in detail
later. In order to keep the running time of the algorithm UGM to be linear in terms of the input size N , we need to use
certain randomness, which will be explained in the proof of Theorem 3.4. Thus, our algorithm is a randomized algorithm,
whose error bound and complexity are given in the following theorem.

Theorem 3.4. For any ε > 0, with probability at least 1 − ε , the algorithm UGM solves the p-UGM problem in time O (N + k2 log k +
k log(1/ε) + α(k2)) and space O (k2), where α(k2) is the time complexity for finding a k-matching in a graph of O (k2) edges and
without degree-0 vertices, with the space complexity simultaneously bounded by O (k2).

Proof. The correctness of the algorithm is obvious: Lemma 3.1 and Lemma 3.3 ensure, respectively, that if the algorithm
returns at step 2 and step 4, then it returns a k-matching in the graph G . If the algorithm returns from step 5, then
Lemma 3.2 guarantees that the algorithm returns a k-matching in the h-reduced graph Gh , which is also a k-matching in
the original graph G , if and only if the original graph G has a k-matching.

We analyze the complexity of the algorithm. Recall that the graph G is given in an adjacency list. Thus, the degree of a
vertex can be computed by reading the list of neighbors of the vertex. As a result, step 1 takes time O (N). Since we keep
at most k large-vertices of G in the set V L , the set V L can be stored in space O (k). In case the number h of large-vertices
in the set V L is equal to k, by Lemma 3.1, step 2 of the algorithm constructs and returns a k-matching M in G in time
O (N + k2 log k) and space O (k).

If the number h of large-vertices in the set V L is smaller than k, then step 3 of the algorithm constructs the h-reduced
graph Gh . For this, we need to be more careful: in order to collect the small-edges, we need to decide for each edge if any
endpoint of the edge is a large-vertex. Even if we organize the large-vertices in a balanced search tree, it would still take
time O (N log h) = O (N log k) to go through the edges of G and construct the h-reduced graph Gh .

To solve this problem, we use the technique of universal hashing [9]. For an integer m ≥ 1, denote by [m] the integer set
{1, 2, . . . , m}. For the set V L of the h collected large-vertices, we pick a hash function H from U to [h2] randomly from a
universal class of hash functions, where U is the set of the vertices in the input graph G . With probability at least 1/2, the
function H is injective from the set V L to [h2] (see [9], Theorem 11.9). The hash function H can be constructed in constant
5

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
(randomized) time (see [9], Theorem 11.5). Moreover, after initializing an array A[1..h2] in time O (h2), we can check if the
function H is injective from V L in time O (h): for this, we fix a distinct value aH for the function H , and for each vertex
v in V L , if A[H[v]] is already equal to aH , then the function H is not injective from V L , otherwise, we set A[H[v]] = aH .
Therefore, for any ε > 0, by repeating this procedure log(1/ε) times, thus in time O (log(1/ε)h + h2) (note that the array
A[1..h2] needs to be initialized only once), with probability at least 1 − ε , we will get a hash function H0 that is injective
from V L . Using this hash function H0, we re-initialize the array A[1..h2], and then place the h large-vertices in V L in the
array A[1..h2] so that a large-vertex w is placed in A[H0[w]]. Since h < k, we conclude that with probability at least 1 − ε
and in time O (log(1/ε)k + k2) and space O (k2) (which is mainly for the array A[1..h2]), we will find the hash function H0
that is injective from V L and finalize the array A[1..h2]. Now for any vertex v in the input graph G , by checking the value
A[H0(v)], which takes constant time, we can easily find out if v is a large-vertex.

Now it is straightforward to construct the h-reduced graph Gh . We simply scan the input graph G . For each large-
vertex vi , we delete all but 2k edges incident to vi , (keeping all the edges of the form [vi, v j] where v j is also a large-
vertex). For each small-vertex w , we record the small-edges incident to w . The process stops either when we have collected
(4k −3)(k −h) small-edges, or when all edges of the graph G are examined. In the former case, we get a subgraph G ′

h of the
h-reduced graph Gh that satisfies the conditions of Lemma 3.3, thus, step 4 of the algorithm UGM constructs a k-matching
M in G ′

h (thus also in Gh and in G) in time O (k2 log k) and space O (k2). In the latter case, the h-reduced graph Gh has
fewer than 2kh + (4k − 3)(k − h) = O (k2) edges, so the algorithm Best-Match in step 5 is applied on the graph Gh with
O (k2) edges and Lemma 3.2 guarantees the correctness of the algorithm UGM.

We remark that in this process, the vertices in G that become of degree-0 after the construction of the h-reduced
subgraph Gh can also be efficiently identified and deleted: for each small-vertex w , we do not record any of its incident
edges whose other end is a large-vertex. In particular, small-vertices in G that are adjacent to only large-vertices are not
recorded in this scanning phase. Only after this scanning phase, we re-examine the chosen edges incident to large-vertices
in the h-reduced graph Gh , and add further small-vertices to Gh if they are the other ends of these edges and are not
recorded in the scanning phase. This prevents the graph Gh from having degree-0 vertices. Thus, the h-reduced graph Gh in
step 5 has O (k2) edges and has no vertices of degree 0. As a result, the number nh of vertices in the h-reduced subgraph
Gh is also bounded by O (k2). Now we rename the vertices of Gh as integers in [1..nh] so that the Best-Match algorithm in
step 5 can be applied. This takes another O (k2 log k) time and space O (k2). By the assumption, the p-UGM problem on the
graph Gh (thus by Lemma 3.2 on the input graph G) can be solved in time α(k2) and space O (k2).

Summarizing all the above discussions completes the proof of the lemma. �
Now we study the time complexity α(k2) of solving the k-matching problem in a graph with O (k2) edges (we will

assume, without loss of generality, that graphs have no degree-0 vertices). There has been extensive research on algorithms
for constructing a maximum matching in an unweighted graph [22,26,32]. In particular, it is known [26] that for a graph of
n vertices and m edges, a maximum matching in the graph can be constructed in time O (m

√
n), from which the k-matching

problem can be solved trivially. Therefore, for graphs of O (k2) edges, which may have up to O (k2) vertices, the k-matching
problem can be solved in time O (k3), giving an upper bound O (k3) for the complexity α(k2). In the following, we show
how a better upper bound for the time complexity α(k2) can be obtained.

Let M be a matching in a graph G . An augmenting path P (relative to M) in G is a simple path whose both ends are
uncovered by M , and whose edges are alternatively going between not in M and in M . An augmenting path is the shortest
if its length (i.e., the number of edges) is the minimum over all augmenting paths relative to M .

We start with the following theorem, which is also of its independent interests.

Theorem 3.5. There is an O (m
√

k)-time and O (m)-space algorithm that on a graph G of m edges, either constructs a k-matching in
G or reports that no k-matching exists in G.

Proof. We first prove the following claim:

Claim. Let G be a graph of m edges, and let k0 be the size of a maximum matching in G. A maximum matching in the graph G can be
constructed in time O (m

√
k0) and space O (m).

Proof of the Claim. An algorithm proposed by Micali and Vazirani [26] constructs a maximum matching in a general un-
weighted graph G of n vertices and m edges in time O (m

√
n) and space O (m) (we will call this algorithm the MV-algorithm).

The MV-algorithm runs in phases. Each phase starts with a matching M , finds a maximal set of vertex-disjoint shortest aug-
menting paths relative to M , and augments along all these paths to get a larger matching. As proved by Hopcroft and Karp
(Theorem 3 in [22]), running the MV-algorithm for at most 2

√
k0 + 1 such phases will be sufficient to find a maximum

matching in the graph G . Moreover, Micali and Vazirani [26] presented an O (m)-time algorithm (thus also in space O (m))
that implements the process of each phase in the MV-algorithm.2 Combining these two results, we obtain an algorithm that

2 This O (m)-time algorithm for each phase in the MV-algorithm is highly nontrivial. For much more details and discussions, see [32,33] On the other
hand, for bipartite graphs, there is a much simpler O (m)-time algorithm that implements the process of each phase. See [22].
6

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
finds a maximum matching in a general unweighted graph G of m edges in time O (m
√

k0) and space O (m). This proves
the claim.

Let us now get back to the proof of the original theorem. Our algorithm proceeds as follows. We first use a trivial greedy
algorithm to construct a maximal matching M ′ in the graph G in time O (m) and space O (m). If |M ′| ≥ k, then we can
easily have a k-matching of G from M ′ . On the other hand, we have |M ′| < k. It is well-known that for a graph the size of a
maximum matching is at most twice of that of a maximal matching [30]. Therefore, if |M ′| < k, then the maximum matching
in the graph G has its size k0 bounded by 2k, and we can apply the above claim to construct a maximum matching M ′′ in
G in time O (m

√
2k) = O (m

√
k) and space O (m). Now from the maximum matching M ′′ , we can easily either construct a

k-matching in G or report that the graph G has no k-matching. This proves the theorem. �
By Theorem 3.5, we get an upper bound O (k2.5) on the time complexity α(k2) given in Theorem 3.4 for the algorithm

UGM. Now if we replace α(k2) with k2.5, and let ε = 1/2k1.5
, then Theorem 3.4 reads as

Theorem 3.6. With probability at least 1 − 1/2k1.5
, the algorithm UGM solves the p-UGM problem on general unweighted graphs in

time O (N + k2.5) and space O (k2).

Note that the bound O (N +k2.5) in Theorem 3.6 is the best possible for the p-UGM problem based on the current status
of the research on graph matching algorithms – the best known algorithm for the graph matching problem runs in time
O (n2.5) on a graph of n vertices [26].3

We are not aware of any parameterized algorithms published in the literature that are specifically for solving the p-
UGM problem. On the other hand, in the research on streaming algorithms, the p-UGM problem and related problems
have been studied recently. Chitnis et al. [7] proposed a deterministic algorithm on the insert-only streaming model for the
parameterized Vertex-Cover problem. The algorithm is based on an algorithm on the insert-only streaming model, running
in space O (k2) and update time O (log k), which constructs a maximal matching of up to k edges (thus, not solving the
problem p-UGM). This algorithm, if measured on our model, is a deterministic algorithm of time O (N log k) and space
O (k2) that constructs a maximal matching of up to k edges. Later, Chitnis et al. [5] presented two randomized algorithms
for the p-UGM problem on the dynamic streaming model. In order to deal with edge deletions in streaming, the algorithms
given in [5] smartly employed powerful techniques in l0-sampling [10]. However, these techniques are relatively expensive.
If we remove these expensive operations, the algorithms given in [5] can be used to solve the p-UGM problem (in the
insert-only graph streaming model). With the simplifications, the first algorithm given in [5], for any ε > 0, runs in time
O (N log(1/ε) +β(k)) and converts an input graph G of size N into a graph of up to O (k4 log(1/ε)) edges with a probability
1 − ε . Thus, both the bound β(k) in the time complexity and that in the space complexity of the algorithm are at least
O (k4 log(1/ε)). Moreover, to achieve a probability 1 − o(1), the algorithm would require super-linear time. The second
algorithm given in [5], if simplified as described above, converts a graph G of size N into a graph with O (k2 log(1/ε))

edges. The algorithm runs in super-linear time O (N log k) (and super-quadratic space) if we want to achieve a success
probability 1 − 1/kO (1) . More seriously, the algorithm only applies to graphs in which the size of a maximum matching is
bounded by O (k). In comparison, our algorithm given in Theorem 3.6 runs in space O (k2) and in “strong” linear time in
terms of the input graph size N: the term N in the time complexity of our algorithm is independent of the parameter k
and of the success probability. Moreover, our algorithm assumes no constraints on the size of a maximum matching of the
input graph and has a much higher success probability 1 − 1/2k1.5

.

4. Case study II: matching in weighted graphs

In this section, we study the Maximum Weighted k-Matching problem on weighted graphs, i.e., the p-WGM problem.
Let G be an (edge-)weighted graph (or, simply, a weighted graph). A maximum k-matching in G is a k-matching in G whose
weight is the largest over all k-matchings in G . The instances of the p-WGM problem consist of pairs of the form (G, k),
where G is a weighted graph and k is an integer. A solution to the instance (G, k) is either a maximum k-matching in G or
a report that no k-matching exists in G .

We remark that in practice, the p-WGM problem is probably applicable to more applications, compared to the p-UGM
problem. Indeed, with a very large graph G , we may only be interested in having a certain number k of matched vertex
pairs where k is not necessarily the largest. On the other hand, we may want to have k such matched pairs that maximize
an objective value.

Technically, the p-WGM problem becomes very different from the p-UGM problem. A weighted graph G may have match-
ings of very large size (the size of a matching is the number of edges in the matching) while we are just looking for a

3 We remark that there is a randomized algorithm of time O (n2.376) for the graph matching problem, based on fast matrix multiplication algorithms
[27]. However, our h-reduced subgraph Gh may have up to �(k2) vertices. Therefore, a direct application of the algorithm in [27] would not lead to a faster
algorithm for the p-UGM problem. Moreover, using the algorithm in [27] would require space O (k4).
7

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
k-matching of the maximum weight in the graph, where k could be relatively small. In particular, Lemmas 3.1-3.3 are no
longer useful in constructing maximum k-matchings: both Lemmas 3.1 and 3.3 construct k-matchings using edges incident
to large-vertices. However, for weighted graphs, there is no guarantee that the edges incident to large-vertices are contained
in maximum k-matchings. Finally, the technique we used in the proof of Theorem 3.4 to pre-scan the graph G and collect
the large-vertices cannot be used – there can be simply too many large-vertices for our limited local space.

We start with the following lemma that will be useful in several places in our construction.

Lemma 4.1. There is an algorithm that on an input of n elements and a parameter k, produces the k largest elements in the input in
time O (n) and space O (k).

Proof. The algorithm starts by reading the first k elements {a1, a2, . . . , ak} from the input. Inductively, suppose that for an
integer i ≥ k, the algorithm has obtained the k largest elements b1, b2, . . ., bk in the first i elements in the input. The
algorithm then reads the next block {ai+1, ai+2, . . . , ai+k} of k elements in the input, and uses the linear-time Median-
Finding algorithm [9] to find the k-th largest element in the set Si+k = {b1, b2, . . . , bk, ai+1, ai+2, . . . , ai+k} in time O (k),
from which the k largest elements in the set Si+k , which are also the k largest elements in the first i + k elements in the
input, can be easily obtained. Since the algorithm spends time O (k) on each block of k elements in the input, we conclude
that the running time of the algorithm is O (n). Moreover, it is obvious that the algorithm takes O (k) space. �

Let G be a weighted graph. Similarly (but not identically) to the process on the problem p-UGM, we define a large-
vertex to be a vertex whose degree is at least 8k and a small-vertex to be a vertex whose degree is less than 8k. In the
following, we will introduce operations that remove edges from the weighted graph G without changing the weight of
its maximum k-matchings. This will require the condition that each edge in the weighted graph G has a distinct weight,
which, in general, is not the case. For this, we introduce a new edge weight function for the graph G as follows: let
e = [v, w] be an edge of weight wt(e) in the graph G , we define the new weight wt′(e) for the edge e as a triple wt′(e) =
(wt(e), min{v, w}, max{v, w}). The new edge weights follow the lexicographic order. In terms of the weight function wt′(),
each edge in the graph G has a distinct weight. Moreover, for any edge set S and any integer h, the set of the h heaviest
edges in S in terms of the weight function wt′(), which is uniquely defined, must be a set that consists of h heaviest edges
in S in terms of the weight function wt().

We first consider the following two kinds of subgraphs constructed from the weighted graph G , where the edge weights
are measured by the new edge weights wt′(·) as defined above:

• The trimmed subgraph G T of the graph G consists of the edges e = [v, w] in G such that e is among the 8k heaviest
edges incident to the vertex v and among the 8k heaviest edges incident to the vertex w , plus the vertices incident to
these edges.

• The reduced subgraph G R of G is a subgraph of the trimmed subgraph G T of G such that either G R = G T if G T has no
more than k(16k − 1) edges, or G R consists of the k(16k − 1) heaviest edges in G T , plus the vertices incident to the
edges.

Remark 1. Note that every edge incident to a small-vertex v is among the 8k heaviest edges incident to the vertex v .

Remark 2. Because each edge e in the graph G has a distinct edge weight wt′(e), the trimmed subgraph G T and the reduced
subgraph G R of the graph G are uniquely defined.

Remark 3. Each vertex in the trimmed subgraph G T , thus also each vertex in the reduced subgraph G R , has degree bounded
by 8k. Note that a large-vertex v in the graph G may have degree less than 8k in the trimmed subgraph G T . In particular, if
an edge e = [v, w] is among the 8k heaviest edges incident to v but not among the 8k heaviest edges incident to w , then
the degree of the vertex v in the trimmed subgraph G T is less than 8k.

Remark 4. The size of the trimmed subgraph G T can still be very large (since there can be many large-vertices). On the
other hand, the reduced subgraph G R has size bounded by O (k2).

Lemma 4.2. If a weighted graph G has k-matchings, then its trimmed subgraph G T also has k-matchings. Moreover, a maximum
k-matching in the trimmed subgraph G T is also a maximum k-matching in the original graph G.4

Proof. For each large-vertex v in the graph G , let e8k(v) be the (8k)-th heaviest edge incident to v . Consider the algorithm
in Fig. 2 that constructs the trimmed subgraph G T .

4 Note that although when we compare edges we use the new weight function wt′(), the weight of a matching is still defined in terms of the original
edge weight function wt().
8

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
Fig. 2. Constructing the trimmed subgraph GT of a weighted graph G .

Since every edge e in the graph G has a distinct edge weight wt′(e), when we delete edges incident to a large-vertex
v ′

i , we would not delete any of the 8k heaviest edges incident to a large-vertex v ′
j with i < j. Therefore, if we let Gi be

the graph G after deleting all but the 8k heaviest edges incident to the vertex v ′
s for all s ≤ i, then the graph Gi+1 will

be obtained from the graph Gi by deleting all but the 8k heaviest edges incident to the vertex v ′
i+1, and the graph Gh

constructed by the algorithm is the trimmed subgraph G T . Now suppose that the weighted graph G has k-matchings. We
prove by induction on i that for all i, the graph Gi has k-matchings, and a maximum k-matching in Gi is also a maximum
k-matching in the graph G . This is certainly true for i = 0.

Inductively, assume that the graph Gi has k-matchings, and let Mi be a maximum k-matching in Gi , which is also a
maximum k-matching in G . Consider the graph Gi+1 that is obtained from Gi by deleting all but the 8k heaviest edges
incident to the vertex v ′

i+1. If Mi contains no edge that is deleted in the construction of Gi+1 from Gi , then Mi is also a
k-matching in Gi+1, thus is a maximum k-matching in Gi+1. Otherwise, Mi contains an edge [v ′

i+1, w] that is not among
the 8k heaviest edges [v ′

i+1, ws], 1 ≤ s ≤ 8k, incident to the vertex v ′
i+1 in the graph Gi . Since the (k − 1)-matching Mi \

{[v ′
i+1, w]} can cover at most 2k − 2 neighbors of v ′

i+1, there must be an edge [v ′
i+1, wt] among the 8k heaviest edges

incident to v ′
i+1 such that the vertex wt is not covered by Mi \ {[v ′

i+1, w]}. Thus, replacing the edge [v ′
i+1, w] with the edge

[v ′
i+1, wt] will give a k-matching Mi+1 in the graph Gi+1. Moreover, by the definition of the weight wt′(·), the k-matching

Mi+1 in Gi+1 has a weight at least as large as that of the maximum k-matching Mi in the original graph G . Since Gi+1 is a
subgraph of G , we conclude that Mi+1 is a maximum k-matching in G . This proves that the graph Gi+1 also has k-matchings
and a maximum k-matching in Gi+1 is also a maximum k-matching in the original graph G . Letting i = h and noting that
Gh is the trimmed subgraph G T complete the proof of the lemma. �
Lemma 4.3. If a weighted graph G has k-matchings, then its reduced subgraph G R also has k-matchings. Moreover, a maximum
k-matching in the reduced subgraph G R is also a maximum k-matching in the original graph G.

Proof. By Lemma 4.2, it suffices to prove that if the trimmed subgraph G T has k-matchings, then the reduced subgraph G R

also has k-matchings and that a maximum k-matching in the reduced subgraph G R is also a maximum k-matching in the
trimmed subgraph G T . If the trimmed subgraph G T has fewer than k(16k − 1) edges, then by definition, G R = G T , and the
lemma obviously holds true. Thus, we can assume that the reduced subgraph G R has exactly k(16k − 1) edges, which are
the k(16k − 1) heaviest edges in the trimmed subgraph G T . Now suppose that the trimmed subgraph G T has k-matchings
and let MT be a maximum k-matching in G T . Assume MT = M ′

T ∪ M ′′
T , where M ′

T is the set of edges that are in the reduced
subgraph G R and M ′′

T is the set of edges that are not in the reduced subgraph G R , with |M ′
T | = h and |M ′′

T | = k − h > 0.
Now for each edge e in M ′

T , delete the two ends of e (and all incident edges) in the graph G R . Since the graph G R has
k(16k − 1) edges, and the vertex degree of G R is bounded by 8k, this will delete at most h(16k − 1) edges in G R . Thus, the
resulting graph G ′

R still has at least k(16k − 1) − h(16k − 1) = (k − h)(16k − 1) edges. Now in the graph G ′
R , because the

vertex degree is bounded by 8k, we can easily construct a (k − h)-matching M ′′
R in G ′

R (thus in G R) by repeatedly including
an (arbitrary) edge in the matching and removing all edges incident to the ends of the edge. Since no edge in M ′′

T is in G R ,
by the definition of the reduced subgraph G R , the weight of the (k − h)-matching M ′′

R in G R is at least as large as that of
the (k − h)-matching M ′′

T in G T . Therefore, replacing the (k − h)-matching M ′′
T in MT with the (k − h)-matching M ′′

R gives
a k-matching M ′

T ∪ M ′′
R in the reduced subgraph G R whose weight is at least as large as that of the maximum k-matching

MT in the trimmed subgraph G T . As a consequence, the weight of the maximum k-matching in the reduced subgraph G R

is at least as large as that of the maximum k-matching MT in the trimmed subgraph G T . Since G R is a subgraph of G T , we
conclude that a maximum k-matching in the reduced subgraph G R is also a maximum k-matching in the trimmed subgraph
G T . �

By Lemma 4.3, to construct a maximum k-matching in the input graph G , it suffices to construct a maximum k-matching
in the reduced subgraph G R , which is a subgraph of the trimmed subgraph G T and has a size O (k2). However, it seems
challenging to construct the reduced subgraph G R from the weighted graph G in time O (N + kO (1)) and space kO (1):

(1) The trimmed subgraph G T can be very large, and we may not have enough space to store the entire trimmed subgraph
G T ;

(2) The number of large-vertices can be very large. Although any proper subset of at least k large-vertices and their incident
edges contain a k-matching in G , there is no guarantee that the k-matching is of the maximum weight. On the other
hand, we may not have enough space to record all large-vertices;
9

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
Fig. 3. Constructing the reduced subgraph G R of a weighted graph G .

(3) Because of (2), even constructing the trimmed subgraph G T “locally” becomes difficult: to determine if an edge e =
[v, w] of G is in G T , we need to know if wt′(e) ≥ wt′(e8k(v)) and wt′(e) ≥ wt′(e8k(w)). Note that this should be done
in constant time in average, in order to achieve the O (N + kO (1)) time complexity for the construction of the reduced
subgraph G R ;

(4) In order to keep the size of the reduced subgraph G R by O (k2), we also need to exclude the vertices of G that are
incident to no edges in G R .

We develop new techniques to deal with these technical difficulties. Again for a large-vertex v , we let e8k(v) be the
(8k)-th heaviest edge incident to v in the graph G , in terms of the weight function wt′(). The value wt′(e8k(v)) will be
called the e8k-value of the vertex v . For the convenience of discussions, we define the e8k-value of a small-vertex to be −∞.

The bounding set B8k of large-vertices in the graph G is defined as follows:

(1) if there are at most 8k large-vertices in G , then B8k contains all large-vertices; and
(2) if there are more than 8k large-vertices in G , then B8k contains the 8k large-vertices whose e8k-values are among the

8k largest e8k-values over all large-vertices of G .

Similarly, for a vertex v , we define the bounding list L8k
v of edges incident to v as follows:

(1) if v is a small-vertex, then L8k
v consists of all edges incident to v; and

(2) if v is a large vertex, then L8k
v consists of the 8k heaviest edges incident to v .

Our algorithm that constructs the reduced subgraph G R of the graph G is presented in Fig. 3. Recall that by [m], we denote
the integer set {1, 2, . . . , m}.

We first prove the correctness of the algorithm RSubG given in Fig. 3.

Lemma 4.4. The algorithm RSubG given in Fig. 3 constructs the reduced subgraph G R of the weighted graph G.

Proof. We start with the following observations:

Claim 1. If the bounding set B8k in step 1 of the algorithm RSubG contains 8k vertices, then the edge set E R in step 3 contains more
than k(16k − 1) edges.

Proof of Claim 1. Under the condition of the claim, place the 8k large-vertices in B8k into an ordered list B ′
8k =

(v1, v2, . . . , v8k), where all vi are large-vertices in G whose e8k-values are among the 8k largest e8k-values over all large-
vertices in G , and the vertices in the list B ′

8k are sorted non-decreasingly in terms of their e8k-values. For any vertex vi in
the list B ′ , let e = [vi, w] be an edge incident to vi , where w is either a vertex v j in the list B ′ with j < i or a vertex
8k 8k

10

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
not in the list B ′
8k . By definition, we have wt′(e8k(w)) ≤ wt′(e8k(vi)). Therefore, if e ∈ L8k

vi
, i.e., if e is among the 8k heaviest

edges incident to vi , then e is also among the 8k heaviest edges incident to w , i.e., e ∈ L8k
w , which means that the edge e is

in the trimmed subgraph G T . As a result, among the 8k heaviest edges incident to the vertex vi in the list B ′
8k , only those

that are between vi and v p , where v p is a vertex in B ′
8k with i < p, can be missing in the trimmed subgraph G T . Thus,

there are at least i edges incident to the vertex vi in the trimmed subgraph G T , i.e., the degree of the vertex vi in the
trimmed subgraph G T is at least i. Let G8k

T be the graph that consists of the edges that are both in the trimmed subgraph
G T and in the set

⋃
v∈B8k

L8k
v , then the degree sum of the vertices in G8k

T is at least
∑8k

i=1 i = 4k(8k + 1), which implies that
the number of edges in the graph G8k

T (i.e., the number of edges in the set E R) is at least 4k(8k + 1)/2 > k(16k − 1). This
completes the proof of the claim.

Claim 1 directly implies the following result:

Claim 2. If the condition |E R | < k(16 − 1) in step 4 of the algorithm RSubG holds, then the graph constructed in step 6 is the reduced
subgraph G R of the graph G.

Proof of Claim 2. If |E R | < k(16 − 1) in step 4, then by Claim 1, the set B8k contains fewer than 8k vertices, which implies
that all large-vertices of the graph G are included in the set B8k , and the set E R constructed in step 3 contains all edges in
the trimmed subgraph G T that are incident to any large-vertices in G . Therefore, the only edges in G T that are missing in
the set E R are the edges whose both ends are small-vertices in G , i.e., vertices that are not in the set B8k (note that these
edges are all in the trimmed subgraph G T). Now steps 4.1-4.2 go through exactly all these edges and, together with the
edges of G T that are already in the set E R after step 3, record the (up to) k(16k − 1) heaviest edges. By the definition, these
are exactly the edges that make up the reduced subgraph G R . This proves the claim.

The remaining case is that the set E R contains at least k(16k − 1) edges after step 3. Note that in this case, there can
be large-vertices that are not included in the bounding set B8k . After step 5.1, the set E R contains exactly k(16k − 1) edges,
which are the k(16k − 1) heaviest edges among all edges in G T that are incident to vertices in B8k . By the definition of the
reduced subgraph, the edges deleted from the set E R in step 5.1 cannot be in the reduced subgraph G R . Therefore, all edges
in G T that are in the set

⋃
v∈B8k

L8k
v and can possibly be in the reduced subgraph G R are included in the set E R after step

5.1. As a result, the edges that can possibly be in the reduced subgraph and are not yet included in the set E R after step 5.1
are those whose both ends are not in the set B8k . Steps 5.2-5.3 examine all these edges.

Claim 3. If the edge e = [v, w] in step 5.3 of the algorithm RSubG satisfies wt′(e) ≥ m0 , then the edge e is in the trimmed subgraph
G T .

Proof of Claim 3. Let e0 be the edge in the edge set
⋃

v∈B8k
L8k

v that has the minimum edge weight, in terms of the
edge weight function wt′(). By the definition, e0 must be the (8k)-th heaviest edge incident to a vertex vi in B8k . Thus,
wt′(e0) = wt′(e8k(vi)) is the e8k-value of the vertex vi in B8k . Since the set E R constructed in step 5.1 is a subset of the
set

⋃
v∈B8k

L8k
v , we have m0 ≥ wt′(e8k(vi)). Now, for the edge e = [v, w] in step 5.3, where both v and w are not in B8k ,

by the definition of the set B8k , we must have wt′(e8k(v)) ≤ wt′(e8k(vi)) and wt′(e8k(w)) ≤ wt′(e8k(vi)) (recall that the
e8k-value of a small-vertex is defined to be −∞). Therefore, if the edge e = [v, w] satisfies wt′(e) ≥ m0, then we must
have wt′(e) ≥ wt′(e8k(v)) and wt′(e) ≥ wt′(e8k(w)), i.e., the edge e must be in the set intersection L8k

v ∩ L8k
w , thus, in the

trimmed subgraph G T . This completes the proof of the claim.

The edge set E R after step 5.1 contains exactly k(16k − 1) edges. By Claim 3, only edges in the trimmed subgraph G T

can be added to E R , and the set E R always contains exactly k(16k − 1) edges in the trimmed subgraph G T .

Claim 4. If the edge e in step 5.3 of the algorithm RSubG satisfies wt′(e) < m0 , then the edge e cannot be in the reduced subgraph G R .

Proof of Claim 4. If the edge e is not in the trimmed subgraph G T , then of course e cannot be in the reduced subgraph G R .
Now suppose that e is in the trimmed subgraph G T . By the way the set E R is updated in step 5.4 and by Claim 3, the set
E R always contains exactly k(16k −1) edges in G T and the edge weight of any edge in E R is not smaller than m0. Therefore,
if wt′(e) < m0, then the edge e cannot be among the k(16k − 1) heaviest edges in the trimmed subgraph G T , i.e., the edge
e is not in the reduced subgraph G R . The claim is proved.

Therefore, if the edge set E R contains at least k(16k − 1) edges after step 3, which are the edges in both the trimmed
subgraph G T and the set

⋃
v∈B8k

L8k
v , then step 5.1 deletes from the set E R some edges that obviously cannot be in the

reduced subgraph G R . Then, step 5.2-5.3 go through all edges that are not in the set
⋃

v∈B8k
L8k

v , ignore the edges that are
obviously not in the reduced subgraph G R (Claim 4), and examine the rest of the edges in the set in step 5.4 (by Claim 3,
11

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
all edges examined in step 5.4 are in the trimmed subgraph G T). As a consequence, all edges in the trimmed subgraph G T
that are possibly in the reduced subgraph G R are examined in steps 5.1-5.4. Since we only keep the k(16k −1) heaviest such
edges, we conclude that after step 5, the set E R is the edge set of the reduced subgraph G R . This gives us the following
result:

Claim 5. If the set E R contains at least k(16k − 1) edges after step 3 of the algorithm RSubG, then the graph constructed in step 6 is
the reduced subgraph G R of the graph G.

Combining Claim 2 and Claim 5 proves the lemma. �
Now we can draw a conclusion for the algorithm RSubG given in Fig. 3.

Lemma 4.5. There is an algorithm such that, for any ε > 0, with probability at least 1 − ε , the algorithm on a weighted graph G of size
N constructs the reduced subgraph G R of G in time O (N + k2 + k log(1/ε)) and space O (k2).

Proof. By Lemma 4.4, it suffices to verify that the algorithm RSubG in Fig. 3 satisfies the probability requirement and the
time and space complexities stated in the lemma.

To construct the bounding set B8k in step 1, we scan the graph G . For each large-vertex v , we construct the bounding list
L8k

v as well as the e8k-value for v . By Lemma 4.1, this will take time O (deg(v)) and space O (k), where the time complexity
is, asymptotically, bounded by the amount of time for reading the edges incident to v . The e8k-values of the large-vertices
will be used as the keys in the construction of the bounding set B8k . By Lemma 4.1, with additional O (N) time and O (k)

space, we can construct the bounding set B8k . Moreover, in this construction, we keep the bounding list L8k
v for at most

O (k) vertices. Since the bounding set B8k contains at most 8k vertices, the bounding set B8k and the bounding lists for the
vertices in the set B8k can be constructed in time O (N) and space O (k2) by step 1 of the algorithm.

Step 2 of the algorithm constructs a hash function H that is injective from the vertex set B8k to [(8k)2], where the set
B8k contains at most 8k vertices. As we did for unweighted graphs in Theorem 3.4, a hash function that maps the set of
vertices in the graph G to [(8k)2] and is randomly picked from a universal hashing class H has a probability at least 1/2
to be injective from the set B8k to [(8k)2] [9]. Therefore, with log(1/ε)-times of randomly picking a hash function from the
universal hashing class H, we will get a hashing function H that is injective from the set B8k to [(8k)2], with probability
at least 1 − ε . Note that with an initiated array of size (8k)2, we can easily verify in time O (k) if a given hash function is
injective from B8k to [(8k)2]. Therefore, in time O (k log(1/ε) + k2) and space O (k2), step 2 of the algorithm will construct
the desired hash function H with a probability at least 1 − ε . This is the only place in the algorithm where randomization
is used.

With the hash function H constructed in step 2, we construct an array B[1..(8k)2] such that for each vertex v in B8k ,
the array element B[H(v)] keeps the vertex v as well as its e8k-value. Now for any vertex w in the graph G , we can test in
constant time if w is a vertex in the set B8k , and in case it is, what is its e8k-value.

Recall that we have constructed the set L8k
v for each vertex v in B8k in step 1. To construct the set E R in step 3, we

need to identify the edges in these sets that are in the trimmed subgraph G T . Let e = [v, w] be an edge in the set L8k
v for

a vertex v in B8k . If w is not in B8k , then since the e8k-value of w is smaller than that of v , the edge e must be among
the 8k heaviest edges incident to w . Thus, the edge e must be in the graph G T . On the other hand, if w is in B8k , then the
edge e is in G T if and only if wt′(e) is not smaller than the e8k-value of w . Thus, using the array B[1..(8k)2], we can test if
the edge e is in the trimmed subgraph G T in constant time. Finally, note that for an edge e = [v, w] in L8k

v where v ∈ B8k ,
if w is not in B8k , then the edge e appears in the set L8k

v for exactly one vertex v in B8k , while if w is in B8k , then the
edge e appears in both L8k

v and L8k
w . Therefore, for an edge e = [v, w] with both v and w in B8k , if we only consider the

case when v < w , then we can avoid including multiple copies of an edge in the set E R . Also note that the size of the set
E R is bounded by that of

⋃
v∈B8k

L8k
v , which is O (k2). In conclusion, the set E R in step 3 can be constructed in time O (k2)

and space O (k2).
Steps 4-5 add new edges in the trimmed subgraph G T to the set E R , and update the set E R so that the set E R only

contains the k(16k − 1) heaviest edges seen so far. In order to keep the total processing time of steps 4-5 to O (N), we,
instead of adding a new vertex directly to the set E R , use a buffer of size k2 to keep the new edges found in steps 4-5.
Only after we collect k2 new edges in the buffer, we combine these k2 new edges with those in the set E R , and select the
k(16k − 1) heaviest to form the new set E R . By Lemma 4.1, this can be done in time O (k2) and space O (k2), contributing,
in average, only constant time to each new edge. Also, to avoid including duplicated copies of an edge in the set E R , for
each edge e = [v, w] encountered in steps 4-5 with v /∈ B8k and w /∈ B8k , we only consider the edge when v < w . Putting
all these together, we conclude that the total processing time of steps 4-5 is bounded by O (N). The space complexity is
O (k2).

Summarizing the above discussions proves the lemma. �
Now we return back to the p-WGM problem. Maximum matching on weighted graphs has been an extensively studied

topic in theoretical computer science [30]. Currently, the best algorithm runs in time O (n(m + n log n)) and space O (m) on
a weighted graph of n vertices and m edges [19,20], from which we can derive the following result.
12

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
Theorem 4.6. There is an O (k(m + n log n))-time and O (m)-space algorithm that on a weighted graph G of n vertices and m edges,
either constructs a maximum k-matching in G or reports that no k-matching exists in G.

Proof. This result is actually implied in the development of the O (n(m + n log n))-time and O (m)-space algorithm due to
Gabow [19,20] that constructs a maximum matching in a weighted graph. In the following, we provide the necessary proofs
for the parts that are not explicitly given in [19,20] but are needed to achieve the stated result.

Let G be a weighted graph. For a set S of edges in G , we denote by wt(S) the weight sum of the edges in S , and by
|S| the number of edges in S . Let M be a matching in the graph G . Again we define an augmenting path relative to M to
be a simple path whose two ends are not covered by M and whose edges go alternatively between edges not in M and
edges in M . The weight-gain of an augment path P relative to the matching M is defined to be wt(P \ M) − wt(P ∩ M).
A maximum augmenting path relative to the matching M is an augmenting path whose weight-gain is the largest over
all augmenting paths relative to M . For a weighted graph G , we have the following (recall that for two sets S1 and S2,
S1 ⊕ S2 = (S1 \ S2) ∪ (S2 \ S1)):

Claim. Let Mk be a maximum k-matching in the graph G, and let P be a maximum augmenting path relative to Mk, then P ⊕ Mk is a
maximum (k + 1)-matching in the graph G.

For a proof of the claim, let Mk+1 be a maximum (k + 1)-matching in the graph G . Then all connected components C1,
C2, . . ., Ch of the graph Mk ⊕ Mk+1 are either a simple cycle or a simple path. Since |Mk+1| = |Mk| + 1, at least one of the
components of Mk ⊕ Mk+1 is an augmenting path relative to Mk . Without loss of generality, assume that the component
Ch is an augmenting path relative to Mk , and let C = C1 ∪ · · · ∪ Ch−1. Then we have |C ∩ Mk| = |C ∩ Mk+1|. We claim that
wt(C ∩ Mk) = wt(C ∩ Mk+1). In fact, if wt(C ∩ Mk) > wt(C ∩ Mk+1), then replacing the edges of the set C ∩ Mk+1 in the
(k + 1)-matching Mk+1 with the edges of the set C ∩ Mk would give a (k + 1)-matching whose weight is larger than that
of Mk+1, contradicting the assumption that Mk+1 is a maximum (k + 1)-matching. Similarly, if wt(C ∩ Mk) < wt(C ∩ Mk+1),
then replacing the edges of the set C ∩ Mk in the k-matching Mk with the edges of the set C ∩ Mk+1 would give a k-
matching whose weight is larger than that of Mk , contradicting the assumption that Mk is a maximum k-matching. The
equality wt(C ∩ Mk) = wt(C ∩ Mk+1) directly leads to the conclusion that the augmenting path Ch relative to Mk has
its weight-gain equal to wt(Mk+1) − wt(Mk). Since an augmenting path relative to Mk with a weight-gain larger than
wt(Mk+1) − wt(Mk) would give a (k + 1)-matching whose weight is larger than that of the maximum (k + 1)-matching
Mk+1, we conclude that the path Ch is a maximum augmenting path relative to Mk , and augmenting the k-matching Mk
with the maximum augmenting path Ch will result in the maximum (k + 1)-matching Mk+1. This completes the proof of
the claim.

The algorithm given by Gabow [19,20] is based on Edmonds’ formulation of weighted matching as a linear program
[11]. Starting with a maximum 0-matching M0 (i.e., an empty set), for each i = 0, 1 . . ., the algorithm repeatedly finds a
maximum augmenting path Pi relative to the maximum i-matching Mi , and augments the matching Mi along the path
Pi to obtain a maximum (i + 1)-matching Mi+1 (whose correctness is given by the above claim). The process of finding a
maximum augmenting path relative to a matching then augmenting the matching along the path is called a phase. Thus,
after k phases, a maximum k-matching is constructed for the graph G . On the other hand, if the process is stopped for a
maximum i-matching Mi with i < k because there is no augmenting path relative to Mi , then we report that no k-matching
exists in the graph G . Gabow [19,20] has developed an algorithm that implements the computation of a phase in the above
process in time O (m + n log n) and space O (m). Combining these two results gives the proof of the theorem. �

For an instance (G, k) of the p-WGM problem, the reduced subgraph G R of the graph G contains O (k2) edges, thus no
more than O (k2) vertices. Therefore, applying Theorem 4.6 to the reduced subgraph G R , we conclude that a maximum k-
matching in the reduced subgraph G R can be constructed in time O (k(k2 +k2 log k)) = O (k3 log k) and space O (k2). Bringing
this result into Lemma 4.5 and letting ε = 1/kk2

give the following theorem.

Theorem 4.7. There is a randomized algorithm for the p-WGM problem such that on an input (G, k) where G is a weighted graph of
size N, with probability 1 − 1/kk2

, and running time O (N + k3 log k) and space O (k2), the algorithm either constructs a maximum
k-matching in G or reports that no k-matching exists in G.

We may not expect a very significant improvement on the complexity bounds given in Theorem 4.7, based on the current
status of maximum matching algorithms for weighted graphs. Indeed, if we measure the complexity of the algorithms in
terms of the number n of vertices in the graph, then the best algorithm for constructing a maximum weighted matching
in a weighted graph takes time O (n3) [18]. Since a graph has to have at least 2k vertices in order to contain a k-matching,
the best we may expect for our reduction algorithm is to reduce the input graph into a reduced graph G ′

R of at least 2k
vertices. Now applying the algorithm in [18] to the reduced graph G ′

R will take time at least O (k3), which would give an
algorithm of time O (N +k3) for the p-WGM problem. We also remark that directly applying the algorithm of time O (n3) in
[18] to the reduced subgraph G R in Lemma 4.5 does not give a better bound: the reduced subgraph G R in Lemma 4.5 may
have �(k2) vertices.
13

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
Again, there seem no known algorithms that are specifically for solving the p-WGM problem. Chitnis et al. [5] studied
the p-WGM problem on the dynamic graph streaming model, and proposed two randomized algorithms. As our discussions
on the algorithms in [5] for the p-UGM problem (see Section 3), we may remove the intricate (and expensive) operations
that deal with edge deletions in the algorithms given in [5], so that the algorithms can be used for solving the p-WGM
problem. With this simplification, in order to have a success probability 1 − ε , the first streaming algorithm proposed in [5]
would have update time (i.e., the time between reading two consecutive elements in the input) at least O (log W log(1/ε))

and use space O (k4W log(1/ε)), where W is the number of different values in the edge weights. As a consequence, if we
use this algorithm to solve the p-WGM problem, the algorithm runs in time at least O (log W log(1/ε)N + k4W log(1/ε))

and uses space O (k4 W log(1/ε)). If we use the second algorithm proposed in [5], with the above simplification, to solve
the p-WGM problem, we would get an algorithm with running time at least O (N log k log W + k2W log(1/ε)) and space
O (k2W log(1/ε)). More seriously, the second algorithm requires that the input weighted graphs have no matching of size
larger than k, which makes the algorithm to be applicable to a much restricted class of graphs. In comparison, our algorithm
in Theorem 4.7 solves the p-WGM problem in time O (N + k3 log k) and space O (k2) with a very high success probability
1 − 1/kk2

, and with no constraint on the structures of the input graph.

5. Conclusion and final remarks

Motivated by the recent algorithmic research in massive data processing, we proposed a multivariate computational
model whose complexity bounds are measured by both input size N and a parameter k, where N is supposed to be ex-
tremely large while the parameter k is a measure for the power of local resources (i.e., computational time and space)
that can be used to deal with the massive data. We have used classical problems in computational optimization, the graph
matching problems on both unweighted and weighted graphs, as examples to show how our model is used in effectively
dealing with classical computational problems in massive data processing. In particular, we show how we can spend a
linear-time pre-processing on the massive input data, with limited local memory space, to reduce a problem instance to
an instance that is manageable by the limited local resources. Moreover, we showed how the local resources can be effec-
tively managed to achieve the best or nearly best possible usage. In particular, we have presented an algorithm that finds
a k-matching in an unweighted graph of size N in time O (N + k2.5) and space O (k2), and an algorithm that constructs a
maximum weighted k-matching in a weighted graph of size N in time O (N + k3 log k) and space O (k2).

Our algorithms for the graph matching problems are randomized algorithms, with exponentially small error bounds. If
we use a balanced search tree to support the search and insertion operations in our process of large-vertices, instead of
using injective hash functions, then our randomized algorithms will become deterministic algorithms. However, in their
deterministic versions, our algorithm for solving the p-UGM problem in Theorem 3.6 will run in time O (N log k + k2.5) and
space O (k2), and our algorithm for solving the p-WGM problem in Theorem 4.7 will run in time O (N log k + k3 log k) and
space O (k2).

The computational model we studied in the current paper suggests reconsideration for many computational problems,
including many classical ones, in the framework of massive data processing where the inputs are supposed to have ex-
tremely large size. For example, for two given vertices s and t in a weighted graph of size N , can we construct an st-path
of length bounded by k whose weight is the minimum over all st-paths of length bounded by k in time O (N + f1(k)) and
space O (f2(k)), where f1(k) and f2(k) are functions of the parameter k? If the answer is yes, what is the best we can get
for f1(k) and f2(k)? Note that Thorup’s linear-time algorithm [31] for the single-source shortest path problem seems not
directly applicable here because of the constraints on space complexity.

A particular research area where our model can be investigated is kernelization algorithms in parameterized computation
[17]. Instances of a parameterized problem Q take the format (x, k), where k is the parameter. A kernelization algorithm for
the problem Q on an input (x, k) produces an instance (x′, k′) such that (x, k) is a yes-instance of Q if and only if (x′, k′)
is a yes-instance of Q , and that the size of x′ and the value of the new parameter k′ are both bounded by a function of
the original parameter k that is independent of the size of the original input (x, k). Most proposed kernelization algorithms
run in polynomial time and were developed without much consideration on the efficiency of the algorithms. Recently,
there have been studies on linear-time kernelization algorithms [25]. On the other hand, space complexity has rarely been
considered in kernelization algorithms. Many kernelization algorithms, including those proposed in [25], are based on the
techniques that remove or modify “obvious” structures in the input, which, intrinsically, require space for storing the input
and recording the changes, leading to demand of a large amount of space, and in many cases also to demand of super-linear
time. On the other hand, the approach of kernelization seems to fit very well in dealing with massive data, and provides
reduction and pre-processing techniques to reduce problem instances of very large size to instances of much small (thus
manageable) size. In particular, kernelization algorithms whose running time is linear or nearly linear in terms of the input
size, with limited space, are very interesting in this direction of research. We have initialized this line of research and
obtained some interesting results [2].

There seem to be some very interesting relations between our proposed model and the streaming algorithm model. A
streaming algorithm S can be converted into an algorithm on our model, which can keep the same space complexity with
the running time equal to the update time of S times the input size N . On the other hand, some techniques developed for
our model may become useful for developing streaming algorithms. For example, some techniques presented in the current
paper have been used in the development of improved streaming algorithms for graph matching [3]. However, there are
14

J. Chen, Y. Guo and Q. Huang Information and Computation 289 (2022) 104951
also essential differences between the two models. For example, it has been proved that the space complexity for streaming
algorithms on the dynamic streaming model for maximum k-matching is �(W k2), where W is the number of different
edge weights in the input graph. On the other hand, the algorithm presented in the current paper for maximum k-matching
in weighted graphs has space complexity O (k2), which is independent of the value W . Further study of the relationship
between the two models should be interesting.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] J. Alman, M. Mnich, V.V. Williams, Dynamic parameterized problems and algorithms, in: Proc. 44th International Colloquium on Automata, Languages
and Programming (ICALP 2017), 2017, 41.

[2] J. Chen, Q. Huang, I.A. Kanj, G. Xia, Near-optimal algorithms for point-line covering problems, in: Proc. 39th International Symp. on Theoretical Aspects
of Computer Science (STACS 2022), 2022, 21.

[3] J. Chen, Q. Huang, I.A. Kanj, Q. Li, G. Xia, Streaming algorithms for graph k-matching with optimal or near-optimal update time, in: Proc. 32nd
International Symp. on Algorithms and Computation (ISAAC 2021), 2021, 48.

[4] R. Chitnis, G. Cormode, Towards a theory of parameterized streaming algorithms, in: Proc. 14th International Symp. on Parameterized and Exact
Computation (IPEC 2019), 2019, 7.

[5] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, A. McGregor, M. Monemizadeh, Kernelization via sampling with applications to finding matchings
and related problems in dynamic graph streams, in: Proc. 27th ACM-SIAM Symp. on Discrete Algorithms (SODA 2016), 2016, pp. 1326–1344.

[6] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, M. Monemizadeh, New streaming algorithms for parameterized maximal matching and beyond,
in: Proc. 27th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA 2015), 2015, pp. 56–58.

[7] R. Chitnis, G. Cormode, M. Hajiaghayi, M. Monemizadeh, Parameterized streaming: maximal matching and vertex cover, in: Proc. 26th ACM-SIAM Symp.
on Discrete Algorithms (SODA 2015), 2015, pp. 1234–1251.

[8] S.A. Cook, Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space, in: Proc. 11th ACM Symp. on Theory of Comput-
ing (STOC 79), 1979, pp. 338–345.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd ed., The MIT Press, Cambridge, MA, 2009.
[10] G. Cormode, D. Firmani, A unifying framework for l0-sampling algorithms, Distrib. Parallel Databases 32 (3) (2014) 315–335.
[11] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Natl. Bur. Stand. 69B (1965) 125–130.
[12] H. Esfandiari, M. Hajiaghayi, V. Liaghat, M. Monemizadeh, K. Onak, Streaming algorithms for estimating the matching size in planar graphs and beyond,

ACM Trans. Algorithms 14 (4) (2018) 1–23.
[13] S. Fafianie, S. Kratsch, Streaming kernelization, in: Proc. 39th International Symp. on Math. Foundations of Computer Science (MFCS 2014), 2014,

pp. 275–286.
[14] W. Fan, F. Geerts, F. Neven, Making queries tractable on big data with proprecessing, in: Proc. 39th International Conference on Very Large Data Bases

(VLDB 2013), 2013, pp. 685–696.
[15] W. Fan, C. Hu, Big graph analysis: from queries to dependencies and association rules, Data Sci. Eng. 2 (1) (2017) 36–55.
[16] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang, On graph problems in a semi-streaming model, Theor. Comput. Sci. 348 (2–3) (2005) 207–216.
[17] F. Fomin, D. Lokshtanov, S. Saurabh, M. Zehavi, Kernelization: Theory of Parameterized Preprocessing, Cambridge University Press, 2019.
[18] H.N. Gabow, Implementations of Algorithms for maximum Matching on Nonbipartite Graphs, Ph.D. Dissertation, Comp. Sci. Dept., Stanford University,

CA, 1973.
[19] H.N. Gabow, Data structures for weighted matching and nearest common ancestors with linking, in: Proc. 1st Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA 1990), 1990, pp. 434–443.
[20] H.N. Gabow, Data structures for weighted matching and extensions by b-matching and f -factors, ACM Trans. Algorithms 14 (3) (2018) 39.
[21] I. Grujic, S. Bogdanovic-Dinic, L. Stoimenov, Collecting and analyzing data from e-government Facebook pages, in: ICT Innovations, 2014.
[22] J.E. Hopcroft, R.M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput. 2 (4) (1973) 225–231.
[23] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel: a system for large-scale graph processing, in: Proc. 2010 ACM

SIGMOD International Conference on Management of Data (SIGMOD’10), 2010, pp. 135–145.
[24] A. McGregor, Graph stream algorithms: a survey, SIGMOD Rec. 43 (1) (2014) 9–20.
[25] G.B. Mertzios, A. Nichterlein, R. Niedermeier, The power of linear-time data reduction for maximum matching, in: Proc. 42nd International Symp. on

Math. Foundations of Computer Science (MFCS 2017), 2017, 46.
[26] S. Micali, V.V. Vazirani, An O (

√
V E) algorithm for finding maximum matching in general graphs, in: Proc. 21st IEEE Symp. on Foundations of Computer

Science (FOCS, vol. 80, 1980, pp. 17–27.
[27] M. Mucha, P. Sankowski, Maximum matchings via Gaussian elimination, in: Proc. 45th IEEE Symp. on Foundations of Computer Science (FOCS 2004),

2004, pp. 248–255.
[28] S. Muthukrishna, Data streams: algorithms and applications, Found. Trends Theor. Comput. Sci. 1 (2) (2005) 117–236.
[29] R. Rubinfeld, A. Shapira, Sublinear time algorithms, SIAM J. Discrete Math. 25 (4) (2011) 1562–1588.
[30] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, Springer-Verlag, Berlin, Heidelberg, 2003.
[31] M. Thorup, Undirected single-source shortest paths with positive integer weights in linear time, J. ACM 46 (3) (1999) 362–394.
[32] V.V. Vazirani, A theory of alternating paths and blossoms for proving correctness of the O (

√
V E) general graph maximum matching algorithm, Com-

binatorica 14 (1) (1994) 71–109.
[33] V.V. Vazirani, A simplification of the MV matching algorithm and its proof, arXiv:1210 .4594v5 [cs .DS], 2013.
15

http://refhub.elsevier.com/S0890-5401(22)00106-7/bibC98A9BB0AE52E52CE96985F7398F268Bs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibC98A9BB0AE52E52CE96985F7398F268Bs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibEFBC88FEE74654B8998EAE6E150890D6s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibEFBC88FEE74654B8998EAE6E150890D6s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib7A0A041A958CC18AC14F2754773CEFBFs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib7A0A041A958CC18AC14F2754773CEFBFs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibB558E9EBFA57E9E29BC73DED5522EBCCs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibB558E9EBFA57E9E29BC73DED5522EBCCs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib2EB27ECCAA00375603A80E66A387FE2Bs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib2EB27ECCAA00375603A80E66A387FE2Bs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibA70F235AF1E1B856F4DB9B1869300434s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibA70F235AF1E1B856F4DB9B1869300434s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibABBA17087AA0D60ADBA0025514A571F8s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibABBA17087AA0D60ADBA0025514A571F8s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibE3E90FD6D2A7C4661A1A3ACF2F60BC6Ds1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibE3E90FD6D2A7C4661A1A3ACF2F60BC6Ds1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibC9374C0F93C2794690A26CCDEED9F4A2s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib39A07AE6399D3CFDA767BB1568BCC9C0s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib44B150F70065A52737B129677C384B69s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibC49574BB031CA8874787880A4ABD44EAs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibC49574BB031CA8874787880A4ABD44EAs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib721A42D9523CD9718B669D72A9614CA9s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib721A42D9523CD9718B669D72A9614CA9s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib8D36C600A6A61417EDFF997F0BC059CEs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib8D36C600A6A61417EDFF997F0BC059CEs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib088D0F0C7883C1BBA88A112A7E542235s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibA24F695AAF92949E2578A874832FF516s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib185B9C23EC3E10CFEB0E432A3E264A1Es1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib35B29F739E80514D0647F1EF494D14DCs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib35B29F739E80514D0647F1EF494D14DCs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib9CA5B5AB13CD94E8153BC652046C1947s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib9CA5B5AB13CD94E8153BC652046C1947s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibC824805C3C90CBAEFDA75AAF439829CAs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib0A19F101B49D5E2816D7568FC29280E9s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibAE4171856A75F7B67D51FC0E1F95902Es1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib960D3AE7A1B63BC7A2B9F8321D2834BDs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib960D3AE7A1B63BC7A2B9F8321D2834BDs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibC2427B858415E6F14FD16ABF643E9ABDs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib6C36A051B929758AEC2D67FD9EE09F4Es1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib6C36A051B929758AEC2D67FD9EE09F4Es1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib47EAEE095A931E2ECB4264EF32B0348As1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib47EAEE095A931E2ECB4264EF32B0348As1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibD1FAFB009178FF7771AD96C36A2C8790s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibD1FAFB009178FF7771AD96C36A2C8790s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibF7B44CFAFD5C52223D5498196C8A2E7Bs1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bibF0840AD245644255BC9C6EFAAEB35B7Ds1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib86D794C15E325DE8C188D66184F1858As1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib55DE19E102E1CC49970325E24F0D8013s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib60EC1812E1AE3040421D3B732EF2CB83s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib60EC1812E1AE3040421D3B732EF2CB83s1
http://refhub.elsevier.com/S0890-5401(22)00106-7/bib3FDFF3B5557810F89C1FD6CA087E5403s1

	Linear-time parameterized algorithms with limited local resources
	1 Motivations
	2 Definitions and related work
	3 Case study I: matching in unweighted graphs
	4 Case study II: matching in weighted graphs
	5 Conclusion and final remarks
	Declaration of competing interest
	References

