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Abstract
We present an algorithm that computes exact maximum flows 
and minimum-cost flows on directed graphs with m edges and 
polynomially bounded integral demands, costs, and capaci-
ties in m1+o(1) time. Our algorithm builds the flow through a 
sequence of m1+o(1) approximate undirected minimum-ratio 
cycles, each of which is computed and processed in amortized 
mo(1) time using a new dynamic graph data structure.

Our framework extends to algorithms running in m1+o(1) 
time for computing flows that minimize general edge-
separable convex functions to high accuracy. This gives 
almost-linear time algorithms for several problems includ-
ing entropy-regularized optimal transport, matrix scaling, 
p-norm flows, and p-norm isotonic regression on arbitrary 
directed acyclic graphs.

1. INTRODUCTION
The maximum flow problem and its generalization, 
the minimum-cost flow problem, are classic combina-
torial graph problems that find numerous applications in 
engineering and scientific computing. These problems 
have been studied extensively over the last seven decades, 
starting from the work of Dantzig and Ford-Fulkerson. 
Several important algorithmic problems can be reduced 
to minimum-cost flows, for example, max-weight bipar-
tite matching, min-cut, and Gomory-Hu trees. The origin 
of numerous significant algorithmic developments such 
as the simplex method, graph sparsification, and link-cut 
trees can be traced back to seeking faster algorithms for 
maximum flow and minimum-cost flow.

1.1. Problem formulation
Formally, we are given a directed graph G = (V, E) with |V| = 
n vertices and |E| = m edges, upper/lower edge capacities 

 edge costs  and vertex demands  with 
 Our goal is to solve the following linear pro-

gram for the minimum-cost flow problem

� (1)

where the last constraint, , succinctly captures 
the requirement that the flow f satisfies vertex demands d, 
where  is the edge-vertex incidence matrix defined 
as B((a,b),v) is 1 if v = a, −1 if v = b, and 0 otherwise.

The original version of this paper titled “Maximum Flow 
and Minimum-Cost Flow in Almost-Linear Time” was 
published in Proceedings of the 2022 IEEE 63rd Annual 
Symposium on Foundations of Computer Science, 612–623.

In this extended abstract, we assume that all  
and dv are integral and polynomially bounded in n since this 
paper focuses on weakly-polynomial algorithms for the max-
imum flow and minimum-cost flow problems.

1.2. Previous work
There has been extensive work on maximum flow and min-
imum-cost flow. Here, we briefly discuss some highlights 
from this work to help place our work in context.

Starting with the first pseudo-polynomial time algorithm by 
Dantzig14 for maximum-flow that ran in O(mn2U) time where 
U denotes the maximum absolute capacity, approaches 
to designing faster flow algorithms were primarily com-
binatorial, working with various adaptations of augment-
ing paths, cycle canceling, blocking flows, and capacity/
cost scaling. A long line of work led to a running time of 

15, 18, 19, 21 for maximum flow, and 
for minimum-cost flow. These bounds stood for decades.

In a breakthrough work on solving Laplacian linear sys-
tems and computing electrical flows, Spielman and Teng34 
introduced a novel set of ideas and tools for solving flow 
problems using combinatorial techniques in conjunction 
with continuous optimization methods. To deploy these 
methods, flow algorithms researchers have used graph-
algorithmic techniques to solve increasingly difficult subprob-
lems that drive powerful continuous methods.

In the context of maximum flow and minimum-cost 
flow, Daitch and Spielman13 demonstrated the power of this 
paradigm by using a path-following interior point method 
(IPM) to reduce the minimum-cost flow problem to solving 
a sequence of roughly  electrical flow (2) problems. Since 
each of these 2 problems could then be solved in nearly-lin-
ear time using the fast Laplacian solver by Spielman-Teng, 
they achieved an  time algorithm for minimum-cost 
flow, the first progress in two decades. They showed that 
a key advantage of IPMs is that they reduce flow problems 
on directed graphs to flow problems on undirected graphs, 
which are easier to work with.

While other continuous optimization methods have 
been used in the context of maximum flow, even leading 
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Our data structure for solving the sequence of min-ratio 
cycle problems is our second key contribution. As a first 
observation, we show that if we sample a random “low-
stretch” spanning tree of the graph, then with constant 
probability, some fundamental tree cycle approximately 
solves the min-ratio cycle problem. Recall a fundamental 
tree cycle is a cycle defined by a single non-tree edge and 
the unique tree path between its endpoints. Unfortunately, 
this simple approach fails after a single flow update, as the 
IPM requires us to change the gradients and lengths after 
each update.

To maintain a set of trees that repeatedly allow us to 
identify good update cycles, we develop a hierarchical con-
struction based on a recursive approach. This requires us to 
repeatedly construct and contract a random forest (which 
partially defines our tree), and then recurse on the resulting 
smaller graph, which we call a core graph. Furthermore, to 
enable recursion, we need to reduce the edge count in the 
core graph. We achieve this using a new spanner construc-
tion, which identifies a sparse subgraph of the core graph on 
which to recurse and detects if the removed edges damage 
the min-ratio cycle. Maintaining the core graphs and span-
ners in our recursive construction requires us to develop an 
array of novel dynamic graph techniques, which may be of 
independent interest.

1.4. Applications
Our result in Theorem 1.1 has a wide range of applications. 
By standard reductions, it gives the first m1+o(1) time algo-
rithms for bipartite matching, worker assignment, negative-
lengths single-source shortest paths, and several other 
problems. For the negative-lengths shortest path problem, 
Bernstein, Nanongkai, and Wulff-Nilsen obtained the first m × 
poly(log m) time algorithm in an independent and concur-
rent work.7

Using recent reductions from various connectivity problems 
to maximum flow, we also obtain the first m1+o(1) time algo-
rithms to compute vertex connectivity and Gomory-Hu trees 
in undirected, unweighted graphs,1,25 and (1 + ε)-approximate 
Gomory-Hu trees in undirected weighted graphs.26 We also 
obtain the current fastest algorithm to find the global min-
cut in a directed graph.11 Finally, we obtain the first almost-
linear-time algorithm to compute the approximate sparsest 
cuts in directed graphs.

Additionally, our algorithm extends to computing flows 
that minimize general edge-separable convex objectives.

Informal Theorem 1.2. Consider a graph G with 
demands d, and an edge-separable convex cost function 

 for “computationally efficient” edge 
costs coste. Then in m1+o(1) time, we can compute a ( fractional) 
flow f that routes demands d and cost( f ) ≤ cost( f *)+exp(−logC m) 
for any constant C > 0, where f* minimizes cost( f *) over flows 
with demands d.

This generalization gives the first almost-linear-time 
algorithms for solving entropy-regularized optimal trans-
port (equivalently, matrix scaling), p-norm flow problems, 
and p-norm isotonic regression for 

to nearly-linear time -approximate undirected maxi-
mum flow and multicommodity flow algorithms,12, 23, 30, 32, 33 
to date all approaches for exact maximum flow and mini-
mum-cost flow rely on the framework suggested by Daitch 
and Spielman of using a path-following IPM to reduce to a 
small but polynomial number of convex optimization prob-
lems. Notable achievements include an m4/3+o(1)U1/3 time algo-
rithm for bipartite matching and unit-capacity maximum 
flow.4, 22, 27, 28, 29 Further, for general capacities, minimum-cost 
flow algorithms were given with runtimes 8, 9, 10 and 

.5, 6, 16, 35 In both of these results, the development 
of efficient data structures to solve the sequence of 2 sub-
problems in amortized time sub-linear in m has played a key 
role in obtaining these runtimes. Yet, despite this progress, 
the best running time bounds remain far from linear.

1.3. Our result
We give the first almost-linear time algorithm for minimum-
cost flow, achieving the optimal running time up to subpoly-
nomial factors.

Theorem 1.1. There is an algorithm that, on a graph 
G = (V, E) with m edges, vertex demands, upper/lower edge 
capacities, and edge costs, all integral with capacities and costs 
bounded by a polynomial in n, computes an exact minimum-
cost flow in m1+o(1) time with high probability.

Our algorithm can be extended to work with capacities and 
costs that are not polynomially bounded at the cost of an 
additional logarithmic dependency in both the maximum 
absolute capacity and the maximum absolute cost.

We make two key contributions to achieve our result. 
First, we develop a novel potential-reduction IPM, simi-
lar to Karmarkar’s original work.20 Our IPM is worse in 
some ways than existing path-following IPMs because 
it needs more updates to converge to a good solution. 
However, our new IPM reduces the minimum-cost flow 
problem to a sequence of update subproblems that 
have a more combinatorial structure than those studied 
before. This enables our second key contribution, a data 
structure that solves our sequence of update subprob-
lems extremely quickly.

In addition to the use of highly combinatorial updates, 
our new IPM has three crucial properties. The IPM is (a) 
robust to approximation error in subproblems, (b) stable in 
terms of the subproblems it defines, and (c) stable in terms 
of a good solution to the subproblems. These features allow 
us to solve the sequence of update subproblems much 
faster by developing a powerful data structure, yielding 
a much faster algorithm overall. Thus, instead of making 
graph algorithms more suitable for continuous optimiza-
tion, we made continuous optimization more suitable for 
graph algorithms.

We call the update subproblem that our IPM yields 
min-ratio cycle: This problem is specified by a graph 
where every edge has a “gradient” and a “length.” The 
problem asks us to find a cycle that minimizes the sum 
of (signed, directed) edge gradients relative to its (undi-
rected) length.
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2. OVERVIEW
2.1. Computing minimum-cost flows via undirected 
min-ratio cycles
Recall the linear program for minimum-cost flow given in 
Equation (1). We assume that this LP has a unique optimal 
solution at  and let  (this can be achieved by 
a negligible perturbation using the famous Isolation Lemma).

For our algorithm, we use a potential-reduction interior 
point method,20 where in each iteration we  measure prog-
ress by reducing the value of the potential function

for  = 1/(1000 log mU). The reader can think of the barrier 
x− as the more standard −log x for simplicity instead. We use 
it for technical reasons beyond the scope of this paper.

Using standard techniques, one can add O(n) additional, 
artificial edges of large capacity and cost to the graph G such 
that the optimal solution to the minimum-cost flow prob-
lem remains unchanged (and in particular is not supported 
on the artificial edges) and such that one can easily find a 
feasible flow f on the artificial edges such that  with 
bounded potential, that is, F( f ) = O(m log m).

Given the current feasible solution f, the potential reduc-
tion interior point method asks to find a circulation D, 
that is, a flow that satisfies  such that F( f + D) £  
F( f ) − m−o(1). Given D, it then sets f ¬ f + D and repeats. 
When F( f ) £ −200m log mU, we can terminate because then 

 at which point standard techniques let us 
round to an exact optimal flow.13 Thus if we can reduce the 
potential by m−o(1) per iteration, the method terminates in 
m1+o(1) iterations.

Let us next describe how to find a circulation D that 
reduces the potential sufficiently. Given the current flow 
f, defining the gradient and lengths  and 

 and we let   
be the matrix with these lengths on the diagonal and zeros 
elsewhere. We can then define the min-ratio cycle problem

� (2)

Given any solution D to this problem with  
for some к < 1/100, scaled so that LD1 = к/50. Then a direct 
Taylor expansion shows that F( f + D) £ F( f ) − к2/500. Hence, 
it suffices to show that such a D exists with  because 
then a data structure that returns an mo(1)-approximate solu-
tion still has к = m−o(1), which suffices. Fortunately, the witness 
circulation D( f )* = f* − f satisfies 

We emphasize that it is essential for our data structure 
that the witness circulation f * − f yields a sufficiently good 
solution. This assumption ensures that good solutions 
to the min ratio cycle instances do not change arbitrarily 
between iterations. Further, even though the algorithm does 
not have access to the witness circulation f* − f, it still knows 
how it changes between iterations as it can track changes in 
f. We are able to leverage this guarantee to ensure our data 
structure succeeds for the updates coming from the IPM.

Finally, let us contrast our approach with previous 
approaches: previous analyses of IPMs solved 2 problems, 
that is, problems of the form given in Equation (2) but with 
the 1 norm replaced by a 2 norm (see Figure 1), which can 
be solved using a linear system. Karmarkar20 shows that 
repeatedly solving 2 subproblems, the IPM converges in 

 iterations. Later analyses of path-following IPMs31 
showed that a sequence of  subproblems suf-
fices to give a high-accuracy solution. Surprisingly, we are 
able to argue that a solving sequence of  minimiz-
ing subproblems of the form in Equation (2) suffice to give 
a high-accuracy solution to Equation (1). In other words, 
changing the 2 norm to an 1 norm does not increase the 
number of iterations in a potential reduction IPM. The use 
of an 1-norm-based subproblem gives us a crucial advan-
tage: Problems of this form must have optimal solutions 
in the form of simple cycles—and our new algorithm finds 
approximately optimal cycles vastly more efficiently than 
any known approaches for 2 subproblems.

2.2. High-level overview of the data structure  
for dynamic min-ratio cycle
As discussed in the previous section, our algorithm computes a 
minimum-cost flow by solving a sequence of m1+o(1) min-ratio 
cycle problems  to mo(1) multiplicative 
accuracy. Because our IPM ensures stability for lengths and 
gradients, and is even robust to approximations of lengths 
and gradients, we can show that over the course of the algo-
rithm, we only need to update the entries of the gradients g 
and lengths  at most m1+o(1) total times.

Warm-up: A simple, static ALGORITHM. A simple 
approach to finding an  -approximate min-ratio cycle 
is the following: given our graph G, we find a probabilistic 
low stretch spanning tree T, that is, a tree such that for each 
edge  the stretch of e, defined as  
where T[u, v] is the unique path from u to v along the tree 
T, is  in expectation. Such a tree can be found in  
time.2, 3 This fact will allow us to argue that with probability 

Figure 1. The IPM takes steps to minimize the potential F(f ) by 
updating f to f + D. Previous approaches suggest obtaining D by 
solving an 2 subproblem (here finding D2 as the optimal step on an 
ellipsoid), but our approach obtains D by minimizing an 1 problem 
(illustrated by finding D1 as the optimal step in a box). While the new 
strategy possibly makes less progress at a step, this allows us to 
find the step D more efficiently.

f + ∆1
f

Φ(f)

–g f + ∆2
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at least  one of the tree cycles is an  -approximate solu-
tion to Equation (2).

Let D* be the optimal circulation that minimizes Equation 
(2), and assume w.l.o.g. that D* is a cycle that routes one 
unit of flow along the cycle. We assume for convenience, 
that edges on D* are oriented along the flow direction of 
D*, that is,  Then, for each edge e = (u, v), the fun-
damental tree cycle of e in T, denoted  is formed 
by edge e concatenated with the path in T from its endpoint 
v to u. To work again with vector notation, we denote by 

 the vector that sends one unit of flow along 
the cycle  in the direction that aligns with the ori-
entation of e. A classic fact from graph theory now states that 

 (note that the tree paths used 
by adjacent off-tree edges cancel out, see Figure 2). In par-
ticular, this implies that 

From the guarantees of the low-stretch tree distribution, 
we know that the circulation D* is not stretched by too much 
in expectation. Thus, by Markov’s inequality, with probability 
at least  the circulation D* is not stretched by too much.  
Formally, we have that  
for  Combining these insights, we can derive that

where the last inequality follows from the fact that 
 (recall also that  is negative). This tells 

us that for the edge e minimizing the expression on the right,  
the tree cycle  is a γ-approximate solution to 
Equation (2), as desired. We can boost the probability of suc-
cess of the above algorithm by sampling  trees T1, T2, …, Ts 
independently at random and conclude that w.h.p. one of the 
fundamental tree cycles approximately solves Equation (2).

Unfortunately, after updating the flow f to f ¢ along such 
a fundamental tree cycle, we cannot reuse the set of trees 
T1, T2, …, Ts because the next solution to Equation (2) has to 
be found with respect to gradients g( f ¢) and lengths ( f ¢) 
depending on f ¢ (instead of g = g( f ) and  = ( f )). But g( f ¢) 
and (f ¢) depend on the randomness used in trees T1, T2, …, 
Ts. Thus, naively, we have to recompute all trees, spending 

again W(m) time. But this leads to run-time W(m2) for our 
overall algorithm which is far from our goal.

A dynamic approach. Thus we consider the data struc-
ture problem of maintaining an mo(1) approximate solution 
to Equation (2) over a sequence of at most m1+o(1) changes to 
entries of g, . To achieve an almost linear time algorithm 
overall, we want our data structure to have an amortized mo(1) 
update time. Motivated by the simple construction above, 
our data structure will ultimately maintain a set of s = mo(1) 
spanning trees T1, …, Ts of the graph G. Each cycle D that is 
returned is represented by mo(1) off-tree edges and paths con-
necting them on some Ti.

To obtain an efficient algorithm to maintain these trees 
Ti, we turn to a recursive approach. Each level of the recur-
sion will partially construct a tree, by choosing a spanning 
forest of the vertices, and contracting the connected com-
ponents of the forest. We obtain a tree by repeating forest 
selection-and-contraction until only a single vertex is left. 
Then, we compose the forest edges obtained at different lev-
els, yielding a spanning tree of the original graph. At each 
level of the construction, our forest is probabilistic and only 
succeeds with constant probability at preserving the hidden 
witness circulation well enough. To preserve the witness 
with high probability, we construct O(log n) different forests 
at each level and recurse on them separately.

In each level of our recursion, we first reduce the number 
of vertices using a forest contraction and then the number 
of edges by making the contracted graph sparse. To reduce 
the number of vertices, we produce a core graph (the result of 
contracting forest components) on a subset of the original 
vertex set, and we then compute a spanner of the core graph 
which reduces the number of edges. The edge-reduction 
step is important to ensure the overall recursion reduces 
the graph size in each step, which is essential to obtaining 
almost linear running time in our framework.

Both the core graph and spanner at each level need to be 
maintained dynamically, and we ensure they are very stable 
under changes in the graphs at shallower levels in the recur-
sion. In both cases, our notion of stability relies on some 
subtle properties of the interaction between data structure 
and hidden witness circulation.

We maintain a recursive hierarchy of graphs. At the top 
level of our hierarchy, for the input graph G, we produce 
B = O(log n) core graphs. To obtain each such core graph, for 
each  we sample a (random) forest Fi with  con-
nected components for some size reduction parameter k. The 
associated core graph is the graph G/Fi which denotes G after 
contracting the vertices in the same components of Fi. We can 
define a map that lifts circulations D̂ in the core graph 
G/Fi, to circulations D in the graph G by routing flow along the 
contracted paths in Fi. The lengths in the core graph  (again 
let ) are chosen to upper bound the length of circula-
tions when mapped back into G such that  
Crucially, we must ensure these new lengths  do not stretch 
the witness circulation D* when mapped into G/Fi by too 
much, so we can recover it from G/Fi. To achieve this goal, we 
choose Fi to be a low-stretch forest, that is, a forest with prop-
erties similar to those of a low-stretch tree. In Section 2.3, we 
summarize the central aspects of our core graph construction.

Figure 2. Illustrating the decomposition  
of a circulation into fundamental tree cycles.

edges

tree T

circulation ∆*

tree cycles           (e ⊕ T[v, u])
e∆* p
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forests  on the path from the top of our recursive 
hierarchy to a leaf node. We can patch these forests together 
to form a tree associated with the leaf node. For each of these 
trees, we maintain a link-cut tree data structure. Using this 
data structure, whenever we find a good cycle, we can route 
flow along it and detect edges where the flow has changed 
significantly. The cycles are either given by an off-tree edge 
or a collection of mo(1) off-tree edges coming from a spanner 
cycle. We call the entire construction a branching tree chain. 
In Section 2.4, we elaborate on the overall composition of 
the data structure.

What have we achieved using this hierarchical con-
struction compared to our simple, static algorithm? First, 
consider the setting of an oblivious adversary, where the 
gradient and length update sequences and the optimal 
circulation after each update are fixed in advance (i.e., the 
adversary is oblivious of the algorithm’s random choices). 
In this setting, we can show that our spanner-of-core graph 
construction can survive through m1−o(1)/ki updates at level i. 
Meanwhile, we can rebuild these constructions in time 
m1+o(1)/ki−1, leading to an amortized cost per update of kmo(1) 
£ mo(1) at each level. This gives the first dynamic data struc-
ture for our undirected min-ratio problem with mo(1) query 
time against an oblivious adversary.

However, our real problem is harder: the witness circu-
lation in each round is D( f )* = f * − f and depends on the 
updates we make to f, making our sequence of subproblems 
adaptive. While we cannot show that our data structure suc-
ceeds against an adaptive adversary, we give a data structure 
that works against a restricted adaptive adversary. We show 
that the witness circulation f * − f lets us express the IPM as 
such a restricted adversary.

2.3. Building core graphs
In this section, we describe our core graph construction, 
which maps our dynamic undirected min-ratio cycle prob-
lem on a graph G with at most m edges and vertices into a 
problem of the same type on a graph with only  verti-
ces and m edges, and handles  updates to the edges 
before we need to rebuild it.

Forest routings and stretches. To understand how to 
define the stretch of an edge e with respect to a forest F, it is 
useful to define how to route an edge e in F. Given a spanning 
forest F, every path and cycle in G can be mapped to G/F natu-
rally (where we allow G/F to contain self-loops). On the other 
hand, if every connected component in F is rooted, where 

 denotes the root corresponding to a vertex  we 
can map every path and cycle in G/F back to G as follows. Let 
P = e1, …, ek be any (not necessarily simple) path in G/F where 
the preimage of every edge ei is  The preim-
age of P, denoted PG, is defined as the following concatena-
tion of paths:

where we use  to denote the concatenation of paths A 
and B, and F[a, b] to denote the unique ab-path in the forest F. 
When P is a circuit (that is, a not necessarily simple cycle), PG 
is a circuit in G as well. One can extend these maps linearly 

While each core graph G/Fi now has only  vertices, 
it still has m edges which are too large for our recursion. 
To overcome this issue we build a spanner  on G/Fi  
to reduce the number of edges to  which guar-
antees that for every edge e = (u, v) that we remove from  
G/Fi to obtain , there is a u-to-v path in  of 
length mo(1). Ideally, we would now recurse on each spanner 

again approximating it with a collection of smaller 
core graphs and spanners. However, we face an obstacle: 
removing edges could destroy the witness circulation so that 
possibly no good circulation exists in any  To solve 
this problem, we compute an explicit embedding  
that maps each edge  to a short u-to-v path in 

 We can then show the following dichotomy: Let  D̂ * 
denote the witness circulation when mapped into the core 
graph G/Fi. Then, either one of the edges  has 
a spanner cycle consisting of e combined with  
which is almost as good as  D̂ *, or re-routing  ̂D * into   
roughly preserves its quality. Figure 3 illustrates this dichot-
omy. Thus, either we find a good cycle using the spanner, 
or we can recursively find a solution  onthat almost 
matches  D̂* in quality. To construct our dynamic spanner 
with its efficient updates and strong stability guarantees 
under changes in the input graph, we design a new approach 
that diverges from other recent works on dynamic spanners.

Our recursion uses d levels, where we choose the size 
reduction factor k such that kd ≈ m and the bottom level 
graphs have mo(1) edges. Note that since we build B trees 
on G and recurse on the spanners of G/F1, G/F2, …, G/FB, our 
recursive hierarchy has a branching factor of B = O(log n) at 
each level of recursion. Thus, choosing  we get Bd = 
mo(1) leaf nodes in our recursive hierarchy. Now, consider the 

Figure 3. Illustration of a dichotomy: either one of the edges 
Î

i i( )G / F S G,Fe E \ E  has a spanner cycle consisting of e combined with 
 which is almost as good as D̂(f )*, or re-routing D̂(f )* 

into iS(G, F ) roughly preserves its quality.

G/Fi and spanner S(G, Fi)

spanner S(G, Fi)

edges EG/Fi
 \ ES(G,Fi)

spanner edges

spanner cycles

spanner embedding paths

circulation ∆(f)*
Ù

circulation ∆(f)*
embedded into
spanner S(G, Fi)

Ù

e2

e1

e3
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B-branching tree chain has  levels of recursion  
and the quality of the solution from the deepest level would 
only be -approximate.

Instead, we compute k different edge weight assignments 
v1, …, vk via multiplicative weight updates so that the LSDs 
F1, …, Fk have  an average stretch on every edge in 

 for all  with image e in G/F.
By Markov’s inequality, for any fixed flow f in 

 holds for at least half the LSDs cor-
responding to F1, …, Fk. Taking O(log n) samples uniformly 
from F1, …, Fk, say F1, …, FB for B = O(log n) we get that with 
high probability

� (3)

That is, it suffices to solve Equation (2) on G/F1, …, G/FB to 
find an -approximate solution for G.

2.4. Maintaining a branching tree chain
Our branching chain is constructed as follows:

1.  Sample and maintain B = O(log n) k-LSDs F1, F2, …, FB, 
and their associated core graphs G/Fi. Across O(m/k) 
updates at the top level, the forests Fi are decremental, 
that is, only undergo edge deletions (from root inser-
tions), and will have  connected components.

2.  Maintain spanners  of the core graphs G/Fi, and 
embeddings  say with length increase 
γ


 = mo(1).
3.  Recursively process the graphs  that is, maintain 

LSDs and core graphs on those, and spanners on the 
contracted graphs, etc., for d total levels, with kd = m.

4.  Whenever a level i accumulates m/ki total updates, 
hence doubling the number of edges in the graphs at 
that level, we rebuild levels i, i + 1, …, d.

Recall that on average, the LSDs stretch lengths by   
and the spanners  stretch lengths by γ



. Hence, the 
overall data structure stretches lengths by  (for 
appropriately chosen d).

We now discuss how to update the forests G/Fi and spanners 
 Intuitively, every time an edge e = (u, v) is changed  

in G, we will delete  additional edges from Fi. This 
ensures that no edge’s total stretch/routing-length increases 
significantly due to the deletion of e. As the forest Fi under-
goes edge deletions, the graph G/Fi undergoes vertex splits, 
where a vertex has a subset of its edges moved to a newly cre-
ated vertex. Thus, a key component of our data structure is to 
maintain spanners and embed-dings of graphs undergoing 
vertex splits (and edge insertions/ deletions). Importantly, 
the amortized recourse (number of changes) to the spanner 

 is mo(1) independent of k, even though the average 
degree of G/Fi is W(k). Hence, on average W(k) edges will move 
in G/Fi per vertex split.

Overall, let every level have recourse γr = mo(1) (indepen-
dent of k) per tree. Then each update at the top level induces 
O(Bγr)

d (as we branch using B forests/core graphs at each 
level of the recursion) updates in the data structure overall. 
Intuitively, for the proper choice of d = ω(1), both the total 

to all flow vectors and denote the resulting operators as  
 and  Since we let G/F  

have self-loops, there is a bijection between the edges of G 
and G/F, and thus  acts like the identity function. Related 
routing schemes date back to Spielman-Teng34 and are gen-
erally known as portal routing.

To make our core graph construction dynamic, the key 
operation we need to support is the dynamic addition of 
more root nodes, which results in forest edges being deleted 
to maintain the invariant each connected component has 
a root node. Whenever an edge is changing in G, we ensure 
that G/F approximates the changed edge well by forcing both 
its endpoints to become root nodes, which in turn makes 
the portal routing of the new edge trivial and this guarantees 
its stretch is 1.

For any edge eG = (uG, vG) in G with image e in G/F, we 
set  the edge length of e in G/F, to be an upper bound 
on the length of the forest routing of e, that is, the path 

 Meanwhile, we define 
 as an overestimate on the stretch of e w.r.t. the 

forest routing. A priori, it is unclear how to provide a single 
upper bound on the stretch of every edge, as the root nodes 
of the endpoints are changing over time. Providing such a 
bound for every edge is important for us as the lengths in 
G/F could otherwise be changing too often when the for-
est changes. We guarantee these bounds by a scheme that 
makes auxiliary edge deletions in the forest in response to 
external updates, with the resulting additional roots chosen 
carefully to ensure the length of upper bounds.

Now, for any flow f in G/F, its length in G/F is at least the 
length of its pre-image in G, that is,  Let 
D* be the optimal solution to Equation (2). We will show 
later how to build F such that with constant probability 

 holds for some γ = mo(1), solving Equation 
(2) on G/F with edge length  and properly defined gradient 

 on G/F yields an -approximate solution for G. The gradi-
ent  is defined so that the total gradient of any circulation 
D on G/F and its preimage  in G is the same, that is,  

 The idea of incorporating gradients into 
portal routing was introduced in Kyng et al.24; our version of 
this construction is somewhat different to allow us to make 
it dynamic efficiently.

Collections of low stretch decompositions (LSD). The  
first component of the data structure is constructing 
and maintaining forests of F that form a Low Stretch 
Decomposition (LSD) of G. Informally, a k-LSD is a rooted 
forest  that decomposes G into O(m/k) vertex disjoint 
components. Given some positive edge weights  and 
reduction factor k > 0, we compute a k-LSD F and length 
upper bounds  of G/F that satisfy two properties:

1.   for any edge  with image e 
in G/F, and

2.  The weighted average of  w.r.t. v is only  that  
is, 

Item 1 guarantees that the solution to Equation (2) for  
G/F yields a -approximate one for G. However, this 
guarantee is not sufficient for our data structure, as our 
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the latter by  This gives that for any  the 
following holds:

Using the fact that  we 
have the following:

Thus, solving Equation (2) on the updated G/F1, …, G/FB 
yields a good enough solution for reducing IPM potential as 
long as the width of w( f + D) has not decreased significantly, 
that is, 

If the solution on the updated graphs G/F1, …, G/FB does 
not have a good enough quality, we know by the above dis-
cussion that  must hold. Then, we 
re-compute the collection of LSDs of G and solve Equation 
(2) on the new collection of G/F1, …, G/FB again. Because 
each recomputation reduces the 1 norm of the width by a 
constant factor, and all the widths are bounded by exp(logO(1) 
m) (which can be guaranteed by the IPM), there can be at 
most  such recomputations. At the top level, this only 
increases our runtime by  factors.

The full construction is along these lines, but more com-
plicated since we recursively maintain the solutions on the 
spanners of each core graph G/F1, …, G/FB. In the full version 
of the paper, we describe and analyze a multi-level rebuild-
ing scheme that extends the above reasoning to our full 
data structure.

3. CONCLUSION
In this paper, we presented an almost-linear time algorithm 
for minimum-cost flow, maximum flow, and more gener-
ally, all convex single-commodity flows. Our work essentially 
settles the complexity of several fundamental and intensely 
studied problems in algorithms design. We hope that the 
ideas introduced in this work will spur further research in 
several directions, including simpler and faster algorithms 
for flow problems; hopefully resulting in a significant impact 
on algorithms in practice.
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recourse O(Bγr)
d and approximation factor  are mo(1)  

as desired.

2.5. Going beyond oblivious adversaries  
by using IPM guarantees
The precise data structure in the previous section only 
works for oblivious adversaries, because we used that if 
we sampled B = O(log n) LSDs, then w.h.p. there is a tree 
whose average stretch is  with respect to a fixed flow 
f. However, since we are updating the flow along the circu-
lations returned by our data structure, we influence future 
updates, so the optimal circulations our data structure 
needs to preserve, are not independent of the random-
ness used to generate the LSDs. To overcome this issue, we 
leverage the key fact that the flow f * − f is a good witness for 
the min-ratio cycle problem at each iteration.

To simplify our discussion, we focus on the role of 
the witness in ensuring the functioning of a single 
layer of core graph construction, which already cap-
tures the main ideas. We can prove that for any flow 

 holds where 
D( f ) = f * − f. Then, the best solution to Equation (2) among 
the LSDs G/F1, …, G/FB maintains an -approximation of 
the quality of the witness D( f ) = f * − f as long as

� (4)

In this case, let D̂ be the best solution obtained from 
graphs G/F1, …, G/FB. We have

The additive  term is there for technical reasons that 
can be ignored for now. We define the width w( f ) of D( f ) as  
w( f ) = 100 × 1+|L( f )D( f )|. The name comes from the fact 
that w( f )e is always at least  for any edge e.  
We show that the width is also slowly changing across 
IPM iterations, in that if the width changed by a lot, 
then the residual capacity of e must have changed sig-
nificantly. This gives our data structure a way to predict 
which edges’ contribution to the length of the witness 
flow f * − f could have significantly increased.

Observe that for any forest Fj in the LSD of G, we have 
 Thus, we can strengthen Equation 

(4) and show that the IPM potential can be decreased by m−o(1) if

� (5)

Equation (5) also holds with w.h.p. if the collection of LSDs 
is built after knowing f. However, this does not necessarily 
hold after augmenting with D, an approximate solution to 
Equation (2).

Due to the stability of w( f ), we have w( f + D)e ≈ w( f )e for 
every edge e whose length does not change a lot. For other 
edges, we update their edge length and force the stretch to 
be 1, that is,  via the dynamic LSD maintenance, by 
shortcutting the routing of the edge e at its endpoints. To 
distinguish between the earlier stretch values and those 
after updating edges, let us denote the former by  and 
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