
DECEMBER 2023 | VOL. 66 | NO. 12 | COMMUNICATIONS OF THE ACM 85

Almost-Linear-Time
Algorithms for Maximum Flow
and Minimum-Cost Flow
By Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva

DOI:10.1145/3610940

Abstract
We present an algorithm that computes exact maximum flows
and minimum-cost flows on directed graphs with m edges and
polynomially bounded integral demands, costs, and capaci-
ties in m1+o(1) time. Our algorithm builds the flow through a
sequence of m1+o(1) approximate undirected minimum-ratio
cycles, each of which is computed and processed in amortized
mo(1) time using a new dynamic graph data structure.

Our framework extends to algorithms running in m1+o(1)
time for computing flows that minimize general edge-
separable convex functions to high accuracy. This gives
almost-linear time algorithms for several problems includ-
ing entropy-regularized optimal transport, matrix scaling,
p-norm flows, and p-norm isotonic regression on arbitrary
directed acyclic graphs.

1. INTRODUCTION
The maximum flow problem and its generalization,
the minimum-cost flow problem, are classic combina-
torial graph problems that find numerous applications in
engineering and scientific computing. These problems
have been studied extensively over the last seven decades,
starting from the work of Dantzig and Ford-Fulkerson.
Several important algorithmic problems can be reduced
to minimum-cost flows, for example, max-weight bipar-
tite matching, min-cut, and Gomory-Hu trees. The origin
of numerous significant algorithmic developments such
as the simplex method, graph sparsification, and link-cut
trees can be traced back to seeking faster algorithms for
maximum flow and minimum-cost flow.

1.1. Problem formulation
Formally, we are given a directed graph G = (V, E) with |V| =
n vertices and |E| = m edges, upper/lower edge capacities

 edge costs and vertex demands with
 Our goal is to solve the following linear pro-

gram for the minimum-cost flow problem

� (1)

where the last constraint, , succinctly captures
the requirement that the flow f satisfies vertex demands d,
where is the edge-vertex incidence matrix defined
as B((a,b),v) is 1 if v = a, −1 if v = b, and 0 otherwise.

The original version of this paper titled “Maximum Flow
and Minimum-Cost Flow in Almost-Linear Time” was
published in Proceedings of the 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science, 612–623.

In this extended abstract, we assume that all
and dv are integral and polynomially bounded in n since this
paper focuses on weakly-polynomial algorithms for the max-
imum flow and minimum-cost flow problems.

1.2. Previous work
There has been extensive work on maximum flow and min-
imum-cost flow. Here, we briefly discuss some highlights
from this work to help place our work in context.

Starting with the first pseudo-polynomial time algorithm by
Dantzig14 for maximum-flow that ran in O(mn2U) time where
U denotes the maximum absolute capacity, approaches
to designing faster flow algorithms were primarily com-
binatorial, working with various adaptations of augment-
ing paths, cycle canceling, blocking flows, and capacity/
cost scaling. A long line of work led to a running time of

15, 18, 19, 21 for maximum flow, and
for minimum-cost flow. These bounds stood for decades.

In a breakthrough work on solving Laplacian linear sys-
tems and computing electrical flows, Spielman and Teng34
introduced a novel set of ideas and tools for solving flow
problems using combinatorial techniques in conjunction
with continuous optimization methods. To deploy these
methods, flow algorithms researchers have used graph-
algorithmic techniques to solve increasingly difficult subprob-
lems that drive powerful continuous methods.

In the context of maximum flow and minimum-cost
flow, Daitch and Spielman13 demonstrated the power of this
paradigm by using a path-following interior point method
(IPM) to reduce the minimum-cost flow problem to solving
a sequence of roughly electrical flow (2) problems. Since
each of these 2 problems could then be solved in nearly-lin-
ear time using the fast Laplacian solver by Spielman-Teng,
they achieved an time algorithm for minimum-cost
flow, the first progress in two decades. They showed that
a key advantage of IPMs is that they reduce flow problems
on directed graphs to flow problems on undirected graphs,
which are easier to work with.

While other continuous optimization methods have
been used in the context of maximum flow, even leading

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3623277 tp

https://dx.doi.org/10.1145/3610940
https://doi.acm.org/10.1145/3623277
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610940&domain=pdf&date_stamp=2023-11-17

research highlights

86 COMMUNICATIONS OF THE ACM | DECEMBER 2023 | VOL. 66 | NO. 12

Our data structure for solving the sequence of min-ratio
cycle problems is our second key contribution. As a first
observation, we show that if we sample a random “low-
stretch” spanning tree of the graph, then with constant
probability, some fundamental tree cycle approximately
solves the min-ratio cycle problem. Recall a fundamental
tree cycle is a cycle defined by a single non-tree edge and
the unique tree path between its endpoints. Unfortunately,
this simple approach fails after a single flow update, as the
IPM requires us to change the gradients and lengths after
each update.

To maintain a set of trees that repeatedly allow us to
identify good update cycles, we develop a hierarchical con-
struction based on a recursive approach. This requires us to
repeatedly construct and contract a random forest (which
partially defines our tree), and then recurse on the resulting
smaller graph, which we call a core graph. Furthermore, to
enable recursion, we need to reduce the edge count in the
core graph. We achieve this using a new spanner construc-
tion, which identifies a sparse subgraph of the core graph on
which to recurse and detects if the removed edges damage
the min-ratio cycle. Maintaining the core graphs and span-
ners in our recursive construction requires us to develop an
array of novel dynamic graph techniques, which may be of
independent interest.

1.4. Applications
Our result in Theorem 1.1 has a wide range of applications.
By standard reductions, it gives the first m1+o(1) time algo-
rithms for bipartite matching, worker assignment, negative-
lengths single-source shortest paths, and several other
problems. For the negative-lengths shortest path problem,
Bernstein, Nanongkai, and Wulff-Nilsen obtained the first m ×
poly(log m) time algorithm in an independent and concur-
rent work.7

Using recent reductions from various connectivity problems
to maximum flow, we also obtain the first m1+o(1) time algo-
rithms to compute vertex connectivity and Gomory-Hu trees
in undirected, unweighted graphs,1,25 and (1 + ε)-approximate
Gomory-Hu trees in undirected weighted graphs.26 We also
obtain the current fastest algorithm to find the global min-
cut in a directed graph.11 Finally, we obtain the first almost-
linear-time algorithm to compute the approximate sparsest
cuts in directed graphs.

Additionally, our algorithm extends to computing flows
that minimize general edge-separable convex objectives.

Informal Theorem 1.2. Consider a graph G with
demands d, and an edge-separable convex cost function

 for “computationally efficient” edge
costs coste. Then in m1+o(1) time, we can compute a (fractional)
flow f that routes demands d and cost(f) ≤ cost( f *)+exp(−logC m)
for any constant C > 0, where f* minimizes cost(f *) over flows
with demands d.

This generalization gives the first almost-linear-time
algorithms for solving entropy-regularized optimal trans-
port (equivalently, matrix scaling), p-norm flow problems,
and p-norm isotonic regression for

to nearly-linear time -approximate undirected maxi-
mum flow and multicommodity flow algorithms,12, 23, 30, 32, 33
to date all approaches for exact maximum flow and mini-
mum-cost flow rely on the framework suggested by Daitch
and Spielman of using a path-following IPM to reduce to a
small but polynomial number of convex optimization prob-
lems. Notable achievements include an m4/3+o(1)U1/3 time algo-
rithm for bipartite matching and unit-capacity maximum
flow.4, 22, 27, 28, 29 Further, for general capacities, minimum-cost
flow algorithms were given with runtimes 8, 9, 10 and

.5, 6, 16, 35 In both of these results, the development
of efficient data structures to solve the sequence of 2 sub-
problems in amortized time sub-linear in m has played a key
role in obtaining these runtimes. Yet, despite this progress,
the best running time bounds remain far from linear.

1.3. Our result
We give the first almost-linear time algorithm for minimum-
cost flow, achieving the optimal running time up to subpoly-
nomial factors.

Theorem 1.1. There is an algorithm that, on a graph
G = (V, E) with m edges, vertex demands, upper/lower edge
capacities, and edge costs, all integral with capacities and costs
bounded by a polynomial in n, computes an exact minimum-
cost flow in m1+o(1) time with high probability.

Our algorithm can be extended to work with capacities and
costs that are not polynomially bounded at the cost of an
additional logarithmic dependency in both the maximum
absolute capacity and the maximum absolute cost.

We make two key contributions to achieve our result.
First, we develop a novel potential-reduction IPM, simi-
lar to Karmarkar’s original work.20 Our IPM is worse in
some ways than existing path-following IPMs because
it needs more updates to converge to a good solution.
However, our new IPM reduces the minimum-cost flow
problem to a sequence of update subproblems that
have a more combinatorial structure than those studied
before. This enables our second key contribution, a data
structure that solves our sequence of update subprob-
lems extremely quickly.

In addition to the use of highly combinatorial updates,
our new IPM has three crucial properties. The IPM is (a)
robust to approximation error in subproblems, (b) stable in
terms of the subproblems it defines, and (c) stable in terms
of a good solution to the subproblems. These features allow
us to solve the sequence of update subproblems much
faster by developing a powerful data structure, yielding
a much faster algorithm overall. Thus, instead of making
graph algorithms more suitable for continuous optimiza-
tion, we made continuous optimization more suitable for
graph algorithms.

We call the update subproblem that our IPM yields
min-ratio cycle: This problem is specified by a graph
where every edge has a “gradient” and a “length.” The
problem asks us to find a cycle that minimizes the sum
of (signed, directed) edge gradients relative to its (undi-
rected) length.

DECEMBER 2023 | VOL. 66 | NO. 12 | COMMUNICATIONS OF THE ACM 87

2. OVERVIEW
2.1. Computing minimum-cost flows via undirected
min-ratio cycles
Recall the linear program for minimum-cost flow given in
Equation (1). We assume that this LP has a unique optimal
solution at and let (this can be achieved by
a negligible perturbation using the famous Isolation Lemma).

For our algorithm, we use a potential-reduction interior
point method,20 where in each iteration we measure prog-
ress by reducing the value of the potential function

for  = 1/(1000 log mU). The reader can think of the barrier
x− as the more standard −log x for simplicity instead. We use
it for technical reasons beyond the scope of this paper.

Using standard techniques, one can add O(n) additional,
artificial edges of large capacity and cost to the graph G such
that the optimal solution to the minimum-cost flow prob-
lem remains unchanged (and in particular is not supported
on the artificial edges) and such that one can easily find a
feasible flow f on the artificial edges such that with
bounded potential, that is, F(f) = O(m log m).

Given the current feasible solution f, the potential reduc-
tion interior point method asks to find a circulation D,
that is, a flow that satisfies such that F(f + D) £
F(f) − m−o(1). Given D, it then sets f ¬ f + D and repeats.
When F(f) £ −200m log mU, we can terminate because then

 at which point standard techniques let us
round to an exact optimal flow.13 Thus if we can reduce the
potential by m−o(1) per iteration, the method terminates in
m1+o(1) iterations.

Let us next describe how to find a circulation D that
reduces the potential sufficiently. Given the current flow
f, defining the gradient and lengths and

 and we let
be the matrix with these lengths on the diagonal and zeros
elsewhere. We can then define the min-ratio cycle problem

� (2)

Given any solution D to this problem with
for some к < 1/100, scaled so that LD1 = к/50. Then a direct
Taylor expansion shows that F(f + D) £ F(f ) − к2/500. Hence,
it suffices to show that such a D exists with because
then a data structure that returns an mo(1)-approximate solu-
tion still has к = m−o(1), which suffices. Fortunately, the witness
circulation D(f)* = f* − f satisfies

We emphasize that it is essential for our data structure
that the witness circulation f * − f yields a sufficiently good
solution. This assumption ensures that good solutions
to the min ratio cycle instances do not change arbitrarily
between iterations. Further, even though the algorithm does
not have access to the witness circulation f* − f, it still knows
how it changes between iterations as it can track changes in
f. We are able to leverage this guarantee to ensure our data
structure succeeds for the updates coming from the IPM.

Finally, let us contrast our approach with previous
approaches: previous analyses of IPMs solved 2 problems,
that is, problems of the form given in Equation (2) but with
the 1 norm replaced by a 2 norm (see Figure 1), which can
be solved using a linear system. Karmarkar20 shows that
repeatedly solving 2 subproblems, the IPM converges in

 iterations. Later analyses of path-following IPMs31
showed that a sequence of subproblems suf-
fices to give a high-accuracy solution. Surprisingly, we are
able to argue that a solving sequence of minimiz-
ing subproblems of the form in Equation (2) suffice to give
a high-accuracy solution to Equation (1). In other words,
changing the 2 norm to an 1 norm does not increase the
number of iterations in a potential reduction IPM. The use
of an 1-norm-based subproblem gives us a crucial advan-
tage: Problems of this form must have optimal solutions
in the form of simple cycles—and our new algorithm finds
approximately optimal cycles vastly more efficiently than
any known approaches for 2 subproblems.

2.2. High-level overview of the data structure
for dynamic min-ratio cycle
As discussed in the previous section, our algorithm computes a
minimum-cost flow by solving a sequence of m1+o(1) min-ratio
cycle problems to mo(1) multiplicative
accuracy. Because our IPM ensures stability for lengths and
gradients, and is even robust to approximations of lengths
and gradients, we can show that over the course of the algo-
rithm, we only need to update the entries of the gradients g
and lengths  at most m1+o(1) total times.

Warm-up: A simple, static ALGORITHM. A simple
approach to finding an -approximate min-ratio cycle
is the following: given our graph G, we find a probabilistic
low stretch spanning tree T, that is, a tree such that for each
edge the stretch of e, defined as
where T[u, v] is the unique path from u to v along the tree
T, is in expectation. Such a tree can be found in
time.2, 3 This fact will allow us to argue that with probability

Figure 1. The IPM takes steps to minimize the potential F(f ) by
updating f to f + D. Previous approaches suggest obtaining D by
solving an 2 subproblem (here finding D2 as the optimal step on an
ellipsoid), but our approach obtains D by minimizing an 1 problem
(illustrated by finding D1 as the optimal step in a box). While the new
strategy possibly makes less progress at a step, this allows us to
find the step D more efficiently.

f + ∆1
f

Φ(f)

–g f + ∆2

research highlights

88 COMMUNICATIONS OF THE ACM | DECEMBER 2023 | VOL. 66 | NO. 12

at least one of the tree cycles is an -approximate solu-
tion to Equation (2).

Let D* be the optimal circulation that minimizes Equation
(2), and assume w.l.o.g. that D* is a cycle that routes one
unit of flow along the cycle. We assume for convenience,
that edges on D* are oriented along the flow direction of
D*, that is, Then, for each edge e = (u, v), the fun-
damental tree cycle of e in T, denoted is formed
by edge e concatenated with the path in T from its endpoint
v to u. To work again with vector notation, we denote by

 the vector that sends one unit of flow along
the cycle in the direction that aligns with the ori-
entation of e. A classic fact from graph theory now states that

 (note that the tree paths used
by adjacent off-tree edges cancel out, see Figure 2). In par-
ticular, this implies that

From the guarantees of the low-stretch tree distribution,
we know that the circulation D* is not stretched by too much
in expectation. Thus, by Markov’s inequality, with probability
at least the circulation D* is not stretched by too much.
Formally, we have that
for Combining these insights, we can derive that

where the last inequality follows from the fact that
 (recall also that is negative). This tells

us that for the edge e minimizing the expression on the right,
the tree cycle is a γ-approximate solution to
Equation (2), as desired. We can boost the probability of suc-
cess of the above algorithm by sampling trees T1, T2, …, Ts
independently at random and conclude that w.h.p. one of the
fundamental tree cycles approximately solves Equation (2).

Unfortunately, after updating the flow f to f ¢ along such
a fundamental tree cycle, we cannot reuse the set of trees
T1, T2, …, Ts because the next solution to Equation (2) has to
be found with respect to gradients g(f ¢) and lengths (f ¢)
depending on f ¢ (instead of g = g(f) and  = (f)). But g(f ¢)
and (f ¢) depend on the randomness used in trees T1, T2, …,
Ts. Thus, naively, we have to recompute all trees, spending

again W(m) time. But this leads to run-time W(m2) for our
overall algorithm which is far from our goal.

A dynamic approach. Thus we consider the data struc-
ture problem of maintaining an mo(1) approximate solution
to Equation (2) over a sequence of at most m1+o(1) changes to
entries of g, . To achieve an almost linear time algorithm
overall, we want our data structure to have an amortized mo(1)
update time. Motivated by the simple construction above,
our data structure will ultimately maintain a set of s = mo(1)
spanning trees T1, …, Ts of the graph G. Each cycle D that is
returned is represented by mo(1) off-tree edges and paths con-
necting them on some Ti.

To obtain an efficient algorithm to maintain these trees
Ti, we turn to a recursive approach. Each level of the recur-
sion will partially construct a tree, by choosing a spanning
forest of the vertices, and contracting the connected com-
ponents of the forest. We obtain a tree by repeating forest
selection-and-contraction until only a single vertex is left.
Then, we compose the forest edges obtained at different lev-
els, yielding a spanning tree of the original graph. At each
level of the construction, our forest is probabilistic and only
succeeds with constant probability at preserving the hidden
witness circulation well enough. To preserve the witness
with high probability, we construct O(log n) different forests
at each level and recurse on them separately.

In each level of our recursion, we first reduce the number
of vertices using a forest contraction and then the number
of edges by making the contracted graph sparse. To reduce
the number of vertices, we produce a core graph (the result of
contracting forest components) on a subset of the original
vertex set, and we then compute a spanner of the core graph
which reduces the number of edges. The edge-reduction
step is important to ensure the overall recursion reduces
the graph size in each step, which is essential to obtaining
almost linear running time in our framework.

Both the core graph and spanner at each level need to be
maintained dynamically, and we ensure they are very stable
under changes in the graphs at shallower levels in the recur-
sion. In both cases, our notion of stability relies on some
subtle properties of the interaction between data structure
and hidden witness circulation.

We maintain a recursive hierarchy of graphs. At the top
level of our hierarchy, for the input graph G, we produce
B = O(log n) core graphs. To obtain each such core graph, for
each we sample a (random) forest Fi with con-
nected components for some size reduction parameter k. The
associated core graph is the graph G/Fi which denotes G after
contracting the vertices in the same components of Fi. We can
define a map that lifts circulations D̂ in the core graph
G/Fi, to circulations D in the graph G by routing flow along the
contracted paths in Fi. The lengths in the core graph (again
let) are chosen to upper bound the length of circula-
tions when mapped back into G such that
Crucially, we must ensure these new lengths do not stretch
the witness circulation D* when mapped into G/Fi by too
much, so we can recover it from G/Fi. To achieve this goal, we
choose Fi to be a low-stretch forest, that is, a forest with prop-
erties similar to those of a low-stretch tree. In Section 2.3, we
summarize the central aspects of our core graph construction.

Figure 2. Illustrating the decomposition
of a circulation into fundamental tree cycles.

edges

tree T

circulation ∆*

tree cycles (e ⊕ T[v, u])
e∆* p

DECEMBER 2023 | VOL. 66 | NO. 12 | COMMUNICATIONS OF THE ACM 89

forests on the path from the top of our recursive
hierarchy to a leaf node. We can patch these forests together
to form a tree associated with the leaf node. For each of these
trees, we maintain a link-cut tree data structure. Using this
data structure, whenever we find a good cycle, we can route
flow along it and detect edges where the flow has changed
significantly. The cycles are either given by an off-tree edge
or a collection of mo(1) off-tree edges coming from a spanner
cycle. We call the entire construction a branching tree chain.
In Section 2.4, we elaborate on the overall composition of
the data structure.

What have we achieved using this hierarchical con-
struction compared to our simple, static algorithm? First,
consider the setting of an oblivious adversary, where the
gradient and length update sequences and the optimal
circulation after each update are fixed in advance (i.e., the
adversary is oblivious of the algorithm’s random choices).
In this setting, we can show that our spanner-of-core graph
construction can survive through m1−o(1)/ki updates at level i.
Meanwhile, we can rebuild these constructions in time
m1+o(1)/ki−1, leading to an amortized cost per update of kmo(1)
£ mo(1) at each level. This gives the first dynamic data struc-
ture for our undirected min-ratio problem with mo(1) query
time against an oblivious adversary.

However, our real problem is harder: the witness circu-
lation in each round is D(f)* = f * − f and depends on the
updates we make to f, making our sequence of subproblems
adaptive. While we cannot show that our data structure suc-
ceeds against an adaptive adversary, we give a data structure
that works against a restricted adaptive adversary. We show
that the witness circulation f * − f lets us express the IPM as
such a restricted adversary.

2.3. Building core graphs
In this section, we describe our core graph construction,
which maps our dynamic undirected min-ratio cycle prob-
lem on a graph G with at most m edges and vertices into a
problem of the same type on a graph with only verti-
ces and m edges, and handles updates to the edges
before we need to rebuild it.

Forest routings and stretches. To understand how to
define the stretch of an edge e with respect to a forest F, it is
useful to define how to route an edge e in F. Given a spanning
forest F, every path and cycle in G can be mapped to G/F natu-
rally (where we allow G/F to contain self-loops). On the other
hand, if every connected component in F is rooted, where

 denotes the root corresponding to a vertex we
can map every path and cycle in G/F back to G as follows. Let
P = e1, …, ek be any (not necessarily simple) path in G/F where
the preimage of every edge ei is The preim-
age of P, denoted PG, is defined as the following concatena-
tion of paths:

where we use to denote the concatenation of paths A
and B, and F[a, b] to denote the unique ab-path in the forest F.
When P is a circuit (that is, a not necessarily simple cycle), PG
is a circuit in G as well. One can extend these maps linearly

While each core graph G/Fi now has only vertices,
it still has m edges which are too large for our recursion.
To overcome this issue we build a spanner on G/Fi
to reduce the number of edges to which guar-
antees that for every edge e = (u, v) that we remove from
G/Fi to obtain , there is a u-to-v path in of
length mo(1). Ideally, we would now recurse on each spanner

again approximating it with a collection of smaller
core graphs and spanners. However, we face an obstacle:
removing edges could destroy the witness circulation so that
possibly no good circulation exists in any To solve
this problem, we compute an explicit embedding
that maps each edge to a short u-to-v path in

 We can then show the following dichotomy: Let D̂ *
denote the witness circulation when mapped into the core
graph G/Fi. Then, either one of the edges has
a spanner cycle consisting of e combined with
which is almost as good as D̂ *, or re-routing ̂D * into
roughly preserves its quality. Figure 3 illustrates this dichot-
omy. Thus, either we find a good cycle using the spanner,
or we can recursively find a solution onthat almost
matches D̂* in quality. To construct our dynamic spanner
with its efficient updates and strong stability guarantees
under changes in the input graph, we design a new approach
that diverges from other recent works on dynamic spanners.

Our recursion uses d levels, where we choose the size
reduction factor k such that kd ≈ m and the bottom level
graphs have mo(1) edges. Note that since we build B trees
on G and recurse on the spanners of G/F1, G/F2, …, G/FB, our
recursive hierarchy has a branching factor of B = O(log n) at
each level of recursion. Thus, choosing we get Bd =
mo(1) leaf nodes in our recursive hierarchy. Now, consider the

Figure 3. Illustration of a dichotomy: either one of the edges
Î

i i()G / F S G,Fe E \ E has a spanner cycle consisting of e combined with
 which is almost as good as D̂(f )*, or re-routing D̂(f )*

into iS(G, F) roughly preserves its quality.

G/Fi and spanner S(G, Fi)

spanner S(G, Fi)

edges EG/Fi
 \ ES(G,Fi)

spanner edges

spanner cycles

spanner embedding paths

circulation ∆(f)*
Ù

circulation ∆(f)*
embedded into
spanner S(G, Fi)

Ù

e2

e1

e3

research highlights

90 COMMUNICATIONS OF THE ACM | DECEMBER 2023 | VOL. 66 | NO. 12

B-branching tree chain has levels of recursion
and the quality of the solution from the deepest level would
only be -approximate.

Instead, we compute k different edge weight assignments
v1, …, vk via multiplicative weight updates so that the LSDs
F1, …, Fk have an average stretch on every edge in

 for all with image e in G/F.
By Markov’s inequality, for any fixed flow f in

 holds for at least half the LSDs cor-
responding to F1, …, Fk. Taking O(log n) samples uniformly
from F1, …, Fk, say F1, …, FB for B = O(log n) we get that with
high probability

� (3)

That is, it suffices to solve Equation (2) on G/F1, …, G/FB to
find an -approximate solution for G.

2.4. Maintaining a branching tree chain
Our branching chain is constructed as follows:

1.  Sample and maintain B = O(log n) k-LSDs F1, F2, …, FB,
and their associated core graphs G/Fi. Across O(m/k)
updates at the top level, the forests Fi are decremental,
that is, only undergo edge deletions (from root inser-
tions), and will have connected components.

2.  Maintain spanners of the core graphs G/Fi, and
embeddings say with length increase
γ


 = mo(1).
3.  Recursively process the graphs that is, maintain

LSDs and core graphs on those, and spanners on the
contracted graphs, etc., for d total levels, with kd = m.

4.  Whenever a level i accumulates m/ki total updates,
hence doubling the number of edges in the graphs at
that level, we rebuild levels i, i + 1, …, d.

Recall that on average, the LSDs stretch lengths by
and the spanners stretch lengths by γ



. Hence, the
overall data structure stretches lengths by (for
appropriately chosen d).

We now discuss how to update the forests G/Fi and spanners
 Intuitively, every time an edge e = (u, v) is changed

in G, we will delete additional edges from Fi. This
ensures that no edge’s total stretch/routing-length increases
significantly due to the deletion of e. As the forest Fi under-
goes edge deletions, the graph G/Fi undergoes vertex splits,
where a vertex has a subset of its edges moved to a newly cre-
ated vertex. Thus, a key component of our data structure is to
maintain spanners and embed-dings of graphs undergoing
vertex splits (and edge insertions/ deletions). Importantly,
the amortized recourse (number of changes) to the spanner

 is mo(1) independent of k, even though the average
degree of G/Fi is W(k). Hence, on average W(k) edges will move
in G/Fi per vertex split.

Overall, let every level have recourse γr = mo(1) (indepen-
dent of k) per tree. Then each update at the top level induces
O(Bγr)

d (as we branch using B forests/core graphs at each
level of the recursion) updates in the data structure overall.
Intuitively, for the proper choice of d = ω(1), both the total

to all flow vectors and denote the resulting operators as
 and Since we let G/F

have self-loops, there is a bijection between the edges of G
and G/F, and thus acts like the identity function. Related
routing schemes date back to Spielman-Teng34 and are gen-
erally known as portal routing.

To make our core graph construction dynamic, the key
operation we need to support is the dynamic addition of
more root nodes, which results in forest edges being deleted
to maintain the invariant each connected component has
a root node. Whenever an edge is changing in G, we ensure
that G/F approximates the changed edge well by forcing both
its endpoints to become root nodes, which in turn makes
the portal routing of the new edge trivial and this guarantees
its stretch is 1.

For any edge eG = (uG, vG) in G with image e in G/F, we
set the edge length of e in G/F, to be an upper bound
on the length of the forest routing of e, that is, the path

 Meanwhile, we define
 as an overestimate on the stretch of e w.r.t. the

forest routing. A priori, it is unclear how to provide a single
upper bound on the stretch of every edge, as the root nodes
of the endpoints are changing over time. Providing such a
bound for every edge is important for us as the lengths in
G/F could otherwise be changing too often when the for-
est changes. We guarantee these bounds by a scheme that
makes auxiliary edge deletions in the forest in response to
external updates, with the resulting additional roots chosen
carefully to ensure the length of upper bounds.

Now, for any flow f in G/F, its length in G/F is at least the
length of its pre-image in G, that is, Let
D* be the optimal solution to Equation (2). We will show
later how to build F such that with constant probability

 holds for some γ = mo(1), solving Equation
(2) on G/F with edge length and properly defined gradient

 on G/F yields an -approximate solution for G. The gradi-
ent is defined so that the total gradient of any circulation
D on G/F and its preimage in G is the same, that is,

 The idea of incorporating gradients into
portal routing was introduced in Kyng et al.24; our version of
this construction is somewhat different to allow us to make
it dynamic efficiently.

Collections of low stretch decompositions (LSD). The
first component of the data structure is constructing
and maintaining forests of F that form a Low Stretch
Decomposition (LSD) of G. Informally, a k-LSD is a rooted
forest that decomposes G into O(m/k) vertex disjoint
components. Given some positive edge weights and
reduction factor k > 0, we compute a k-LSD F and length
upper bounds of G/F that satisfy two properties:

1.  for any edge with image e
in G/F, and

2.  The weighted average of w.r.t. v is only that
is,

Item 1 guarantees that the solution to Equation (2) for
G/F yields a -approximate one for G. However, this
guarantee is not sufficient for our data structure, as our

DECEMBER 2023 | VOL. 66 | NO. 12 | COMMUNICATIONS OF THE ACM 91

the latter by This gives that for any the
following holds:

Using the fact that we
have the following:

Thus, solving Equation (2) on the updated G/F1, …, G/FB
yields a good enough solution for reducing IPM potential as
long as the width of w(f + D) has not decreased significantly,
that is,

If the solution on the updated graphs G/F1, …, G/FB does
not have a good enough quality, we know by the above dis-
cussion that must hold. Then, we
re-compute the collection of LSDs of G and solve Equation
(2) on the new collection of G/F1, …, G/FB again. Because
each recomputation reduces the 1 norm of the width by a
constant factor, and all the widths are bounded by exp(logO(1)
m) (which can be guaranteed by the IPM), there can be at
most such recomputations. At the top level, this only
increases our runtime by factors.

The full construction is along these lines, but more com-
plicated since we recursively maintain the solutions on the
spanners of each core graph G/F1, …, G/FB. In the full version
of the paper, we describe and analyze a multi-level rebuild-
ing scheme that extends the above reasoning to our full
data structure.

3. CONCLUSION
In this paper, we presented an almost-linear time algorithm
for minimum-cost flow, maximum flow, and more gener-
ally, all convex single-commodity flows. Our work essentially
settles the complexity of several fundamental and intensely
studied problems in algorithms design. We hope that the
ideas introduced in this work will spur further research in
several directions, including simpler and faster algorithms
for flow problems; hopefully resulting in a significant impact
on algorithms in practice.

Acknowledgments
Li Chen was supported by NSF Grant CCF-2106444. Rasmus
Kyng and Maximilian Probst Gutenberg have received funding
from the grant “Algorithms and complexity for high-accuracy
flows and convex optimization” (no. 200021 204787) of the
Swiss National Science Foundation. Yang P. Liu was sup-
ported by NSF CAREER Award CCF-1844855 and NSF Grant
CCF-1955039. Richard Peng was partially supported by NSF
CAREER Award CCF-1846218 and NSERC Discovery Grant
RGPIN-2022–03207. Sushant Sachdeva’s research is supported
by a Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant RGPIN-2018–06398 and an
Ontario Early Researcher Award (ERA) ER21–16–284.

The authors thank the 2021 Hausdorff Research Institute
for Mathematics Program Discrete Optimization. The
authors are very grateful to Yin Tat Lee and Aaron Sidford
for several useful discussions.�

recourse O(Bγr)
d and approximation factor are mo(1)

as desired.

2.5. Going beyond oblivious adversaries
by using IPM guarantees
The precise data structure in the previous section only
works for oblivious adversaries, because we used that if
we sampled B = O(log n) LSDs, then w.h.p. there is a tree
whose average stretch is with respect to a fixed flow
f. However, since we are updating the flow along the circu-
lations returned by our data structure, we influence future
updates, so the optimal circulations our data structure
needs to preserve, are not independent of the random-
ness used to generate the LSDs. To overcome this issue, we
leverage the key fact that the flow f * − f is a good witness for
the min-ratio cycle problem at each iteration.

To simplify our discussion, we focus on the role of
the witness in ensuring the functioning of a single
layer of core graph construction, which already cap-
tures the main ideas. We can prove that for any flow

 holds where
D(f) = f * − f. Then, the best solution to Equation (2) among
the LSDs G/F1, …, G/FB maintains an -approximation of
the quality of the witness D(f) = f * − f as long as

� (4)

In this case, let D̂ be the best solution obtained from
graphs G/F1, …, G/FB. We have

The additive term is there for technical reasons that
can be ignored for now. We define the width w(f) of D(f) as
w(f) = 100 × 1+|L(f)D(f)|. The name comes from the fact
that w(f)e is always at least for any edge e.
We show that the width is also slowly changing across
IPM iterations, in that if the width changed by a lot,
then the residual capacity of e must have changed sig-
nificantly. This gives our data structure a way to predict
which edges’ contribution to the length of the witness
flow f * − f could have significantly increased.

Observe that for any forest Fj in the LSD of G, we have
 Thus, we can strengthen Equation

(4) and show that the IPM potential can be decreased by m−o(1) if

� (5)

Equation (5) also holds with w.h.p. if the collection of LSDs
is built after knowing f. However, this does not necessarily
hold after augmenting with D, an approximate solution to
Equation (2).

Due to the stability of w(f), we have w(f + D)e ≈ w(f)e for
every edge e whose length does not change a lot. For other
edges, we update their edge length and force the stretch to
be 1, that is, via the dynamic LSD maintenance, by
shortcutting the routing of the edge e at its endpoints. To
distinguish between the earlier stretch values and those
after updating edges, let us denote the former by and

research highlights

92 COMMUNICATIONS OF THE ACM | DECEMBER 2023 | VOL. 66 | NO. 12

31.	 Renegar, J. A polynomial-time
algorithm, based on newton’s method,
for linear programming. Math.
Program. 40, 1 (1988), 59–93.

32.	 Sherman, J. Nearly maximum flows
in nearly linear time. In 54th Annual
IEEE Symposium on Foundations of
Computer Science (FOCS) (2013), IEEE
Computer Society, NY, 263–269.

33.	 Sherman, J. Area-convexity, ¥∞
regularization, and undirected
multicommodity flow. In Proceedings
of the 49th Annual ACM SIGACT
Symposium on Theory of Computing
(2017), ACM, NY, 452–460.

34.	 Spielman, D.A., Teng, S. Nearly-
linear time algorithms for graph
partitioning, graph sparsification,
and solving linear systems. In
Proceedings of the 36th Annual ACM
Symposium on Theory of Computing
(STOC) (2004), ACM, NY, 81–90.

35.	 van den Brand, J., Gao, Y., Jambulapati,
A., Lee, Y.T., Liu, Y.P., Peng, R., et
al. Faster maxflow via improved
dynamic spectral vertex sparsifiers. In
Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of
Computing (STOC 2022) (2022), ACM,
NY, 543–556.

References

	 1.	 Abboud, A., Krauthgamer, R., Li, J.,
Panigrahi, D., Saranurak, T., Trabelsi,
O. Breaking the cubic barrier for
all-pairs max-flow: Gomory-hu tree
in nearly quadratic time. In 63rd IEEE
Annual Symposium on Foundations of
Computer Science, FOCS 2022 (Denver,
CO, USA, October 31–November 3,
2022), IEEE, NY, 884–895.

	 2.	 Abraham, I., Neiman, O. Using petal-
decompositions to build a low stretch
spanning tree. SIAM J. Comput. 48, 2
(2019), 227–248.

	 3.	 Alon, N., Karp, R.M., Peleg, D., West, D.
A graph-theoretic game and its
application to the k-server problem.
SIAM J. Comput. 24, 1 (1995), 78–100.

	 4.	 Axiotis, K., Mądry, A., Vladu, A.
Circulation control for faster minimum
cost flow in unit-capacity graphs. In
2020 IEEE 61st Annual Symposium
on Foundations of Computer Science
(FOCS) (2020), IEEE, NY, 93–104.

	 5.	 Axiotis, K., Mądry, A., Vladu, A. Faster
sparse minimum cost flow by electrical
flow localization. In 2021 IEEE 62nd
Annual Symposium on Foundations
of Computer Science (FOCS) (2022),
IEEE, NY, 528–539.

	 6.	 Bernstein, A., Gutenberg, M.P.,
Saranurak, T. Deterministic
decremental sssp and approximate
min-cost flow in almost-linear time.
In 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science
(FOCS) (2022), IEEE, NY, 1000–1008.

	 7.	 Bernstein, A., Nanongkai, D.,
Wulff-Nilsen, C. Negative-weight
single-source shortest paths in
near-linear time. In 2022 IEEE 63rd
Annual Symposium on Foundations
of Computer Science (FOCS) (2022),
IEEE, NY, 600–611.

	 8.	 Brand, J.v.d., Lee, Y.T., Liu, Y.P.,
Saranurak, T., Sidford, A., Song, Z.,
et al. Minimum cost flows, mdps, and
1-regression in nearly linear time for
dense instances. In STOC (2021), ACM,
NY, 859–869.

	 9.	 Brand, J.v.d., Lee, Y.-T., Nanongkai, D.,
Peng, R., Saranurak, T., et al. Bipartite
matching in nearly-linear time on
moderately dense graphs. In 2020
IEEE 61st Annual Symposium on
Foundations of Computer Science
(FOCS) (2020), IEEE, NY, 919–930.

	10.	 Brand, J.v.d., Lee, Y.T., Sidford, A., Song,
Z. Solving tall dense linear programs in
nearly linear time. In Proccedings of the
52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC) (2020),
ACM, NY, 775–788.

11.	 Cen, R., Li, J., Nanongkai, D., Panigrahi,
D., Saranurak, T., Quanrud, K. Minimum
cuts in directed graphs via partial
sparsification. In 2021 IEEE 62nd
Annual Symposium on Foundations of
Computer Science (FOCS) (2021), IEEE,
Denver, CO, 1147–1158.

12.	 Christiano, P., Kelner, J.A., Mądry, A.,
Spielman, D.A., Teng, S. Electrical
flows, Laplacian systems, and faster
approximation of maximum flow in
undirected graphs. In Proceedings of
the 43rd ACM Symposium on Theory of
Computing (STOC) (2011), ACM, NY,
273–282.

13.	 Daitch, S.I., Spielman, D.A. Faster
approximate lossy generalized flow
via interior point algorithms. In
Proceedings of the fortieth annual ACM
symposium on Theory of computing
(2008), ACM, NY, 451–460.

14.	 Dantzig, G.B. Application of the simplex
method to a transportation problem.
In Activity Analysis and Production
and Allocation, T.C. Koopmans (ed.),
(1951), John Wiley and Sons, New York,

359–373.
15.	 Even, S., Tarjan, R.E. Network flow and

testing graph connectivity. SIAM J.
Comput. 4, 4 (1975), 507–518.

16.	 Gao, Y., Liu, Y.P., Peng, R. Fully
dynamic electrical flows: Sparse
maxflow faster than goldberg-rao. In
2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science
(FOCS) (2022), IEEE, NY, 516–527.

17.	 Goldberg, A., Tarjan, R. Finding
minimum-cost circulation by successive
approximation. Math. Oper. Res. 15
(1990), 430–466.

18.	 Goldberg, A.V., Rao, S. Beyond the
flow decomposition barrier. J. ACM
45, 5 (1998), 783–797. Announced at
FOCS’97.

19.	 Hopcroft, J.E., Karp, R.M. An n5/2
algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput. 2, 4
(Dec 1973), 225–231.

20.	 Karmarkar, N. A new polynomial-time
algorithm for linear programming. In
STOC (1984), ACM, NY, 302–311.

21.	 Karzanov, A.V. On finding maximum
flows in networks with special
structure and some applications.
Matematicheskie Voprosy Upravleniya
Proizvodstvom 5, (1973), 81–94.

22.	 Kathuria, T., Liu, Y.P., Sidford, A. Unit
capacity maxflow in almost O(m4/3)
time. In 61st IEEE Annual Symposium
on Foundations of Computer Science
(FOCS) (2020), IEEE, NY, 119–130.

23.	 Kelner, J.A., Lee, Y.T., Orecchia, L.,
Sidford, A. An almost-linear-time
algorithm for approximate max
flow in undirected graphs, and its
multicommodity generalizations. In
Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2014), Society for
Industrial and Applied Mathematics,
Portland, OR, 217–226.

24.	 Kyng, R., Peng, R., Sachdeva, S.,
Wang, D. Flows in almost linear
time via adaptive preconditioning. In
Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of
Computing (2019), ACM, NY, 902–913.

25.	 Li, J., Nanongkai, D., Panigrahi, D.,
Saranurak, T., Yingchareonthawornchai,
S. Vertex connectivity in poly-
logarithmic max-flows. In Proceedings
of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing
(2021), ACM, NY, 317–329.

26.	 Li, J., Panigrahi, D. Approximate
gomory–hu tree is faster than n−1
max-flows. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on
Theory of Computing (2021), ACM,
NY, 1738–1748.

27.	 Liu, Y.P., Sidford, A. Faster energy
maximization for faster maximum
flow. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of
Computing (STOC 2020) (2020), ACM,
NY, 803–814.

28.	 Mądry, A. Navigating central path
with electrical flows: From flows to
matchings, and back. In 2013 IEEE
54th Annual Symposium on Foundations
of Computer Science (2013), IEEE, NY,
253–262.

29.	 Mądry, A. Computing maximum
flow with augmenting electrical flows.
In 57th IEEE Annual Symposium on
Foundations of Computer Science
(FOCS) (2016), IEEE Computer Society,
NY, 593–602.

30.	 Peng, R. Approximate undirected
maximum flows in o(mpolylog(n)) time.
In Proceedings of the twenty-seventh
annual ACM-SIAM symposium on
Discrete algorithms (2016), SIAM,
Philadelphia, PA, 1862–1867.

Li Chen (lichen@gatech.edu), Georgia
Institute of Technology, Atlanta, GA, USA.

Rasmus Kyng and Maximilian Probst
Gutenberg ({kyng, maxprobst }@inf.ethz.
ch), ETH Zurich, Zurich, Switzerland.

Yang P. Liu (yangpliu@stanford.edu),
Stanford University, Stanford, CA, USA.

Richard Peng (y5peng@uwaterloo.ca),
University of Waterloo, Waterloo, ON,
Canada.

Sushant Sachdeva (sachdeva@cs.toronto.
edu), University of Toronto, Toronto, ON,
Canada.

2023 Copyright held by owner(s)/author(s).
Publication rights licensed to ACM.

