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Data Structures for Weighted Matching and Extensions
to b-matching and f-factors

HAROLD N. GABOW, University of Colorado at Boulder

This article shows the weighted matching problem on general graphs can be solved in timeO (n(m + n logn))
for n and m the number of vertices and edges, respectively. This was previously known only for bipartite

graphs. The crux is a data structure for blossom creation. It uses a dynamic nearest-common-ancestor algo-

rithm to simplify blossom steps, so they involve only back edges rather than arbitrary nontree edges.

The rest of the article presents direct extensions of Edmonds’ blossom algorithm to weighted b-matching

and f -factors. Again, the time bound is the one previously known for bipartite graphs: for b-matching the

time is O (min{b (V ),n logn}(m + n logn)) and for f -factors the time is O (min{ f (V ),m logn}(m + n logn)),
where b (V ) and f (V ) both denote the sum of all degree constraints. Several immediate applications of the

f -factor algorithm are given: The generalized shortest path structure of Reference [19], i.e., the analog of the

shortest-paths tree for conservative undirected graphs, is shown to be a version of the blossom structure for

f -factors. This structure is found in time O ( |N |(m + n logn)) for N , the set of negative edges (0 < |N | < n).

A shortest T -join is found in time O (n(m + n logn)) or O ( |T |(m + n logn)) when all costs are nonnegative.

These bounds are all slight improvements of previously known ones, and are simply achieved by proper

initialization of the f -factor algorithm.
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1 INTRODUCTION

This article solves a well-known problem in data structures to achieve an efficient algorithm for
weighted matching. It also extends the results to the most general weighted matching problems.
This section defines the problems and states the results.

A matching on a graph is a set of vertex-disjoint edges. A matching is perfect if it covers every
vertex. More generally, it is maximum cardinality if it has the greatest possible number of edges,
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39:2 H. N. Gabow

and cardinality k if it has exactly k edges. Let each edge e have a real-valued weight w (e ). The
weight w (S ) of a set of edges S is the sum of the individual edge weights. Each of the preced-
ing matching variants has a maximum weight version, e.g., a maximum weight matching has the
greatest possible weight, a maximum weight perfect matching has maximum weight subject to the
constraint that it is perfect, and so on. Alternatively, edges may have real-valued costs, and we
define minimum cost matching and the like. The weighted matching problem is to find a matching
of one of these types, e.g., find a maximum weight perfect matching on a given graph and the like.
All these variants are essentially equivalent from an algorithmic viewpoint. For definiteness this
article concentrates on maximum weight perfect matching.

In stating resource bounds for graph algorithms we assume throughout this article that the given
graph has n vertices and m edges. For notational simplicity we assume m ≥ n/2. In the weighted
matching problem, this can always be achieved by discarding isolated vertices.

Weighted matching is a classic problem in network optimization; detailed discussions are in
References [6, 27, 28, 30, 34]. Edmonds gave the first polynomial-time algorithm for weighted
matching [9]. Several implementations of Edmonds’ algorithm have been given with increasingly
fast running times: O (n3) [11, 27], O (mn logn) [4, 22], O (n(m log log log 2+m/nn + n logn)) [17].
Edmonds’ algorithm is a generalization of the Hungarian algorithm, due to Kuhn, for weighted
matching on bipartite graphs [25, 26]. Fredman and Tarjan implement the Hungarian algorithm in
O (n(m + n logn)) time using Fibonacci heaps [10]. They ask if general matching can be done in this
time. We answer affirmatively: We show that a search in Edmonds’ algorithm can be implemented
in time O (m + n logn). This implies that the weighted matching problem can be solved in time
O (n(m + n logn)). The space is O (m). Our implementation of a search is in some sense optimal:
As shown by Fredman and Tarjan [10] for Dijkstra’s algorithm, one search of Edmonds’ algorithm
can be used to sort n numbers. Thus a search requires time Ω(m + n logn) in an appropriate model
of computation.

Weighted matching algorithms based on cost-scaling have a better asymptotic time bound when
costs are small integers [21]. However, our result remains of interest for at least two reasons:
First, Edmonds’ algorithm is theoretically attractive because its time bound is strongly polynomial.
Second, for a number of matching and related problems, the best known solution amounts to
performing one search of Edmonds’ algorithm, e.g., most forms of sensitivity analysis for weighted
matching [4, 8, 14, 38]. Thus our implementation of a search in timeO (m + n logn) gives the best-
known algorithm for these problems.

The article continues by presenting versions of Edmonds’ blossom algorithm for weighted b-
matching and weighted f -factors. These problems generalize ordinary matching to larger degree-
constrained subgraphs and are defined as follows. For an undirected multigraph G = (V ,E) with
function f : V → Z+, an f -factor is a subgraph where each vertex v ∈ V has degree exactly f (v ).
For an undirected graphG = (V ,E), where E may contain loops, with function b : V → Z+, a (per-
fect) b-matching is a function x : E → Z+, where each vertexv ∈ V has

∑
w :vw ∈E x (vw ) + x (vv ) =

b (v ). Given, in addition, a weight function w : E → R, a maximum b-matching is a (perfect) b-
matching with the greatest weight possible; similarly for maximum f -factor. We find maximum b-
matchings and f -factors in the same time bound as was known for bipartite graphs: forb-matching
the time is O (min{b (V ),n logn}(m + n logn)), where b (V ) is the sum of all degree constraints; for
f -factors the time isO (min{ f (V ),m logn}(m + n logn)), where f (V ) is the sum of all degree con-
straints. A blossom algorithm for b-matching is given in Pulleyblank’s thesis [32] (Reference [33]
gives a very high-level description, different from our algorithm). The pseudo-polynomial parts of
the above bounds (i.e., the bounds using b (V ) and f (V )) can also be achieved using the current
article’s algorithm for ordinary matching plus the reduction to matching presented in the original
version of the current article [13].
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Here we prefer direct implementations of the general matching algorithms to avoid practical
inefficiencies and to illuminate the properties of blossoms. As an example of the latter, the algo-
rithm’s blossom structure is shown to be exactly the generalized shortest path structure of Gabow
and Sankowski [19], i.e., the analog of the shortest-paths tree for conservative undirected graphs.
(The paths in blossoms that are used to augment the matching give the shortest paths to the fixed
source in a conservative undirected graph.) Our discussion of blossoms also leads to (and requires)
simple proofs of (previously known) min-max formulas for the maximum size of a b-matching,
Equation (4.3), or partial f -factor, Equation (5.6). Lastly. our algorithm shows thatb-matching blos-
soms have the same structure as ordinary matching blossoms (unlike f -factors there are no “I (B)-
sets,” i.e., pendant edges, and no “heavy blossoms,” only “light” ones, at least in the final output).

We find the generalized shortest path structure in time O ( |N |(m + n logn)) for N the set of
negative edges (0 < |N | < n for conservative costs) and a shortestT -join in timeO (n(m + n logn)),
orO ( |T |(m + n logn)) for nonnegative costs. These bounds are slight improvements of previously
known ones and are achieved simply by proper initialization of the f -factor algorithm. (The strong
polynomial bound of Gabow and Sankowski [19, Section 10] can be modified to achieve the same
time as ours for the matching part, plus additional time O (m logn) for post-processing.) Good
implementations of the T -join algorithm of Edmonds use time O (n3) for general costs and the
same time as ours plus O ( |T |3) for nonnegative costs, both cubic terms coming from finding a
minimum cost matching on a complete graph [34, p. 486 and p. 488].

The article is organized as follows. This section concludes with some terminology and assump-
tions. Section 2 reviews Edmonds’ algorithm and defines the “blossom-merging problem”—the last
ingredient needed to obtain the time bound we seek. Section 3 specializes this problem to “tree-
blossom-merging” and solves it. Section 4 gives our b-matching algorithm and Section 5 gives the
f -factor algorithm. Appendix A gives further details of Edmonds’ matching algorithm. Appen-
dix B gives some further details for b-matching and f -factors. Appendix C gives a data structure
to compute alternating paths in matching blossoms, and alternating trails for b-matching and f -
factors. Appendix D gives an efficient implementation of the grow and expand steps of Edmonds’
algorithm. Gabow [14] gives a faster algorithm, but our approach is simpler and suffices to achieve
the overall time bound. The appendix also gives extensions tob-matching and f -factors. Appendix
E shows the generalized shortest path structure of Reference [19] exists for real-valued edge costs.

Our algorithm for tree-blossom-merging requires an algorithm that computes nearest common
ancestors in trees that grow by addition of new leaves. The conference version of this article [15]
presented the required algorithm, as well as extensions. For reasons of succinctness, the data struc-
ture for nearest common ancestors is now given separately in Reference [16].

Portions of this article may be read independently. Our implementation of Edmonds’ matching
algorithm is in Section 3; readers familiar with Edmonds’ algorithm can skip the review and go
directly to Section 2.3. Those interested in generalized versions of matching should concentrate
on f -factors, our most general algorithm (Section 5), although some basic lemmas are proved in
Section 4.

History of This Article. The conference paper [15] presented a preliminary version of the tree-
blossom-merging algorithm. The current article simplifies that algorithm, e.g., there is no need to
refine the strategy for sparse graphs (m = o(n log 2n). The tree-blossom-merging algorithm uses
an algorithm that computes nearest common ancestors in trees that grow by addition of new
leaves. Reference [15] presented the required algorithm as well as extensions. As mentioned, this
is now given in Reference [16]. Subsequent to Reference [15], Cole and Hariharan [5] used a similar
approach to allow other operations; they also achieve time bounds that are worst-case rather than
amortized.
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39:4 H. N. Gabow

The results on b-matching and f -factors evolve from the conference paper [13]. That paper
achieved similar time bounds to those presented here by reducing the problems to matching. The
current article gives direct approaches to the problems, thus illuminating the structure of blossoms
(see Sections 4.1 and 5.1) and avoiding the blow-up in problem size incurred by reduction.

Terminology. We often omit set braces from singleton sets, denoting {v} as v . We use interval
notation for sets of integers: for i, j ∈ Z, [i ..j] = {k ∈Z : i ≤ k ≤ j}. We use a common summing
notation: If x is a function on elements and S a set of elements, then x (S ) denotes

∑
s ∈S x (s ). logn

denotes logarithm to the base two. Assume that for a given integer s ∈ [1..n], the value � log s� can
be computed in O (1) time. This can be done if we precompute these n values and store them in a
table. The precomputation time is O (n).

For a graph G, V (G ) denotes its vertices and E (G ) its edges. For vertices x ,y an xy-path has
ends x andy. For a set of vertices S ⊆ V and a subgraph H ofG, δ (S,H ) (γ (S,H )) denotes the set of
edges with exactly one (respectively, two) endpoint in S . (Loops are inγ but not δ .) d (v,H ) denotes
the degree of vertexv in H . When referring to the given graphG,we often omit the last argument
and write, e.g., δ (S ). (For example, a vertex v has d (v ) = |δ (v ) | + 2|γ (v ) |.)

Fix a matching M on the given graph. A vertex is free if it is not on any matched edge. An alter-

nating path is a vertex-simple path whose edges are alternately matched and unmatched. (Paths of
0 or 1 edge are considered alternating.) An augmenting path P is an alternating path joining two
distinct free vertices. To augment the matching along P means to enlarge the matching M to M ⊕ P
(the symmetric difference of M and P ). This gives a matching with one more edge.

2 EDMONDS’ ALGORITHM AND ITS IMPLEMENTATION

This section summarizes Edmonds’ algorithm and known results on its implementation. Sec-
tions 2.1–2.2 sketch the high level algorithm. They include all the details needed for our imple-
mentation but do not give a complete development. For the latter, see, e.g., References [9, 11, 27,
30]. Section 2.3 reviews the portions of the algorithm for which efficient implementations were
previously known, and the outstanding problem, efficient “blossom-merging.”

2.1 Blossoms

Throughout this section, the notation P (x ,y) denotes an xy-path. This includes the possibility that
x = y, i.e., P (x ,x ) = (x ).

Edmonds’ algorithm is based on the notion of blossom. We start with a data-structure-oriented
definition, illustrated in Figure 1. Begin by considering two even-length alternating paths P (xi ,y),
i = 0, 1, with x0 � x1 and y the only common vertex. Each path begins with the matched edge at
xi , unless xi = y. These paths plus an edge x0x1 form a simple example of a blossom. Edmonds’
algorithm contracts blossoms. This leads to the general, recursive definition:

Definition 2.1. LetG be a graph with a distinguished matching. A blossom is a subgraph defined
by rules (a) and (b):

(a) Any single vertex b is a blossom.

(b) Let G be a graph formed from G by contracting zero or more vertex-disjoint blossoms. Let

X0,X1,Y be G-vertices, X0 � X1. For i = 0, 1 let P (Xi ,Y ) be an even-length alternating path that

starts with a matched edge or has Xi = Y , with Y the only commonG-vertex. These paths plus an
edge X0X1 form a blossom.

In Figure 1, blossom B is formed from paths P (B4,B0), P (B6,B0), and edge γ . We use the term
“vertex” to refer to a vertex of the given graph G. For a blossom B, V (B) is the set of vertices of G
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Fig. 1. Blossoms in a search of Edmonds’ algorithm. Blossom B is formed from subblossoms B0, . . . ,B6.

Heavy edges are matched.

contained in any blossom in either path P (Xi ,Y ); we sometimes refer to them as the vertices of B.
The maximal blossoms in the paths P (Xi ,Y ) are the subblossoms of B.

We use some properties of blossoms that are easily established by induction. Any blossom has a
base vertex: In Definition 2.1, a blossom of type (a) has base vertex b. A blossom of type (b) has the
same base vertex as Y . We usually denote the base of B as β (B) (or β if the blossom is clear). β (B)
is the unique vertex of B that is not matched to another vertex of B. β (B) is either free or matched
to a vertex not in B. We call B a free blossom or matched blossom accordingly.

Consider a blossom B with base vertex β . Any vertex x ∈ V (B) has an even-length alternating
path P (x , β ) that starts with the matched edge at x . (P (β, β ) has no edges.) For example, in Figure 1
in blossom B, P (a, β (B)) starts with P (a, β (B1)) = (a0,a1,a2,a3,a4) followed by edge (β (B1), β (B2))
and the reverse of P (c, β (B2)), and continuing along paths in B3,B4,B6,B5,B0.

To define P (x , β ) in general, consider the two paths for B in Definition 2.1. Among the blossoms
in these paths let x belong to a blossom designated as B0. The edges of B (i.e., the edges of P (Xi ,Y )

plus X0X1) contain a unique even-length alternating path A from B0 to Y . Here A is a path in G.
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39:6 H. N. Gabow

First, suppose B0 � Y . A starts with the matched edge at B0. P (x , β ) passes through the same

blossoms as A. To be precise, let the G-vertices of A be Bi , i = 0, . . . ,k , Bk = Y , with k > 0 even.
Let βi be the base vertex of Bi . So there are vertices xi ∈ V (Bi ) such that the edges of A are

β0β1,x1x2, β2β3,x3x4, . . . ,xk−1xk .

Here the βiβi+1 edges are matched and the xixi+1 edges are unmatched. Recursively define P (x , β )
as the concatenation of k + 1 subpaths

P (x , β ) = P (x , β0), P (β1,x1), P (x2, β2), P (β3,x3), . . . , P (xk , βk ). (2.1)

For odd i , P (βi ,xi ) is the reverse of path P (xi , βi ).
Now consider the base case B0 = Y . IfY is a vertex, thenY = x = β and P (x , β ) = (x ). Otherwise,

P (x , β ) in blossom B is identical to P (x , β ) in B0.1

Edmonds’ algorithm finds an augmenting path P in the graph G that has every blossom con-

tracted. P corresponds to an augmenting path P in the given graphG: For any contracted blossom

B on an unmatched edge xy (x ∈ V (B)) of P , P traverses the path P (x , β (B)). If we augment the
matching ofG along P , every blossom becomes a blossom in the new matched graph: For instance,

the above vertex x becomes the new base of B. In Figure 1, if P contains an unmatched edge α ′

that enters B at vertex a, P contains the subpath P (a, β (B)). The augment makes a the base of B as
well as B1; in the contracted graph α ′ is the matched edge incident to B.

2.2 Edmonds’ Weighted Matching Algorithm

For definiteness, consider the problem of finding a maximum weight perfect matching. The algo-
rithm is easily modified for all the other variants of weighted matching. Without loss of generality
assume a perfect matching exists.

The algorithm is a primal-dual strategy based on Edmonds’ formulation of weighted match-
ing as a linear program (see the review in Appendix A). It repeatedly finds a maximum weight-
augmenting path and augments the matching. The procedure to find one augmenting path is a
search. If the search is successful, i.e., it finds an augmenting path P , then an augment step is done.
It augments the matching along P . The entire algorithm consists of n/2 searches and augment
steps. At any point in the algorithm, V (G ) is partitioned into blossoms. Initially, every vertex is a
singleton blossom.

Figure 2 gives pseudocode for the search for an augmenting path. A more detailed discussion
with examples follows. Assume the graph has a perfect matching so the augmenting path exists.
For any vertex v , Bv denotes the maximal blossom containing v .

A search constructs a subgraph S. S is initialized to contain every free blossom. It is enlarged
by executing three types of steps, called grow, blossom, and expand steps in Reference [14]. In
addition, the search changes the linear programming dual variables in dual adjustment steps. After
a dual adjustment step, one or more of the other steps can be performed. Steps are repeated until
S contains the desired augmenting path.
S consists of blossoms forming a forest. More precisely, if each blossom is contracted to a vertex,

S becomes a forest S whose roots are the free blossoms. A blossom of S that is an even (odd)

1The P (x, β ) paths may intersect in nontrivial ways. For instance, in Figure 1, P (β (B3), β (B )) and P (β (B5), β (B )) traverse

edge γ in opposite directions. So, the paths have common subpaths, e.g., the subpath of P (β (B5), β (B )) joining γ and edge

(β (B3), β (B4)), and disjoint subpaths, e.g., the subpath of P (β (B5), β (B )) joining β (B3) and edge α . This intersection

pattern can continue inside blossom B0. So, in general, for two vertices x0, x1 in a blossom B with base β , the paths

P (xi , β ) can have arbitrarily many subpaths that are alternately common and disjoint.
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Fig. 2. Pseudocode for a search in Edmonds’ algorithm.

distance from a root of S is outer (inner). (The third possibility is a blossom not in S.) A vertex of
S is outer or inner depending on the blossom that contains it. Any path from a root to a node in its

tree ofS is alternating. So the matched edge incident to a nonroot outer blossom goes to its parent;
the matched edge incident to an inner blossom goes to its unique child. In Figure 1, if B0, . . . ,B6

are maximal blossoms and blossom B has not yet formed, S may contain the solid edges, with all
Bi descending from B0 and Bi outer for i even.

Now we discuss the three steps that build up S. (After that we discuss the role of dual vari-
ables and the dual adjustment step.) We illustrate the discussion with Figure 1, again supposing
B0, . . . ,B6 are maximal blossoms.

Grow Step: A grow step enlarges S by adding a new inner blossom By and a new outer blossom
Bβ ′ . (Each of these blossoms may simply be a vertex ofV (G ).) Note that when xy is scanned, By is
guaranteed to be a matched blossom – it is not free by the initialization of S.

In Figure 1, if S contains outer blossom B0 but no other Bi , a grow step for edge α adds α ,B1,
(β (B1), β (B2)) and B2 to S. Two more grow steps add the other Bi , i = 3, . . . , 6.

Blossom Step: A blossom step contracts the fundamental cycle of e into a new blossom B of S.
Observe that B is outer: In proof, let A be the blossom closest to the root in e’s fundamental cycle.
B will be outer if A is outer. If e is incident to A, then A = Bx , so A is outer. If e is not incident to
A, then the ends of e descend from 2 distinct children of A. A must be outer, since, as previously
noted, an inner blossom has only one child.

The blossom step changes some inner vertices to outer. The previously outer vertices remain
outer.
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In Figure 1, supposeS contains blossoms Bi , i = 0, . . . , 6, with Bi outer for i even. A blossom step
for γ would form the outer blossom B. The Bi with i odd change from inner to outer. Alternatively,
the search might do a blossom step for ε , then later one for δ , and still later one for γ . Other
sequences are possible, and the one executed depends on the weights of these edges.

Expand Step: An expand step replaces the inner blossom B by an alternating path of one or
more blossoms Bi . The Bi are the maximal blossoms along the path P (x , β ) of B. The remaining

subblossoms of B (possibly none) are no longer in S – they are now eligible to enter S in grow
steps.

S remains an alternating forest: Some vertices ofB change from inner to outer, the others remain
inner. Blossoms previously descending from B do not change inner/outer status.

In Figure 1, when S contains all blossoms Bi , an expand step for B1 replaces it by vertices a0,a1,

blossom A, a3, and a4. The other two subblossoms of B1 leave S. A subsequent expand step for A
does not add any outer vertices.

This completes the description of the three steps that construct S. Note that once a vertex
becomes outer it remains inS and outer for the rest of the search. In contrast vertices can alternate
between being inner and not being in S (perhaps ultimately becoming outer in a grow or blossom
step). This alternation can occur Θ(n) times for a given vertex v in one search. (The upper bound
n holds since each time v is involved in an expand step, the size of Bv , the maximal blossom
containing v , decreases.)

The search terminates in an augment step. The augmenting path P for e = xy is found in S
by tracing the paths from Bx and By to their respective tree roots. As mentioned previously, P
corresponds to an augmenting path PG in G, that traverses the blossoms of P along P (x , β ) paths.
The augment rematches the edges of PG , and the blossoms of P remain blossoms in the rematched
graph.

After an augment, the algorithm halts if every vertex is matched. Otherwise, the next search
is initialized by making every free blossom a tree root of S. The initialization retains all the
blossoms—a maximal blossom that is not free becomes a blossom not in S.2 (Because of this an
implementation of Edmonds’ algorithm has a choice for augment steps: It can rematch the com-
plete augmenting path PG or just the path P in the contracted graph. If the latter, the complete
matching onG is computed after the last search, again by explicitly rematching the P (x , β ) paths.)

We turn to the role of edge weights. The algorithm maintains linear program dual variables
(see Appendix A). An edge is tight if its dual variables satisfy the linear program’s complementary
slackness conditions. As such it may be included in a maximum weight matching. Observe that S
always consists entirely of tight edges. So each augment preserves complementary slackness, and
the final matching is guaranteed to have maximum weight.

The dual adjustment step modifies dual variables so that additional edges become tight, and
corresponding grow, blossom or expand steps can be done. The dual adjustment step involves
finding a candidate edge that is closest to being tight, and changing the duals to make it tight. The
details are in Appendix A.

2.3 The Blossom-Merging Problem

This completes the sketch of Edmonds’ algorithm. Our task is to implement a search in time
O (m + n logn). It is known how to implement most parts of the algorithm within this time bound.

2This contrasts with maximum cardinality matching, where initialization discards the blossoms. As a result, there are no

nonsingleton inner blossoms.
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We review these known parts and then define the remaining implementation problem, blossom
merging.

The outer blossoms ofS are tracked using an algorithm for set-merging. For instance, a blossom

step does f inds to identify the outer vertices in the fundamental cycle inG and unions to contract
the cycle. It suffices to use an algorithm that executes O (m) f inds and O (n) unions in a universe
of n elements in O (m + n logn) total time and O (n) space (e.g., the simple relabel-the-smaller-set
algorithm [1, 7]). The incremental-tree set-merging algorithm of Gabow and Tarjan [20] improves
this bound to linear time.

The processing associated with grow and expand steps can be done in time O (mα (m,n)) using
a data structure for list splitting given in Gabow [14].3 A simpler algorithm that suffices for our
time bound is presented in Appendix D. The current blossom containing a given vertex is found
using the above set-merging data structure for outer vertices and the grow/expand algorithm for
nonouter vertices.

Blossoms are also represented in a data structure for computing P (x , β ) paths. These paths are
used to find augmenting paths inG and to compute the supporting forest for tree-blossom merging

(Section 3). The data structure is also used in expand steps to update S. Appendix C gives details
for such a data structure. A similar data structure given by Gabow [12] allows all processing of
P (x , β ) paths in a search to be done in time O (n).

For dual adjustment steps, a Fibonacci heap F is used. It contains the candidate edges for tight-
ness mentioned previously. The heap minimum gives the next edge to be made tight. This is anal-
ogous to Fredman and Tarjan’s implementation of Dijkstra’s algorithm by Fibonacci heaps and
uses the same time per search, O (m + n logn).

Dual variables are maintained in time O (n) per search using offset quantities (e.g., Refer-
ence [22]). This leaves only the blossom steps: implementing the blossom steps of a search in
time O (m + n logn) gives the desired result. (This observation is also made by Gabow et al. [17].)

The problem of implementing the blossom steps of a search can be stated precisely as the
blossom-merging problem, which we now define. (Reference [17] defines a similar problem called
on-line restricted component merging, solving it in time O (m log log log 2+m/nn + n logn).) The
universe consists of a graph with vertex set O and edge set E, both initially empty. (O will model
the set of outer vertices, E the set of edges joining two O-vertices and thus candidates for blos-
soms.) At any point in time,O is partitioned into subsets called blossoms. The problem is to process
(online) a sequence of the following types of operations:

make_blossom(A) – add the set of vertices A to O and make A a blossom
(this assumes A ∩ O = ∅ before the operation);

merдe (A,B) – combine blossoms A and B into a new blossom
(this destroys the old blossoms A and B);

make_edдe (vw, t ) – add edge vw , with cost t , to E
(this assumes v,w ∈ O);

min_edдe – return an edge vw of E that has minimum cost subject to
the constraint that v and w are (currently) in distinct blossoms.

Let us sketch how these four operations are used to implement a search. Grow, expand, and
blossom steps each create new outer blossoms. They performmake_blossom operations to add the
new outer vertices to O. They also performmake_edдe operations for the new edges that join two
outer vertices. For example, in Figure 1, if B0, B5 and B6 are in S and a grow step is done for edge
α thenmake_blossom(B2) is done; alsomake_edдe is done for edge δ .

3After the conference version of the paper, the time for list splitting was improved by Pettie [31] and Thorup [37].
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Note that in the operationmake_edдe (vw, t ), t is the given weight ofvw modified by dual values
in a way that min_edдe will give the first blossom step edge to become tight. This modification
allows the algorithm to make dual adjustments efficiently (see e.g., Gabow et al. [22]). The value
of t is unknown until the time of themake_edдe operation. (The value is derived from the current
slack in the complementary slackness condition for vw ; details on this slack are in Appendix D.)
From now on, since we are only concerned with the blossom-merging problem, the “cost” of an
edge of E refers to this value t , not the edge weight in the given graph.

A blossom step performs merдes to construct the new blossom. In Figure 1, the operations
merge(Bi ,B0), i = 1, . . . , 6 construct B. Note that information giving the edge structure of blos-

soms (the blossom data structure, the S forest) is maintained and used in the outer part of the
algorithm—it is not relevant to the blossom-merging problem. For this problem, a blossom B is
identical to its vertex set V (B); the merдe operation need only update the information about the
partition of O induced by blossoms. Also, in the blossom-merging problem, “blossom” refers to a
set of the vertex partition, i.e., the result of amake_blossom ormerдe operation. The latter may be
only a piece of a blossom in Edmonds’ algorithm (as in the six merges above) but this is not relevant.

A min_edдe operation can be done at the end of each of the three search steps. The returned
edge, say e , is used in the above-mentioned Fibonacci heap F that selects the next step of the
search. Specifically, F has one entry that maintains the smallest cost edge of E. If that entry
already contains e, nothing is done. If the entry contains an edge of larger cost than e , the entry
is updated to e and a corresponding decrease_key is done. The smallest key in F (which may or
may not be the key for e) is used for the next dual adjustment and the next step of the search.

To illustrate this process in Figure 1, suppose O consists of Bi for i = 0, 1, 2, 5, 6 and E = {δ , ε }.
Furthermore, the entry in F contains edge δ . A grow step for B3 and B4 adds V (B4) to O and
make_edдe is done for γ . If γ is now the smallest edge in E, the entry in F for the next blossom
step changes from δ to γ and a corresponding decrease_key is performed. The next step of the
algorithm will be this blossom step, or a grow step for some other edge in F of smaller cost, or an
expand.

Our task is to implement a sequence of these operations: make_blossoms adding a total of ≤ n
vertices, ≤ m make_edдes , ≤ n merдes and ≤ n min_edдes , in time O (m + n logn). The bound on
min_edдes follows since min_edдe need be done only after a step that makes a vertex of V (G )
outer, i.e., after a grow or blossom step, or an expand that creates a new outer vertex. (Recall the
expansion of blossom A in Figure 1—nomin_edдe need be done.)

The difficulty in solving the blossom-merging problem is illustrated by Figure 1. When each
Bi , i = 0, . . . , 6 is a blossom, edges γ ,δ , ϵ are candidates for min_edдe . If a blossom step for γ is
done, δ and ϵ become irrelevant—they no longer join distinct blossoms. If we store the edges of
E in a priority queue useless edges like δ , ϵ can end up in the queue. These edges eventually get
deleted from the queue but the deletions accomplish no useful work. The time bound becomes
Ω(m logn). (This also indicates why there is no need for a delete_min operation in the blossom-
merging problem: If edge γ gets returned bymin_edдe and as above a blossom step forms B, edge
γ becomes irrelevant.)

3 TREE-BLOSSOM-MERGING

Tree-blossom-merging incorporates the topology of the search graph into general blossom-
merging, in two ways. This section starts by defining the tree-blossom-merging problem and show-
ing how it can be used to implement the blossom steps of Edmonds’ algorithm. Then it presents
our tree-blossom-merging algorithm.
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The first goal is to maintain a representation of the search graph S by a forest that changes as
little as possible. We cannot avoid adding nodes, e.g., in grow steps. But we can define a forest that

does not change in expand steps. Consider a search tree, i.e., a tree T in the forest S.

Definition 3.1. A tree T supports the search tree T if each blossom B of T has a corresponding

subtree TB in T , these subtrees partition the vertices of T and are joined by edges of T , and for
each blossom B:

Case B is outer: Let B have base vertex β .V (B) = V (TB ). If B is incident to the matched edge ββ ′

in T then β ′ is the parent of β in T . If B is a free vertex then β is the root of T .

Case B is inner: Let B be incident to edges vx , ββ ′ in T , where x , β ∈ V (B) and ββ ′ is matched.
Then TB is the path P (x , β ) and v is the parent of x in T .

The supporting forest consists of a supporting tree for each tree of S.

Take any vertex v in an outer blossom B of T . v has a path to the root in both T and T , say
pT (v ) and pT (v ), respectively. Let pT (v ) = (B0,B1, . . . ,Bk ) for B0 = B. pT (v ) consists of subpaths
through each subtreeTBi

. For even i, the subpath contains the base vertex β (Bi ) and perhaps other
Bi -vertices. For odd i, the subpath is the entire pathTBi

. This correspondence will allow us to track
potential blossom steps, as well as execute them, in the supporting forest.

We will maintain the supporting tree T using this operation:

add_leaf(x ,y) – add a new leaf y, with parent x , to T
(x is a node of T , y is a new node not in T ).

We assume the data structure for T records parent pointers created by add_leaf .
We now show howT is maintained as the search algorithm executes grow, blossom, and expand

steps. We use a set-merging algorithm to maintain the partition of V (T ) into outer blossoms and
individual vertices in inner blossoms.

Suppose a grow step enlarges S by adding unmatched edge vx , inner blossom B, matched edge

ββ ′ and outer blossom B′, where vertices v ∈ V (T ), x , β ∈ B and β ′ ∈ B′. First compute P (x , β )
and write it as xi , i = 0, . . . ,k where x0 = x , xk = β . Enlarge T by performing add_leaf (v,x0),
add_leaf (xi ,xi+1) for i = 0, . . . ,k − 1, add_leaf (xk , β

′) and finally add_leaf (β ′,w ) for every w ∈
B′ − β ′. Merge the vertices of B′ into one set.

Consider a blossom step for edge vw . It combines the blossoms on the fundamental cycle C of

vw in T . Let blossom A be the nearest common ancestor of the blossoms containing v and w in

T . A is an outer blossom.C consists of the subpaths of pT (v ) and pT (w ) ending at A. InT , merge
every outer blossom in C into the blossom A. For each inner blossom B in C , do add_leaf (v,u)
for every vertex u ∈ B −V (T ). Then merge every vertex of B into A. The new blossom A has the

correct subgraph TA so the updated T supports T .
Lastly, consider an expand step. The expand step in the search algorithm replaces an inner

blossom B by the subblossoms along the path P (x , β ), say subblossoms Bi , i = 0, . . . ,k , where

x ∈ B0 and β ∈ Bk . By definition TB is the path P (x , β ). For odd i , Bi is a new outer blossom of T .
Perform add_leaf (β (Bi ),v ) for every vertex v ∈ Bi −V (T ). Merge the vertices of Bi .

For correctness, note that for even i , Bi is a new inner blossom of T . Equation (2.1) gives the
subpaths of P (x , β ) through the Bi . T contains the path P (xi , β (Bi )), and xi−1 is the parent of xi .
So TBi

satisfies Definition 3.1 as required.
This completes the algorithm to maintainT . The total time for maintainingT in a search isO (n).

This holds because P (x , β ) paths are computed in grow steps in time linear in their size, and this
allows the outer vertices in expand steps to be identified. Details are in Appendix C.
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As mentioned, the correspondence between pathspT andpT allows us to track potential blossom
steps in the supporting forest. This still appears to be challenging. Our second simplification of
the blossom-merging problem is to assume make_edдe adds only back edges, i.e., edges joining a
vertex to an ancestor inT . Clearly, a blossom step for an edgevw is equivalent to blossom steps for
the two edges va and wa, for a the nearest common ancestor of v and w in T . So, we can replace
vw by these two back edges.

To accomplish this reduction, we use a data structure for dynamic nearest common ancestors.
Specifically, the algorithm maintains a tree subject to two operations. The tree initially consists of
a dummy root r , and it grows using add_leaf operations. The second operation is

nca(x ,y) – return the nearest common ancestor of vertices x and y.

In summary, we implement Edmonds’ search algorithm as follows. The search constructs the

supporting forest of S using add_leaf operations. (Each supporting tree is rooted at a child of r .)
When the search discovers an edgevw ∈ E joining two outer vertices, it performs nca(v,w ) to find
the nearest common ancestor a. It executes two blossom-merging operations, make_edдe (va, t )
and make_edдe (wa, t ) for appropriate t . (Edges with a = r correspond to a future augmenting
path.)

Each grow, blossom, and expand step performs all the appropriate make_edдes , and concludes
with a min_edдe operation. Assume this operation returns back edge va, corresponding to edge
vw ∈ E. Assume neither va nor wa has been previously returned. As mentioned above, the Fi-
bonacci heap F records edge vw as the smallest candidate for a blossom step. If vw is selected
for the next step of the search algorithm, the corresponding blossom step is performed (unlessvw
corresponds to an augment step). Also, blossom-merging merдe operations are executed to form
the new blossom in the supporting forest. These operations place v and w in the same blossom of
O. So, wa will never be returned by futuremin_edдes (by definition of that operation).

Let us estimate the extra time that these operations add to a search of Edmonds’ algorithm. The
algorithm for maintaining the supporting forest uses the incremental-tree set-merging algorithm
of Gabow and Tarjan [20] formerдe operations. It maintains the partition into blossoms and inner
vertices in linear time. The dynamic nca algorithm of References [15, 16] use O (n) time for n
add_leaf operations and O (m) time for m nca operations.4 So, the extra time for the supporting
forest is O (m + n).

We have reduced our task to solving the tree-blossom-merging problem. It is defined on a
tree T that is constructed incrementally by add_leaf operations. Wlog assume the operation
add_leaf (x ,y) computes d (y), the depth of vertex y in its supporting tree. There are three other
operations, make_edдe , merдe , and min_edдe , defined as in the blossom-merging problem with
the restriction that all edges of E, i.e., the arguments tomake_edдe , are back edges.

There is no make_blossom operation—we assume Edmonds’ algorithm does the appropriate
add_leaf and merдe operations. Note that E is a multiset: A given edge vw may be added to E
many times (with differing costs) since although an edge uv ∈ E will become eligible for a blos-
som step at most once, different u vertices can give rise to the same back edge vw . Our notation
assumes the edges of E are directed towards the root, i.e., vw ∈ E has d (v ) > d (w ).

As before, for any vertex x , Bx denotes the blossom currently containing x . Assume that the
merдes for a blossom step are performed in the natural bottom-up order, i.e., forvw ∈ E the search

algorithm traverses the path inS from Bv to Bw , repeatedly merging (the current) Bv and its parent

4After the conference version of this article, Cole and Hariharan [5] used a similar approach to allow these and other

dynamic nca operations. In addition, their time bounds are worst-case rather than amortized.
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Table 1. Edge e = vw ∈ E Has Type l,s, or d Defined by the Conditions Column.

Merging Blossoms Bv and Bw Gives a Blossom of Rank ≥ r > r (Au )
(Proved in Proposition 3.2)

Type Conditions u r
l r (e ) > r (Av ) v r (e )
s r (e ) ≤ r (Av ), r (Av ) ≤ r (Aw ) v max{r (Av ) + 1, r (Aw )}
d Av � Aw r (Av ) > r (Aw ) w r (Av )

blossom. In tree-blossom-merging, we call any set resulting from a merдe operation a “blossom”
even though it need not be a blossom of Edmonds’ search algorithm.

3.1 The Tree-Blossom-Merging Algorithm

This section solves the tree-blossom-merging problem in timeO (m + n logn). First, it presents the
basic principles for our algorithm. Then it gives the data structure, the algorithm statement, and
its analysis.

Two features of the supporting forest are essentially irrelevant to our algorithm: The only role
played by inner vertices, prior to becoming outer, is to contribute to depths d (v ). Also, the fact that
supporting trees are constructed incrementally is of no consequence, our algorithm only “sees”
newmerдe andmake_edдe operations.

Our strategy is to charge time to blossoms as their size doubles. We use a notion of “rank”
defined for edges and blossoms: The rank of an edge vw ∈ E is defined by

r (vw ) = � log (d (v ) − d (w ))� .

The rank of an edge is between 0 and � logn�. A blossom B has rank

r (B) = � log |B |� .

(Recall that in this section a blossom is a set of vertices.)
These notions are recorded in the algorithm’s data structure as follows. (A complete description

of the data structure is given below.) We use a simple representation of T , each vertex x in T
recording its parent and depth d (x ). Each blossom B records its size |B | and rank r (B).

There are ≤ n merдes, so each can perform a constant number of time O ( logn) operations,
like Fibonacci tree delete_mins or moving logn words. There are ≤ 2mmake_edдes, so each can
perform O (1) operations. Each vertex v always belongs to some current blossom Bv , and ≤ logn
merдe operations increase the rank of Bv . So, we can chargeO (1) time to a vertex v every time its
blossom increases in rank.

We dynamically associate each edge vw ∈ E with one of its ends, say vertex u ∈ {v,w }, in such
a way that a future merge that places v and w in the same blossom is guaranteed to increase
the rank of Bu . To do this, we assign a type to every edge—long, short, or down, respectively, or
synonymously l-edge, s-edge, d-edge. (See Figure 3—the l, s, and d edges shown will cause a rank
increase at their B end.) At any point in the execution of the algorithm every edge has a unique
type. This type can change over time (we call it a reclassification).

Types are defined in Table 1 and illustrated in Figure 3. In Table 1, Av and Aw denote the cur-
rently maximal blossoms containingv andw , respectively, when the definition is applied to classify
edge vw . Edges with a “long” span, type l , are classified based on their span; edges with a “short”
span, type s or d , are classified according to the relative sizes of the two blossoms containing their
ends. Observe that the Conditions column specifies a unique type for every edgevw withAv � Aw .
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Fig. 3. l, s, and d edges associated with blossom B, i.e., Au ⊆ B. l and s edges go up from B, d edges go down.

The edge type of e = vw determines the end v or w that e is associated with—this is given in
theu column of Table 1. The r column gives the previously mentioned guarantee – Proposition 3.2
will show that a future blossom containing both v and w has rank ≥ r , which is greater than the
current value r (Au ).

As the algorithm progresses and Bv and Bw (the currently maximal blossoms containing v and
w) grow, the type of e and other values in Table 1 may change. (For instance, when Bv = Bw e has
no type at all.) The algorithm will not track every change in e’s type. Instead it examines e from
time to time, each time reclassifying e according to Table 1. This is illustrated in Figure 3: The l, s,
and d edges each have u ∈ B, where B is the currently maximal blossom containing u (i.e., Bu ) and
so Au ⊆ B. Similarly, when the s edge was classified, w was in the maximal blossom Aw , which is
now contained in the maximal blossom C . Ditto for the d edge, Av , and D.

Example 1. Table 2 gives type classifications performed in a hypothetical execution of the al-
gorithm. In particular it illustrates how edges need not get reclassified every time their status
changes.

The example tracks three edges, e1, e2, e3, at four points in time, the algorithm states 1 through
4. Each ei is a parallel copy of edge vw . r (vw ) = 2 and each classification makes its ei an s-edge
with u = v .

The three edges ei are created in order of increasing i . State 1 occurs at the execution of
make_edдe (e1). e1 is classified in state 1 with the value r = r (Av ) + 1 = 3. The last column of Ta-
ble 2 indicates e1 will be reclassified in state 4 (but not before).

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 39. Publication date: June 2018.



Data Structures for Weighted Matching and Extensions to b-matching and f-factors 39:15

Later on in state 2, make_edдe (e2) is executed and e2 gets classified. Av has grown so that e2 is
an s-edge with r = r (Aw ) = 4. The algorithm does not reclassify e1 at this point, even though it is
a copy of e2. State 3 corresponds to make_edдe (e3) and, similar to e2, e3 is an s-edge with r = 5.
Now all three parallel edges have different classifications.

In state 4, e1 gets reclassified, with r = 6. The algorithm also examines e2, detects it as a copy
of e1 with greater cost, and so permanently discards e2. (A blossom step for e1 clearly makes e2

irrelevant.) e3 is not reclassified at this point.
Further details of this scenario are given in Example 2. Table 3 gives similar executions for three

parallel d-edges.

We call the values specified in Table 1 (specifically, the edge type, blossoms Av and Aw , r , and
u) the type parameters of the classification. At a given point in the algorithm, an edge e = vw ∈ E
will have two pairs of blossoms that are of interest: the edge’s current type parametersAv andAw ,
and the current blossoms Bv and Bw . Clearly, Av ⊆ Bv and Aw ⊆ Bw .

We now prove our guarantee that r (Bu ) has increased when v and w are in the same blossom.

Proposition 3.2. Let e = vw have type parameters Av ,Aw , r ,u.

(i) r > r (Au ).
(ii) A blossom Z containing v and w has r (Z ) ≥ r .

Proof. (i) An l-edge has r = r (e ) > r (Av ) and v = u. An s-edge has r ≥ r (Av ) + 1 and v = u. A
d-edge has r = r (Av ) > r (Aw ) and w = u.

(ii) Suppose e is an l-edge. Z contains the path from v to w so |Z | > d (v ) − d (w ) ≥ 2r (e ) = 2r .
Thus r (Z ) ≥ r .

If e is a d-edge, then Av ⊆ Z . So, r (Z ) ≥ r (Av ) = r .
If e is an s-edge, then Av ,Aw ⊆ Z and r (Aw ) ≥ r (Av ) imply |Z | ≥ |Av | + |Aw | ≥

max{2r (Av )+1, 2r (Aw ) }. So r (Z ) ≥ r . �

A crucial property for the accounting scheme is that the s and d edges are limited in number.
To make this precise, recall that the vertices of a blossom form a subtree of the supporting tree, so
we can refer to a blossom’s root vertex. (This differs from the notion of base vertex. For instance,
recall that a tree-merging blossom needn’t be a complete blossom of Edmonds’ algorithm.) For any
blossom B define stem(B) to consist of the first 2|B | ancestors of the root of B (or as many of these
ancestors that exist).

Proposition 3.3. Let e = vw where a blossom B contains v but not w and r (e ) ≤ r (B). Then

w ∈ stem(B).

Remarks. The proposition shows an s or d edge e = vw has w ∈ stem(Av ), since the definition
of Table 1 has r (e ) ≤ r (Av ). In fact, any blossom B containingAv but notw hasw ∈ stem(B), since
r (Av ) ≤ r (B) and stem(Av ) ⊆ B ∪ stem(B).

To illustrate, in Figure 3 stem(D) contains the d-edge’s w end. stem(D) may contain shallower
vertices, perhaps even ancestors of B or C . stem(D) might contain all of stem(B) or stem(C ).

Proof. Let r = r (B). Thus 2r ≤ |B |. Since r (e ) ≤ r , d (v ) − d (w ) < 2r+1 ≤ 2|B |. Rearranging this
to d (v ) − 2|B | < d (w ) puts w in the stem of B. �

Let M be the set of all blossoms B ever formed in the algorithm that are rank-maximal, i.e.,
B is not properly contained in any blossom of the same rank. A given vertex belongs to at most
logn rank-maximal blossoms. Thus ΣB∈M |B | ≤ n logn. Our plan for achieving the desired time
bound involves using the proposition to charge each blossom B ∈ M O (1) time for each vertex in
stem(B). The total of all such charges is O (n logn) and so is within our time bound.
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The Data Structure. We describe the entire data structure as well as its motivation.
Each current blossom B has ≤ logn lists of edges designated as packet (B, r ) for r ∈ [r (B) +

1.. logn].packet (B, r ) consists of edges whose classification parametersu, r haveu ∈ B and r equal
to the packet index. As motivation, note that all these edges are similar in the sense of guaranteeing
the same rank increase (Proposition 3.2(ii)). This allows the edges of a packet to be processed as a
group rather than individually.5

Each packet (B, r ) is implemented as a ring, i.e., a circularly linked list. This allows two packets
to be concatenated in O (1) time. A header records the packet rank r and smallest (B, r ), the edge
of smallest cost in the packet.

The packet headers of blossom B are stored in a list in arbitrary order (they are not sorted on
r ). Also, if packet (B, r ) currently contains no edges, its header is omitted. These two rules limit
the space for the algorithm to O (m). For graphs with m = Ω(n logn) an alternate organization is
possible, based on each current blossom having an array of logn pointers to its packets.6

Each current blossom B has an additional list loose (B). It consists of all edges classified with
Au = B but not yet belonging to a packet of B. This list is a “waiting area” for edges to be added to
a packet. It allows us to omit the array of pointers to packets mentioned above. loose (B) is a linked
list.

The value smallest (B) is maintained as the minimum cost edge in one of B’s lists (i.e., a B-packet
or loose (B)).

A Fibonacci heapH stores the values smallest (B) for every current blossom B. It is convenient
to do lazy deletions in H : An operation merдe (A,B), which replaces blossoms A and B by the
combined blossom C , marks the entries for A and B in H as deleted, and inserts a new entry for
C . To do a min_edдe operation we perform a Fibonacci heap f ind_min in H . If the minimum
corresponds to a deleted blossom, that entry is deleted (using delete_min) and the procedure is
repeated. Eventually we get the smallest key for a current blossom. Its edge is returned as the
min_edдe value.

An auxiliary array I [1..n] is used to perform a gather operation, defined as follows: Given is a
collection of c objects, each one having an associated index in [1..n]. We wish to gather together
all objects with the same index. We accomplish this in timeO (c ), by placing objects with index i in
a list associated with I [i]. An auxiliary list of all indices with a nonempty list allows the lists to be
collected when we are done, in O (c ) time. Gathering operations will be done to maintain packets
inmerдes .

Finally, each blossom B has several bookkeeping items: Its rank r (B) is recorded. There is also
a representation of the partition of O into blossoms. A data structure for set-merging [36] can be
used: The blossom-merging operation merдe (A,B) executes a set-merging operation union(A,B)
to construct the new blossom; for any vertex v , the set-merging operation f ind (v ) gives Bv , the
blossom currently containing v .

For simplicity, we will omit the obvious details associated with this bookkeeping. We can also
ignore the time and space. Suppose we use a simple set-merging algorithm that does one f ind in
O (1) time, allunions inO (n logn) time, and usesO (n) space (e.g., Reference [1]). Clearly, the space
and the time for unions are within the desired bounds for Edmonds’ algorithm; the time for f inds
can be associated with other operations. Hence we can ignore this bookkeeping.

The Algorithms. We present the algorithms for tree-blossom-merging, verify their correctness,
and prove the desired time bound O (m + n logn).

5Our notion of packet is similar in spirit, but not detail, to the data structure of the same name in References [17, 18].
6Various devices can be added to this approach to achieve linear space for all m. Such an organization is used in the

conference version of this article [15]. However, our current approach is more uniform and simpler.
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The algorithm maintains this invariant:

(I1) The set S of all edges in a loose-list or packet satisfies:
(i) every edge of S joins two distinct blossoms;

(ii) for every two blossoms joined by an edge of E, S contains such a joining edge of
smallest cost.

(I1) guarantees that for every blossom B, smallest (B) is a minimum-cost edge joining B to another
blossom. In proof, (ii) guarantees that such a minimum-cost edge belongs to some loose-list or
packet of B. (i) guarantees that this edge gives the value of smallest (B) (i.e., without (i) it is possible
that the minimum-cost edge has both ends in the same blossom and so is not useful).

As mentionedmin_edдe is a Fibonacci heap find_min inH . This edge gives the next blossom step
by the definition of smallest (B) and invariant (I1). The total time for all min_edдes is O (n logn),
since there are O (n) blossoms total and each can be deleted fromH .

make_edдe Algorithm. make_edдe (vw ) is implemented in a lazy fashion as follows: If Bv = Bw

then e is discarded. Otherwise, we classify e = vw as type l, s, or d , by computing r (e ), r (Bv ) and
r (Bw ), as well as vertex u and rank r , in time O (1). e is added to loose (Bu ) and smallest (Bu ) is up-
dated, with a possibledecrease_key inH . The time isO (1) (amortized in the case ofdecrease_key).
This time is charged to the creation of e .

merдe Algorithm. An operation merдe (X ,Y ) forms a new blossom Z . (Note that a given edge
e0 that is selected by the search algorithm for the next blossom step will cause one or more such
merдe operations. Themerдe algorithm, and its analysis, does not refer to e0.)

Let the set R0 consist of all edges that must be reclassified because of the merдe , i.e., the edges
in packets of X or Y of rank r ≤ r (Z ), and the edges in loose (X ) or loose (Y ). The edges of R0

are pruned to eliminate redundancies, i.e., we ensure that at most one such edge joins Z to any
blossom B � Z . This is done with a gather operation using I [1..n]. Among all edges vw joining Z
and a given blossom B � Z (i.e., {find(v ),find(w )} = {B,Z }) only one of smallest cost is retained.
Edges with both ends in Z are discarded. These actions preserve (I1).

Let R denote the set of remaining edges. We assign each edge of R to its appropriate packet or
loose-list, and form the final packets of Z , as follows.

Take any edge e = vw ∈ R. Compute the new type of vw using r (e ), r (Bv ) and r (Bw ). If u � Z
then vw gets added to loose (Bu ). Specifically an s-edge vw with w ∈ Z gets added to loose (Bv ).
As usual, we also update smallest (Bv ), possibly doing decrease_key. Similarly, a d-edge vw with
v ∈ Z gets added to loose (Bw ).

The remaining edges are added to packets of Z as follows. Use the subarray I [r (Z ) + 1.. logn]
in a gather operation. Specifically, I [r ] gathers all individual edges that are r -promoters for Z and
forms them into a list. It also gatherspacket (X , r ) andpacket (Y , r ), if they exist. These two packets
are represented by their headers, not examining the individual edges, soO (1) time is spent adding
them to the list I (r ). The final I (r ) is taken as the list for packet (Z , r ).

We complete packet (Z , r ) by computing smallest (Z , r ) from smallest (X , r ), smallest (Y , r ), and
the costs of all its other edges. The smallest of all these values gives smallest (Z ). This value is
inserted intoH . The loose list of Z is empty.

Example 2. The algorithm achieves the states given in Table 2 as follows.

State 1: make_edдe (e1) is executed when |Bv | = |Bw | = 4. The algorithm classifies e1 as an s-edge
with r = 3. It adds e1 to loose (Bv ). Next a merge makes |Bv | = 5. The algorithm removes e1 from
loose (Bv ) and examines its type parameters. e1 is still an s-edge with r = 3, so it is added to
packet (Bv , 3).
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Table 2. s-edges e1, e2, e3, All Copies of vw
and Their Blossom Parameters; u = v . e1 and e2

Are Reclassified in State 4

State r (Av ) r (Aw ) e : r reclassified
1 2 2 e1 : 3 4
2 2 4 e2 : 4 4
3 2 5 e3 : 5 -
4 4 6 e1 : 6 -

Table 3. d-edges e1, e2, e3, All Copies of vw ,

and Their Blossom Parameters; u = w

State r (Av ) r (Aw ) e : r reclassified
1 3 2 e1 : 3 4
2 3 2 e2 : 3 4
3 5 2 e3 : 5 -
4 6 3 e1 : 6 -

State 2: make_edдe (e2) is executed when |Bv | = 5 > |Bw | = 4. The algorithm classifies e1 as an s-
edge with r = 3. It adds e1 to loose (Bv ). Next various merges make |Bw | = 16, but loose (Bv ) does
not change. Next a merge makes |Bv | = 6. e2 is now an s-edge with r = 4, so it is transferred
from loose (Bv ) to packet (Bv , 4). The old packet (Bv , 3), which contains e1, is added to the new
packet (Bv , 3).

State 3: Achieved similar to state 2, with |Bw | increasing to 32 and then |Bv | increasing to 7.
e3 moves from a loose list to packet (Bv , 5). e1 and e2 remain in the r = 3 and r = 4 packets,
respectively.

State 4: Merges increase |Bw | to 64. Then a merge makes |Bv | = 16. The edges in the rank 3 and
rank 4 packets of (the old) Bv are added to R0. e2 is discarded by the gather operation and e1 is
added to packet (Bv , 6).

Table 3 is similar. |Bw | starts as 4 and increases to 5 (giving state 1), then 6 (state 2), then 7
(state 3). When |Bw | increases to 8 edges e1 and e2 are added to R0, e2 is discarded and e1 is added
to the rank 6 packet (state 4).

Correctness of the Algorithm. First observe that Proposition 3.2(i) shows the new packet assigned
to an edge of R actually exists. To show invariant (I1i) for Z consider the edges in packets of Z that
are not examined individually, i.e., edges e in a packet of X or Y of rank r > r (Z ). Proposition 3.2
(ii) shows a blossom containing both ends of e has rank ≥ r > r (Z ). Thus e satisfies (I1i). Invariant
(I1ii) holds since edges are only discarded in a gather operation.

Efficiency. As mentioned the time formake_edдe isO (1). The time formerдe is easily seen to be
O ( logn) (to traverse the list of packet headers) plusO (1) for each edge added to R0. The first term
amounts to O (n logn) for the entire algorithm (there are ≤ n merдes).

We account for the second term in two main ways. The first is to charge time to blossoms, via
their stems. To do this recall that an s- or d-edge vw has w ∈ stem(Bv ) (for the current blossom
Bv containing v ; Proposition 3.3). We will charge the stems of blossoms B ∈ M. To do this it is
important to verify that that e is the only edge from B to w making the charge.
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The second accounting mechanism is a system of credits. It pays for reclassifications that involve
loose-lists. As motivation note that successive merges may move an edge e = vw around a cycle
of loose-lists and packets: For example, starting in loose (Bw ), e can move to a packet of Bw , to
loose (Bv ), to a packet of Bv , and back to loose (Bw ). Credits will help pay for these moves. Define a
credit to account forO (1) units of processing time, specifically the time to process an edge e ∈ R0.
Credits are maintained according to this invariant (I2):

(I2) An edge in a loose-list has 1 credit if it is type s, 2 credits if it is type d .

Lemma 3.4. The time spent on all edges of R0 in all merges is O (m + n logn).

Proof. We first treat l-edges. They are involved in only O (1) operations that we charge to the
edge itself, as follows. Observe that once an edge becomes type s ord it remains s ord (r (e ) ≤ r (Av )
has the right-hand quantity nondecreasing). So an l-edge e must start out as l in the operation
make_edдe (e ). e starts in loose (Av ). The first merge involvingAv makes e type s, d , or l. In the last
case e is added to a rank r (e ) packet. It remains in this packet until a merge makes r (Bv ) ≥ r (e ).
That changes e to type s or d . So e uses total time O (1) as an l-edge, which is charged to e .

Now consider an s or d edge e = vw . make_edдe (e ) adds e to the appropriate loose list with
credits corresponding to (I2).

Suppose e ∈ R0 in an operation merдe (X ,Y ) that forms the new blossom Z . If e � R it pays for
O (1) time spent processing e . e is then discarded, so it is completely accounted for.

Suppose e ∈ R. Let e start out with classification parameters Av ,Aw ,u, r . For definiteness, let X
be the blossom containing an end v or w of e . We examine the two possible starting types for e .

Case e starts as an s-edge: There are two starting possibilities:

Subcase e starts in a packet: e starts inpacket (X , r ). This impliesX ∈ M.7 In proof, the definition
ofX ’s packets shows r (X ) < r . Since the merge has e ∈ R0, r ≤ r (Z ). Combining gives r (X ) < r (Z ).
Thus X is rank-maximal.
e is the unique edge of R that is directed tow . We chargew ∈ stem(X ) at most three credits: one

for processing e and two more if e becomes a d-edge. Now (I2) holds for e .
Clearly X ∈ M implies this is the only time the algorithm charges w ∈ stem(X ).

Subcase e starts in loose (X ): (I2) shows it has one credit. If e remains an s-edge it gets added to
a packet. The credit pays for processing e .

Suppose e becomes a d-edge, so it gets added to loose (Bw ). Since e changes from s to d the
definitions show r (Av ) ≤ r (Aw ) ≤ r (Bw ) < r (Bv ). Note Av = X , Bv = Z . (The former holds since,
in general, an edge in a list loose (B) is in R0 in the first merge involving B.) So r (X ) < r (Z ). Thus
X ∈ M. So, we can charge w ∈ Stem(X ) as in the previous subcase.

Case e starts as a d-edge: Again there are two possibilities.

Subcase e starts in a loose-list: e requires one credit for processing, and one more if it becomes
an s-edge. It starts with two credits (I2) so it can pay for the reclassification.

Subcase e starts in a packet: We wish to charge the reclassification to a stem containing w .
Let A+v be the rank r = r (Av ) blossom inM that contains Av . (Av need not be rank-maximal. It
may even be that Av is still the currently maximal blossom containing v and Av ⊂ A+v .) We claim
w ∈ stem(A+v ). To prove this note that Av ⊆ A+v implies we need only show w � A+v . A blossom
B containing v and w contains Av and Z . e ∈ R0 implies r = r (Av ) ≤ r (Z ). Thus r (B) ≥ r + 1 >
r (A+v ). This guarantees w � A+v .

7This holds even if e is a d-edge, but we do not use this fact.
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We charge the reclassification of e to w ∈ stem(A+v ). The charge is O (1) time to account for the
processing of e in this merge. In addition we charge one credit if e becomes an s-edge.

The gather step ensures w is charged only once in this merge. Furthermore, no future merge
will charge w ∈ stem(A+v ). In proof, note that the reclassification has r (Bw ) = r (Z ) ≥ r = r (Av ).
Thus, future blossoms containingw also have rank ≥ r , and these blossoms will not have a packet
of rank r = r (A+v ). So, this is the only charge the algorithm makes to w ∈ stem(A+v ). �

Example 3. We add some details to the description of Table 3 in Example 2, by tracking the
value of the ordered pair ( |Bv |, |Bw |) as the algorithm progresses. It starts as (8, 4) and advances to
(8, 5) in state 1, (9, 6) in state 2, (32, 7) in state 3, and (64, 8) in state 4. So, when e1 gets reclassified
in state 4, it starts with |Av | = 8. Av is not rank-maximal, A+v is the state 2 blossom that has size
|A+v | = 9.

As another example, consider an edge e = vw that is added to packet (Bw , 3) as a d-edge
with classification parameters r (Av ) = 3, r (Aw ) = 2. A merge makes r (Bw ) = 3 and e is added to
loose (Bv ). A merge enlarges Bv . For definiteness, call B the resulting blossom, and assume its rank
remains 3 in the merge. So e is added to packet (B, 4) as an s-edge. Another merge makes r (Bv ) = 4,
so e moves to loose (Bw ).

The last merge makes B ∈ M. Thus, the move of e to loose (Bv ) is charged to w ∈ stem(B). The
move of e to loose (Bw ) is also charged to w ∈ stem(B). So, this example shows a given stem entry
can be charged two times.

Having analyzed the algorithms for min_edдe , make_edдe , and merдe , we conclude that our
tree-blossom-merging algorithm achieves the desired time bound:

Theorem 3.5. The tree-blossom-merging problem can be solved in time O (m + n logn).

4 b-MATCHING

This section presents a simple generalization of Edmonds’ algorithm to b-matching. The major
complication is that b-matchings allow two varieties of blossoms, which we call “light” (analogous
to ordinary matching) and “heavy.” Our goal is an algorithm that is as similar to ordinary matching
as possible. This involves minimizing the role of heavy blossoms. Heavy blossoms seem impossible
to avoid but our algorithm keeps them “hidden.”

Section 4.1 gives the basic properties of b-matching blossoms. Section 4.2 presents the general-
ized algorithm. Section 4.3 gives the analysis, eventually showing we find a maximum b-matching
in timeO (b (V ) (m + n logn)). Section 4.4 extends the algorithm to achieve the strongly polynomial
time bound O ((n logn) (m + n logn)). Both of these bounds match the best-known time bounds
for bipartite graphs.

A degree-constraint function b assigns a nonnegative integer to each vertex. We view b-
matching as being defined on a multigraph. Every edge has an unlimited number of copies. In the
context of a given b-matching, an edge of the given graph has unlimited number of unmatched
copies; the number of matched copies is specified by the b-matching. In a partial b-matching every
vertex v has degree ≤ b (v ). In a (perfect) b-matching every vertex v has degree exactly b (v ). Note
that “b-matching” (unmodified) refers to a perfect b-matching, our main concern.

We use these multigraph conventions: Loops are allowed. A cycle is a connected subgraph that
is regular of degree 2. It can be a loop, 2 parallel edges, or an undirected graph cycle. A trail is a
path that is allowed to repeat vertices but not edges.

Contracting a subgraph does not add a loop at the contracted vertex (all internal edges including
loops disappear). We will even contract subgraphs that contain only a loop. We use the following

notation for contractions: Let G be a graph derived from G by repeatedly contracting an arbitrary
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Fig. 4. An augmenting trail (a) and the augmented matching (b).

subgraph. (The subgraph may even contain previously contracted vertices.) V (V ) denotes the

vertex set of G (G), respectively. A vertex of G that belongs to V (i.e., it is not in a contracted

subgraph) is an atom. We identify an edge of G with its corresponding edge in G. Thus an edge

of G incident to a contracted vertex is denoted as xy, where x and y are V -vertices in distinct V -

vertices, and xy ∈ E. If H is a subgraph ofG, the preimage of H is a subgraph ofG consisting of the
edges of H , plus the preimages of subgraphs whose contractions are vertices of H , plus the atoms

of H . V (H ) (V (H )) denotes the vertex set of H (the preimage of H ), respectively. Similarly, E (H )
(E (H )) denotes the edge set of H (the preimage of H ), respectively.

4.1 Blossoms

This section presents the basic properties of b-matching blossoms. We define blossoms in two
steps. First we specify their topology. This includes showing how blossoms are updated when the
matching gets augmented. Then we specialize the definition to “mature” blossoms, those that can
have positive dual variables.

Unlike ordinary matching, contracted b-matching blossoms do not behave exactly like origi-
nal vertices. For instance, Figure 4(a) shows an augmenting trail—interchanging matched and un-
matched edges along this (nonsimple) trail enlarges the matching to Figure 4(b). (As in all figures
square vertices are free and heavy edges are matched. In Figure 4(b), one vertex remains free after
the augment—its b-value has not been achieved.) The triangle is a b-matching blossom (just like
ordinary matching). In Figure 4(a), contracting this blossom gives a graph of five vertices that has
no augmenting path. Contracted blossoms behave in a more general way than ordinary vertices.

When a blossom becomes “mature,” it behaves just like a vertex—in fact, a vertex with b-value
1 just like ordinary matching! It also behaves like an ordinary matching blossom in that its z-
value can be positive (in contrast an immature blossom, e.g., the blossom of Figure 4, cannot have
positive z).

We will define a blossom in terms of its topology—it is a subgraph that when contracted can
behave like a vertex or like Figure 4. We will then specialize this notion to the case of mature
blossoms. For completeness, we give two versions of the topological definition. Definition 4.1
is simpler. It defines a blossom as a type of ear decomposition. Definition 4.2 is more useful
algorithmically.

LetG be a graph with a partialb-matching, i.e., every vertexv is on ≤ b (v ) matched edges. A trail
is closed if it starts and ends at the same vertex. A trail is alternating if for every two consecutive
edges exactly one is matched. The first and last edges of a closed trail are not consecutive. (For
instance, a loop is an alternating closed trail, whether it is matched or not.) Say that the M-type of
an edge is M or E −M , according to the set that contains it. The following definition is illustrated
in Figure 5.
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Fig. 5. Blossoms with base vertex β . (a) is light, (b) is heavy, (c) is heavy or light.

Definition 4.1 (Ear Blossom). A blossom is a subgraph of G recursively defined by two rules:

(a) A closed alternating trail of G is a blossom if it starts and ends with edges of the same
M-type.

(b) In a graph derived from G by contracting a blossom α , let C be a closed alternating trail
that starts and ends at α but has no other occurrence of α . The preimage of C in G is a
blossom.

An example of (a) is a loop.
For uniformity, we extend the notation of (b) to (a):C denotes the blossom’s trail and α denotes

its first and last vertex. The base vertex of a blossom is α in (a) and the base vertex of α in (b).
Clearly, the base is always in V . The base vertex of blossom B is denoted β (B) (or β if B is clear).
The M-type of B is the M-type of the starting and ending edges in (a), and the M-type of α in (b).
A blossom of M-type M is called heavy, and M-type E −M is light.

Example 1. In Figure 5(a), the entire graph forms a closed alternating trail that starts and ends
at β . It is a blossom with base vertex β , by part (a) of the definition. There is essentially no other
way to view the graph as a blossom, since the two edges at β do not alternate.

In Figure 5(b), the unique closed alternating trail starting and ending at β is the triangle. So it
is a minimal blossom. Contracting it to α gives a graph with a unique closed alternating trail that
starts and ends at α . So the graph is a blossom with base vertex β . Again, this is essentially the
only way to parse this graph as a blossom.

Figure 5(c) is a light blossom with base β if we start the decomposition with the left triangle.
Starting with the right triangle gives a heavy blossom based at β . No other blossom decomposition
is possible.

Only light blossoms occur in ordinary matching, and they are the main type in b-matching. We
note two instances of the definition that will not be treated as blossoms in the algorithm. Both
instances are for a light blossom B. If d (β,M ) ≤ b (β ) − 2, then (a) actually gives an augmenting
trail. Secondly the definition allows d (β,γ (V (B),M )) = b (β ). This never holds in the algorithm –
β is either on an edge of δ (V (B),M ) or d (β,M ) < b (β ).

Consider a blossom B with base vertex β . Similar to ordinary matching, each vertex v ∈ V (B)
has two associatedvβ-trails in E (B), P0 (v, β ) and P1 (v, β ), with even and odd lengths, respectively.
Both trails are alternating and both end with an edge whose M-type is that of B (unless the trail
has no edges). The starting edge for P1 (v, β ) has the same M-type as B; it has the opposite M-type
for P0 (v, β ). As examples, P1 (β, β ) is the entire trail in Definition 4.1(a). This trail could be a loop.
P0 (β, β ) is always the trivial trail (β). It is the only trivial Pi trail.

The recursive definitions of the Pi trails follow easily from Definition 4.1. We omit them since
they are a special case of the Pi trails defined below.
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Fig. 6. More blossom examples: (a) is a blossom with base β . Adding (b) or (c) to Figure 5(b) gives a larger

blossom.

The second definition of blossom mimics the structures discovered in the algorithm. As in or-
dinary matching the algorithm contracts blossoms as they are discovered. So the definition works

in graphs G whose vertices are either atoms or blossoms.

Definition 4.2 (Algorithmic Blossom). Let G be a graph derived from G by contracting a family

A of zero or more vertex-disjoint blossoms. Let C be a closed trail in G that starts and ends at a

vertex α ∈ V (G ). The preimage of C is a blossom B with base vertex β (B) if C has the following
properties:

If α is an atom, then C starts and ends with edges of the same M-type. B has this M-type and
β (B) = α .

If α ∈ A then B has the same M-type as α and β (B) = β (α ).

If v is an atom of C, then every two consecutive edges of δ (v,C ) alternate.
If v ∈ A ∩C, then d (v,C ) = 2. Furthermore, if v � α then δ (β (v ),C ) contains an edge of oppo-

site M-type from v .

As before, we abbreviate β (B) to β when possible. Also, B is heavy (light) if its M-type is M
(E −M), respectively.

Example 2. The graph of Figure 5(a) can be parsed as a blossom by starting with the triangle
(a light blossom), enlarging it with the two incident edges (heavy blossom), and enlarging that
with its two incident edges (light blossom). An advantage over Definition 4.1 is that each of these
blossoms is a cycle rather than a closed trail. The algorithm will use this property.

Figure 6(a) is a blossom. It can be decomposed starting with the five-cycle or starting with the
triangle. If we replace edge e by edge f in the matching, the triangle remains a blossom but the
overall graph does not.

Suppose the graph of Figure 5(b) is enlarged by adding the triangle of Figure 6(b) at the vertex x .
The graph is a blossom. A decomposition can start by contracting the triangle. Alternatively it can
delay the triangle contraction until the end. If we use Definition 4.1, we must delay the triangle
contraction until the end.

Suppose instead that Figure 5(b) is enlarged by adding the loop of Figure 6(c) at x . The graph
remains a blossom using Definition 4.2, since we can start by contracting the loop. This is the only
possibility—if we start by contracting Figure 5(b) as in Example 1, the loop disappears in the final
contraction, so it is not part of the blossom. So, this graph is not a blossom using Definition 4.1.

When all b-values are 1, the problem is ordinary matching, and Definition 4.2 is equivalent
to ordinary matching blossoms if we change “closed trail” to “closed path.”8 We will show the

8Without the change, a blossom can contain the matched edge incident to its base β , e.g., it has the form e1, . . . ,

e2, e3, . . . , ek , where each ei is incident to β and e3 is matched.
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two definitions of blossom are essentially equivalent. The main difference is that they need not
provide the same edge sets; Figure 6(c) gives the simplest of examples. Instead we show they
provide blossoms with the same vertex sets V (B). Strictly speaking, the lemma is not needed in
our development since our algorithm only uses algorithmic blossoms.

Say two blossoms are equivalent if they have the same M-type, base vertex, and vertex set (the
latter meaning V (B) = V (B′)). For instance, the blossoms of Figure 5(b) and its enlargement with
Figure 6(c) are equivalent.

LetA∗ denote the family of blossoms involved in the recursive construction ofB, i.e.,A∗ consists
of A plus the A∗ family of every blossom A ∈ A. Define μ (B) = |A∗ − α∗ |, the total number of
steps in decompositions for all the blossoms ofA − α . The next proof will induct on this quantity.

Lemma 4.3. The ear blossoms and algorithmic blossoms are equivalent families. More precisely

every ear blossom is an algorithmic blossom. Every algorithmic blossom has an equivalent ear blossom.

Proof. The first assertion is obvious. To prove the the second assertion, consider an algorithmic
blossom B. LetA,C , and α be as in the definition. We prove that B has an equivalent ear blossom
by induction on μ (B). The base case μ (B) = 0 corresponds directly to Definition 4.1.

Take any algorithmic blossom A ∈ A − α . Let e be an edge of δ (β (A),C ) with opposite M-type
from A, let f be the other edge of δ (A,C ), and let v be the end of f in V (A). (If there are two
possibilities for e , choose arbitrarily.) Define a vertex v ∈ C (A) as follows: If v is in a contracted
blossom of C (A) then v is that blossom. Otherwise, (vertex v itself is in C (A)) v is an arbitrarily
chosen occurence of v in C (A),

Case v = α (A): Note in the two subcases when v = v , this implies v = β (A).

Subcase v � v or v = v and e and f alternate: In C, replace A by α (A). In both cases, this gives
an algorithmic blossom B1. Since μ (B1) < μ (B) it has an equivalent ear blossom E1. Contract it to

E1. The closed trail consisting of E1 andC (A) is an algorithmic blossom with μ-value < μ (B). (This
motivates the definition of μ: Inducting on |A∗| can fail here.) By induction, it has an equivalent
ear blossom E2. E2 is the desired ear blossom equivalent to B.

Subcase v = v and e and f have the same M-type: Let A1 be the minimal blossom of A∗ that
has base β (A) = v . In C replace the contracted blossom A by C (A1). This gives an algorithmic
blossom B1 with μ (B1) < μ (B) (even ifA1 = A). Induction shows B1 has an equivalent ear blossom.
If A1 = A, we are done. Otherwise, contract B1 to a vertex E1. E1 with the blossoms of A∗ −A1

is an algorithmic blossom. By induction it has an equivalent ear blossom. This is the desired ear
blossom equivalent to B.

Casev � α (A): Choose an edgeд ∈ δ (v,C (A)) as follows: Ifv � v , i.e.,v is a contracted blossom,
д is an edge of δ (β (v )) of opposite M-type from v . If v = v then д is an edge of δ (v ) of opposite
M-type from f .

Let P be thevα (A)-subtrail ofC (A) that starts with edgeд. LetQ = C (A) − P be the othervα (A)-
subtrail of C (A).

Replace the contraction of A by P in C . This alternating trail forms an algorithmic blossom B1.

Since μ (B1) < μ (B) it has an equivalent ear blossom E1. Contract E1 to a vertex E1.
We will form an algorithmic blossom equivalent to B by adding Q as follows. Let Q1 be the sub-

trail of Q starting with its first edge (which is incident to E1) and ending with the first edge that

enters E1.Q1, which starts and ends with vertex E1, is the closed trail of an algorithmic blossom. It
has an equivalent ear blossom E2. If V (Q −Q1) ⊆ V (E2) then E2 is the desired ear blossom equiv-
alent to B. (Note this can hold even whenQ1 � Q , i.e., edges ofQ that followQ1 remain in vertices
ofQ1.) Otherwise, continue in the same manner, definingQ2 as the subtrail ofQ −Q1 starting with
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the first edge that leaves E2 and ending with the first edge that enters it. EventuallyQ is exhausted
and we get the desired ear blossom. �

From now on, we only use algorithmic blossoms. The next step is to show that the Pi trails
defined previously exist in algorithmic blossoms.

Similar to ordinary matching, we define P0 (β (B), β (B)) to be the trail of no edges, (β (B)). (In
fact, this is the only possibility in blossoms where all edges incident to β (B) have the same M-type.)
It is easy to see that any other trail Pi (v, β (B)) must contain at least one edge. This makes P0 (β, β )
slightly different from all other Pi ’s, we will point out how it is always consistent with the general
case.

Take any trail Pi (v, β (B)) of positive length.

The first edge of Pi (v, β (B)) has the same M-type as B ⇐⇒ i = 1. (4.1)

Equation (4.1) holds for P0 (β, β ) by convention.

Lemma 4.4. Trails Pi (v, β ), i = 0, 1 always exist (in an algorithmic blossom).

Proof. The overall argument is by induction on |V (B) |. Let G,A,C,α , β all refer to Defini-
tion 4.2 for B. Consider two possibilities for v .

Case v is an atom in G: We first specify P , the image of the desired trail Pi (v, β ) in G. Then we

enlarge P to Pi (v, β ) by specifying how it traverses the various blossoms of A.

If v = α , there is nothing to prove for i = 0 (P0 (v, β ) = (β )). If i = 1 then P is the entire trail C .
If v � α , choose an arbitrary occurrence of v in C . The edges of C can be partitioned into two

vα-trails in G, one starting with a matched edge, the other unmatched. Choose P from among
these trails so its starting edge has the M-type specified by Equation (4.1).

To convert P to the desired trail, for every contracted blossom A in P we enlarge P by adding

a trail Q that traverses V (A) correctly. To do this, let e and f be the edges of P incident to A,
with e ∈ δ (β (A)) of opposite M-type from A. (If there are two possibilities for e choose arbitrarily.

If A = α , then e does not exist but f does, since v � α .) Let u be the end of f in V (A). Let Q
be the trail Pj (u, β (A)) of blossom A, with j chosen so the trail alternates with f at u. (Using
Equation (4.1), this means f has opposite M-type from A iff j = 1. For example, suppose u = β (A).
If f has M-type opposite from A, then Q = P1 (β (A), β (A)). If f has the same M-type as A, then
Q = P0 (β (A), β (A)) = (β (A))).)

By definition, Q alternates with e at its other end β (A) (even when Q = (β (A))). So Q (or its

reverse) is the desired trail traversingV (A). Enlarge P with every suchQ . EachA occurs only once

in B, so no edge is added to P more than once, i.e., the final enlarged P is a trail.

Casev is a vertex of a blossomA ∈ A: IfA = α , then Pi (v, β ) for blossom B is that trail as defined
for blossom A.

If A � α , we construct the desired trail as the concatenation of two trails,

Pi (v, β ) = Pj (v, β (A)) Pk (β (A), β ).

We first specify the values of j and k . The M-type of the first edge of Pj is determined by Equa-
tion (4.1), applied to the given values i,v, β , and B. This M-type determines the value of j by again
applying Equation (4.1), to the M-type and the given v, β (A), and A.

To make the concatenated trail alternating, Pk starts with the edge of δ (β (A),C ) of opposite
M-type fromA. So, the value of k is determined by applying Equation (4.1), to the M-type opposite
from A and the given β (A), β , and B.

The trail Pj (v, β (A)) exists by induction. The trail Pk (β (A), β ) exists by applying the previous
case (v atomic) to vertex β (A). �
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Paths Pi are not simple, in general. However, it is easy to see the above proof implies any trail
Pi (v, β ) passes through any A ∈ A∗ at most once, and if so it traverses some trail Pj (v, β (A)),
v ∈ V (A) (possibly in the reverse direction).

Example 3. In Figure 5(c), consider P1 (x , β ). The length of this trail is one if the blossom is heavy,
five if the blossom is light.

As previously mentioned, the blossoms B in our algorithm have a bit more structure than Defi-
nition 4.2. (Most of the following properties are the same as ordinary matching.) A light blossom

will always haved (β,γ (V (B),M )) < b (β ). Furthermore,C = C (B) will always be a cycle inG. Thus

Pi -trails have a path-like structure. More precisely for anyv ∈ V (B), Pi (v, β ) ∩C is a path inG (i.e.,
no repeated vertex) with one exception: When α is atomic (so α = β), P1 (β, β ) ∩C repeats vertex
β . Repeated vertices present a difficulty for expanding a blossom—an expanded blossom must be

replaced in the search forest S by a path, not a trail. The special structure of blossoms allows this
to be done, as shown in Section 4.2.

Augmenting Trails

The algorithm enlarges a b-matching using a generalization of augmenting paths in ordinary
matching. Throughout this subsection, let M be a partial b-matching. An augmenting trail for M is
an alternating trail AT such that M ⊕ AT is a b-matching with one more edge than M . To augment

M, we replace it by M ⊕ AT .
Our algorithm finds augmenting trails in blossoms as follows. A vertex v ∈ V (G ) is free if

d (v,M ) ≤ b (v ) − 1. Consider a multiset {v,v ′} of two free vertices, wherev = v ′ only if d (v,M ) ≤
b (v ) − 2. We will define an augmenting blossom AB forv,v ′ and a corresponding augmentingvv ′-
trail AT .

Create an artificial vertex ε , with an artificial matched edge to each of v,v ′. (v = v ′ implies
the two matched edges are parallel.) AB is a blossom with base vertex ε , wherein each of v,v ′ is
either an atom or the base of a light blossom in A (AB). AT is P0 (v, ε ) with its last edge (v ′, ε )
deleted. Clearly AT is an alternating vv ′-trail. The two possibilities for each end v,v ′ both ensure
the first and last edges ofAT are unmatched, i.e., M ⊕ AT is a valid partial b-matching with greater
cardinality than M .

This definition allows an end v with d (v,M ) ≤ b (v ) − 2 to be the base of a light blossom B that
is properly contained in the augmenting trail. But B itself suffices. Our algorithm will always use
B, not a larger blossom, to form AB.

The algorithm’s augment step starts with an augmenting blossom and rematches the trail P0 (v, ε )
as above.

In Figure 7, an augment rematches the trail P0 (v, β ) through blossom B. Blossom A changes
from light to heavy while B remains light. The next lemma shows that, in general, blossoms are
preserved by the rematching of an augment step.

Lemma 4.5. Consider a graph with partial b-matching M . Let B be a blossom (not necessarily

maximal) with base vertex β . Suppose a trail Pi (v, β ) through B (v ∈ V (B)) is rematched. The new

matchingM ′ = M ⊕ Pi (v, β ) has a blossomB′with the same subgraph asB and base vertex β (B′) = v .

The M-type of B′ is that of the first edge of Pi (v, β ) in M ′, unless M ′ = M .

Remarks. M ′ = M only for the trail P0 (β, β ). Obviously, B′ is identical to B in this case.
The lemma implies B and B′ have the same M-type for i = 0 (since P0 (v, β ) begins with an edge

of opposite M-type from B) and opposite M-types for i = 1.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 39. Publication date: June 2018.



Data Structures for Weighted Matching and Extensions to b-matching and f-factors 39:27

Fig. 7. Rematching a trail.

Proof. By induction, assume the lemma holds for blossoms smaller than B.
We use the following notation: C (B) contains its end vertex α and a vertex v that is either the

atom v or a blossom containing v . We will show the new blossom B′ has α (B′) = v . So α is either
identical to v or it is an interior vertex ofC (B′). Furthermore, the vertices ofC (B) − {α ,v} remain
interior in C (B′).

For the main argument, consider a vertex x ∈ V (G ) onC (B). Assume x is on the portion ofC (B)
that gets rematched or else there is nothing to prove. We will show that in M ′, x satisfies all the
relevant conditions in Definition 4.2 for B′, as well as the relevant conditions of the lemma.

First, suppose x is an atom. Consider a fixed occurrence of x in C (B). This occurrence is either
an interior vertex of C (B) or, as the first/last vertex of C (B), it is the base vertex β of C (B).

Case x = β : Let e, f ∈ δ (x ) be the first and last edges of C (B).

Subcase x = v : If P0 (β, β ) gets rematched, then nothing changes in B. If P1 (β, β ) gets rematched,
then obviously this creates a blossom B′. B′ has the M-type of the rematched e and f . In both cases,
x = β (B′) and all claims of the lemma hold.

Subcase x � v : e and f have the same M-type in M . Since β = x � v , Pi (v, β ) contains exactly
one of e, f . So, these edges alternate in M ′.

Case x � β : Let e, f ∈ δ (x ) be the two edges of C (B) corresponding to this occurrence of x . e
and f alternate in M .

If x � v , then both edges are in Pi (v, β ) and so they alternate in M ′.
The remaining case is x = v . Exactly one edge of the pair e, f is on Pi (v, β ), say e . So e gets

rematched but f does not. Thus e and f have the same M-type in M ′, x is the base of the blossom
B′, and its M-type is that of the rematched e .

Now assume x is a contracted blossom. The inductive assumption shows x is a blossom in M ′,
call it x ′.

Casex � v: (x may or may not beα in this case.) Let Pi (v, β ) traversex along the trail Pj (u, β (x )).
So, there is an edge f ∈ C (B) ∩ Pi (v, β ) ending at u.

First, suppose Pj (u, β (x )) has at least one edge of x . Its first edge e has opposite M-type from f .
The inductive assertion shows x ′ has M-type that of the rematched e , which is opposite that of the
rematched f . Since f is incident to u = β (x ′), f is the edge of δ (β (x ′),C (x ′)) required for blossom
B′ in Definition 4.2. We conclude Definition 4.2 is satisfied for x ′.
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Fig. 8. V (B1) ⊂ V (B2) ⊂ V (B3) and β (Bi ) = b. Rematching P (a,b) makes β (B2) = β (B3) = a � b = β (B1).
Subsequently rematching P (b,a) restores all bases to b.

In the remaining case, no edge of subgraph x is rematched, i.e., f is incident to u = β (x ′) and
has the same M-type as x , so Pj (u, β (x )) = (β (x ′)). The rematched f has opposite M-type from
x = x ′. As before, Definition 4.2 is satisfied for x ′.

Case x = v : By induction v = β (x ′), so we take v = β (B′) and x ′ = α (B′). B′ has the same M-
type as x ′. Let e and f be the two edges of C (B) incident to x . In B′ there is no constraint on the
M-types of e and f .

Suppose x contains an edge of Pi (v, β ). The inductive assertion for x shows x ′ and B′ have the
M-type of the rematched first edge of Pi (v, β ), as required by the lemma.

Suppose x does not contain an edge of Pi (v, β ). Thenv = β (x ) and Pi (v, β ) uses the trail P0 (v,v )
through x . If x � α then before rematching, the first edge of Pi (v, β ) has opposite M-type from x .
So, after rematching, this edge has the same M-type as x = x ′ and B′, as claimed in the lemma. If
x = α then no edge of B is rematched, and again the lemma holds. �

Figure 8 illustrates how rematching can change blossom bases: Blossoms with a common base
can have different bases after rematching, and vice versa.

Mature Blossoms

We turn to the completeness property for blossoms. As in the algorithm for ordinary matching,
linear programming z-duals will be positive only on blossoms. However, complementary slack-
ness requires that a blossom B with z (B) > 0 is completely matched and has exactly one incident
matched edge,

b (V (B)) = 2|γ (V (B),M ) | + 1. (4.2)

(This principle is reviewed in Appendix B.) If B is light, this matched edge will be incident to β (B).
(This is required by Definition 4.2 in the case that B is not maximal.) So light blossoms are similar
to ordinary matching blossoms.

If B is heavy it may have exactly one incident matched edge. But this is irrelevant in our
algorithm—heavy blossoms will not be assigned positive z-values. In detail, heavy blossoms cre-
ated in a search are immediately absorbed into a light blossom. The reader may look ahead to
Figure 11(d)–(f) for a simple example. It is based on the fact that unmatched edges have an unlim-
ited number of copies in b-matching. Heavy blossoms can be created in an augment, as in Figure 7,
but our algorithm “hides” them, as shown below.

This discussion motivates the following definition:

For any vertexv with b (v ) ≥ 1 define the function bv by decreasing b (v ) by 1, keeping all other
b-values the same. A blossom based at β is mature if γ (V (B),M ) is a (perfect) bβ -matching.

Our search algorithm will extend a blossom to make it mature before any dual adjustment makes
its z-value positive (see Lemma 4.11).
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Now consider the transition from one search to the next. First consider an augment step. Blos-
soms with positive dual values must remain mature. This is guaranteed by the next lemma, illus-
trated by B in Figure 7 assuming it is mature.

Lemma 4.6. Let B be a blossom, not necessarily maximal. If B starts out light and mature and gets

rematched in an augment, it remains light and mature.

Proof. Let AB be the augmenting blossom. B and AB have different base vertices (β (AB) is
artificial). Thus AB contains exactly two edges incident to B at least one of which is incident to
β (B) and is matched. (This follows from Definition 4.2. Note the matched edge may be artificial.)
Let f be the other edge. Since B is mature f is unmatched. The augment rematches f and the
Pi trail through B joining f to β (B). Thus, Lemma 4.5 shows the rematched blossom is light and
mature. �

Now consider the contracted graphG immediately after the matching is augmented. Some max-
imal blossoms may be immature (discovery of the augmenting trail prevents these blossoms from
growing to maturity). Such immature blossoms B should be discarded. (For instance, a contracted
blossom B incident to >1 matched edge complicates the growth of a search tree, as discussed in

Figure 11(a) below.) To discard B, we replace its contraction in the current graph G by the atoms
and contracted blossoms of C (B) and their incident edges. So after augmenting the matching and
before proceeding to the next search, the algorithm does the following discard step:

Repeatedly discard a maximal blossom unless it is light and mature.

At the end of the discard step, every maximal blossom is light and mature (and still contracted).
There can still be blossoms that are immature and/or heavy (like A′ in Figure 7) but they are not
maximal and so are “hidden,” essentially irrelevant to the algorithm.

4.2 b-matching Algorithm

The b-matching algorithm differs from ordinary matching in at least three important ways: the
search forest need not alternate at outer blossoms, a blossom step may create two blossoms (to
hide a heavy blossom), and the expand step is more involved (to keep the search forest acyclic).
We begin with terminology for the algorithm.

G denotes the graph with all blossoms contracted; E denotes its edge set. S denotes the search

structure and S is that structure in G. Recall that in b-matching a vertex of V is not a blossom,

so each vertex of G is an atom or a contracted blossom but not both. The notation Bx denotes the
vertex of G containing x ∈ V ; if x is atomic then Bx = x . For x ∈ V , if d (x ,M ) < b (x ) then Bx is
free. (If Bx is a blossom we shall see that d (x ,M ) < b (x ) implies x is the base vertex of Bx .) The

roots of the forest S are the free atoms and free blossoms.
Letv be a node of S.v is inner if it is joined to its parent by an unmatched edge. Otherwise (i.e.,

v is joined to its parent by a matched edge, or v is a search tree root), v is outer. We refrain from
classifying vertices contained in a blossom. (A vertex in an outer blossom can function as both
inner and outer, because of its Pi -trails.)

As before, an edge is tight if it satisfies the LP complementary slackness conditions with equality
(see Appendix B). Again, as before, we shall see that every matched edge is tight. The following
notion identifies the edges that can be used to modify the search forest when they are tight. An

edge e = xy ∈ E − S is eligible for Bx if any of the following conditions holds:

x is an outer atom and e � M ;
Bx is an outer blossom;
Bx is an inner node and e ∈ M .
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Fig. 9. Pseudocode for a b-matching search.

The algorithm uses the following conventions:

M denotes the current matching on G.
For any edge e , e ′ denotes a new unmatched copy of e . e ′ always exists in b-matching.

For related nodes x ,y inS (i.e., one of x ,y descends from the other)S (x ,y) denotes theS-path
from x to y.

The algorithm is presented in Figures 9 and 10. The next three subsections clarify how it works as
follows. First we give some simple remarks. Then we state the invariants of the algorithm (which
are proved in the analysis). Lastly, we give examples of the execution. These three subsections
should be regarded as commentary—the formal proof of correctness and time bound is presented
in Section 4.3.

Remarks. The grow step adds only one edge, unlike ordinary matching. One reason is that an
inner vertex may have an arbitrary number of children: The possibility of >1 child comes from an
inner atom on many matched edges. The possibility of no children arises when a new inner vertex
has all its matched edges leading to vertices that are already outer.
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Fig. 10. Expand(B, e, f ) for b-matching blossoms B.

A second reason comes from the definition of eligibility. It allows an outer vertex to have a
child using a matched edge. So, an outer vertex may have an arbitrary number of children, using
matched or unmatched edges. This also shows that the search forest need not alternate the same
way as ordinary matching.

In the blossom step, the test e ∈ E is equivalent to the condition Bx � By or Bx = By is atomic.
The second alternative allows a blossom whose circuit is a loop. This can occur for an atom that
is either inner with a matched loop or outer with a tight loop. (Loop blossoms do not occur for
blossoms Bx since our contraction operation discards loops.)

The contraction of line 3 creates an outer blossom that is light. When a heavy blossom is created
in line 2 it gets absorbed in the light blossom of line 3. We shall see this is the only way a heavy
blossom occurs in the search algorithm.
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Fig. 11. Algorithm examples.

In the expand step, note that edge f may or may not be in S (Figure 11(a) gives an example).

This motivates the structure of Expand(B, e, f ), which assumes on entry that e is an edge of S but
makes no assumption on f . Also, the trail P0 is used for succinctness. An efficient implementation
is described in the last subsection of Section 4.3.

If the duals are adjusted (last line of Figure 9), our assumption that the graph has a (perfect)
b-matching guarantees the new duals allow further progress (i.e., a grow, blossom, or expand step
can be done; this is proved in Lemma 4.13 and the discussion following it).

A tight edge xy with Bx ∈ S, is ignored by the algorithm in two cases: Bx an outer atom with
xy ∈ M , and Bx inner with xy � M .

In procedure Expand, the last case (starting at line 7) corresponds roughly to the expand step
for ordinary matching. The purpose of the preceding cases is to eliminate repeated vertices in P0,
which of course cannot be added to the search forest S.

Invariants. The first several invariants describe the topology ofS. As before, say thatS alternates

at an S-node v if any edge to a child of v has opposite M-type from the edge to the parent of v ; if
v is a root then any edge to a child is unmatched. We can treat a root v as in the general case by
using an artificial vertex ε as its parent (similar to augmenting trails): ε has an artificial matched
edge to each atomic root as well as the base vertex of each blossom root.

(I1) S alternates at any node that is not an outer blossom.
(I2) Let B be a maximal blossom with base vertex β . B is light.

If B is inner or not in S then it is mature.
If B is outer then any vertex x ∈ V (B) hasd (x ,M ) = b (x ) unless B is a root ofS, x = β ,

and d (x ,M ) = b (x ) − 1. If B is a nonroot of S then β is on the matched edge leading to
the parent of B.

(I3) For every blossom B (maximal or not), C (B) is a cycle.

In detail, (I1) means the following: Any child of an inner S-node is outer. Any child of an outer
atom is inner (this includes the case of an atomic search tree root). A child of an outer blossom
may be outer or inner. Note that the first of these properties implies the parent of an inner node

is outer. Equivalently, S alternates at both ends of an unmatched edge in S.
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In (I2), a “maximal blossom” is one that has been formed by the algorithm, at a given point in
time not contained in any other. If B is inner then β is on a matched edge incident to B (since β
is not free). If B is not in S then β may have such a matched edge or β may be free (immediately
after an augment and before the next search begins).

The remaining invariants deal with the dual variables. (The duals for b-matching are reviewed
in Appendix B.)

(I4) An edge is tight if it is matched, or it is an edge of S, or it is an edge of a contracted
blossom.

(I5) A blossom with z (B) > 0 is light and mature.

Note that in (I5), blossom B need not be maximal.

Examples. Grow Step: In Figure 11(a), the triangular blossom Bx is inner. Its incident matched
edge e leads to a node that is already outer. So unlike ordinary matching Bx has no corresponding
grow step. Bx also illustrates the possibility of an expand step where the inner blossom is a leaf.

(I2) requires the inner blossom Bx to be mature. Suppose it was immature. A matched edge
like f incident to Bx might exist. A grow step for f would be invalid, since S does not contain
an alternating trail from f to a free vertex. Requiring inner blossoms to be mature avoids this
complication.

Blossom Step: In Figure 11(b),v is an outer vertex. Supposev is a contracted blossom. A blossom
step can be done for the matched copy of e , as well as the matched copy of д. The unmatched copy
of h is necessarily tight. A blossom step can be done for it, after e . This process illustrates how
outer blossoms can be enlarged to become mature. (Edge e of Figure 11(g) illustrates another case.)
On the other hand, if v is an atom none of these blossom steps can be done.

In Figure 11(c), the unmatched loop e may not be tight. If it becomes tight it forms an augmenting
blossom if the free vertexv lacks at least two matched edges. The algorithm can repeatedly match
copies of e as long as this condition holds. If eventually v lacks one matched edge, another copy
of e forms a light blossom.

Figure 11(d) shows a search tree when a blossom step for e is discovered. The triangle is made a
heavy blossom. If v lacks at least two edges the matching is augmented (Figure 11(e)). The discard
step then abandons the triangle blossom. (Newly matched edges f , f ′ show the blossom is imma-
ture.) If v lacks only one edge the light blossom, A of Figure 11(f) is formed. This illustrates how
the algorithm never creates heavy blossoms that are maximal.

In Figure 11(g), a blossom step creates the loop blossom Bx . Edge e is a matched copy of the
search tree edge d . A blossom step may be done for e , Bx and y. (y is necessarily an atom because
of unmatched edges d, e .) The unmatched edges f , f ′ give an augmenting trail or blossom as in
Figure 11(e) and (f).

Expand Step: In Figure 11(h), blossom B is inner and mature. As an example of how this occurs,
blossom B and atom B2 may be, respectively, blossom A of Figure 11(f) and its base vertex v . In
Figure 11(f), blossom A gets positive z when duals are adjusted. An augment is done using an
unmatched edge of δ (v ) ∩ δ (A), so A does not change. v is no longer free. A then becomes inner
in a grow step from the free vertex w of Figure 11(h).

A dual adjustment makes z (B) = 0 and B is expanded. Line 7 generates two recursive calls, with
arguments B1, e, e2 and B2, e2, f . (Note z (B1) must be 0.) The first recursive call either augments the
matching as in Figure 11(e) or forms a blossom as in Figure 11(f). In the second case, Figure 11(i)
gives the result of the entire expand step.

Finally, suppose in Figure 11(h) blossom B is not maximal: It is included in a blossom B3 (not
shown), where α (B3) = B,C (B3) is a length two closed trail containing B and an atom x , with two
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copies of edge vx , say h and i where h ∈ M , i � M . The initial call to Expand issues one recursive
call with arguments B, e, f . The rest of the expand step is as before. It results in Figure 11(i) with
x no longer in a blossom. x can then be added to blossom B′ (via a grow and a blossom step, for
edges h and i , in either order).

4.3 Analysis

The analysis is presented in three subsections. First we prove the invariants. Then we prove the
algorithm is correct, adding some details about initialization and termination. Lastly, we prove the
desired time bound, adding some implementation details for dual variables.

Proof of Invariants

We show that all the invariants are preserved by every step of the algorithm. The first four lemmas
treat grow steps, blossom steps, augment steps, and expand steps, respectively. (The lemmas for the
blossom step and the expand step assume any augment is done correctly; the augment step lemma
treats the detailed augment and discard steps of Section 4.1.) Then we check dual adjustment. Many
details are straightforward, so we only discuss the most interesting and representative cases.

Lemma 4.7. The grow step preserves every invariant.

Proof. We will verify the case e ∈ M and By a blossom.
The algorithm shows e is eligible, so Bx is either an outer blossom or an inner node. Thus (I1)

holds. By starts out not in S, so (I2) shows it is mature. Vertex y must be the base of By . Thus (I2)

holds for the new outer blossom By . (I4) shows e is tight, so adding it to S preserves (I4). (I3) and
(I5) are unchanged. �

Lemma 4.8. The blossom step preserves every invariant.

Proof. We will verify the case of a blossom step that starts with α in line 1 an outer node, and
contracts C in line 3. (The other cases are similar to this one.)

Since α is outer, the contracted C is outer. Thus (I1) is vacuous for C . (I4) holds since the edges

ofC move from S to the contracted blossom. (I5) does not change. We check (I2), (I3), and the fact
that C is a valid blossom, as follows:

(I3): C is the fundamental cycle of e in the forest S.
(I2): We check (I2) for the outer blossom C .

Case α is an atom: α is the base vertex β of the blossom C . To show C is light, observe that at
least one of the two edges of δ (α ,C ) goes to a child of α . (I1) shows the edges at the outer atom α
alternate, so that edge is unmatched. Thus C is light.

The test preceding line 3 ensures d (x ,M ) ≥ b (x ) − 1 for x = α = β ; d (x ,M ) = b (x ) for the re-

maining vertices ofV (C ) since no atom or blossom ofC − α is free. If α is a root of S clearly it has
d (x ,M ) = b (x ) − 1. If α is not a root it has the desired matched edge to the parent of C .

Case α is a blossom: (I2) shows α is light, so C is light. The other properties follow the atomic
case.

C satisfies Definition 4.2 of a blossom: Note that α and C of the definition are the same as α and
C of the algorithm. The conditions to verify are for the three types of vertices v of cycle C:

Case v is an atom and v = α : An edge e ∈ δ (α ,C ) either goes to a child of α or e is the blossom
edge joining Bx and By . In both cases, e is eligible for the outer atom α , so e � M . Thus, the first
and last edges of C have the same M-type.
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Case v is an atom, v � α : If v � {Bx ,By }, then (I1) shows the two edges of δ (v,C ) alternate. If
v ∈ {Bx ,By }, then one edge of δ (v,C ) goes to its parent and the other is eligible for v . The two
cases of eligiblity for an atom show the edges of δ (v,C ) alternate.

Case v is a contracted blossom: C is a cycle so d (v,C ) = 2. The rest of the verification concerns
the case v � α . Let β be the base vertex of v . (I2) shows v is light, so the definition requires β to
be on a matched edge of C .

If v is outer, (I2) shows the matched edge f going to v’s parent is incident to β . Furthermore,
f ∈ C .

If v is inner, (I2) shows it is mature. Thus v is on a unique matched edge f , which is incident to
β . If v � {Bx ,By }, then C passes through a child of v . f goes to the unique child of v , so f ∈ C . If
v ∈ {Bx ,By }, then edge e of the blossom step is eligible for v , so by definition e ∈ M . Thus, e = f
and f ∈ C . �

In the next two lemmas, some invariants are explicitly violated during the execution of a step.
However, we only require the invariants to be satisfied at the end of the step, assuming they hold
at the start.

Lemma 4.9. The augment and discard steps preserve every invariant.

Proof. Consider the rematching of the augment step. It preserves (I5) by Lemma 4.6. (I4) holds
since the rematching is done along a Pi trail of the augmenting blossom. (I3) is unchanged. (I1) is

vacuous after the augment step, the search forest S is empty.
The rematching can violate (I2), since a maximal blossom that is incident to two matched edges

on the augmenting trail becomes heavy. Also, there may be maximal blossoms that are light and
immature (and not in S, which is empty). This violation is only temporary since the discard step
eliminates any maximal blossom that is not light and mature. Thus, (I2) holds at the start of the
next search. The discard step also preserves (I4), since (I5) shows no blossom with positive z is
eliminated, and thus the set of tight edges does not change. �

We turn to the expand step. Recall the main issue is preservingS as a forest (i.e., no repeated ver-
tices). The strategy of Figure 10 is based on invariant (I3). (I3) implies that in any trail Pi (v, β (B)),
the repeated vertices are precisely the blossom bases β that have P1 (β, β ) as a subtrail. (This is
proved by a simple induction.) Our algorithm contracts these subtrails into outer blossoms (lines 5
and 6).

To begin the formal analysis, let Expand(B, ė, ḟ ) denote the call of the expand step in Figure 9.

Recall that S is defined as a forest rooted at the free atoms and blossoms. When the expand step

removes B from S, this definition and (I1) will be violated if S has a nonempty subtree descending

from ḟ . (Unlike ordinary matching this subtree needn’t exist, e.g., Figure 11(a).)
To remedy this, we modify (I1) to a condition (I1′) defined as follows. At any point in the execu-

tion of Expand let P be the set of edges of the trail P0 (defined in the expand step) that have been

added to S so far. Say that a trail in S has permissible alternation if it alternates at any node that
is not an outer blossom. Consider an arbitrary (perhaps recursive) invocation Expand(B, e, f ).

(I1′) If on entry to Expand(B, e, f ), P is a trail that has permissible alternation and has e as its

last edge, then on exit P + f (for the new P) has permissible alternation and has f as its last edge.

Note that, in general, the exit trail P is an extension of the entry trail. The exit condition does

not mean that f belongs to P.
Say Expand(B, e, f ) is a base case execution if it does not recurse, i.e., it executes line 4, 5, or 6.

Claim. If (I1′) holds for every base case execution of Expand, then the expand step ends with P
having permissible alternation and joining ė to the end of ḟ in V (B).
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Remark. If ḟ was an edge of S at the start of the expand step, the claim implies ḟ and its de-

scendants are once again connected to a root of S.

Proof. Let Expand(B, e, f ) be a base case execution with Expand(B, e ′, f ′) the next base case

execution. Observe that when Expand(B, e ′, f ′) is entered e ′ = f is the last edge added to S. This
follows by a simple induction using the structure of the recursive calls when line 7 is executed.
The observation implies that if the call to Expand(B, e, f ) satisfies the exit condition of (I1′) then
the entry condition of (I1′) holds for Expand(B, e ′, f ′).

The initial call Expand(B, ė, ḟ ) starts with P = ė . So, stringing together all the base case exe-

cutions shows that when Expand(B, ė, ḟ ) exits, P + ḟ has permissible alternation and has ḟ as its
last edge. This gives the claim. �

Lemma 4.10. The expand step preserves every invariant.

Proof. We examine the four possibilities for an execution of Expand, lines 4–7. We will show
the three base cases satisfy (I1′) and also preserve invariants (I2)–(I5). In the recursive case line 7

we will verify that P is a path, i.e., no repeated vertices. This will complete the verification of (I1).

Case line 4 is executed: First, we show that e and f alternate (as in the comment). The test
guarding line 4 ensures B is atomic or mature, by (I5). Line 4 is not executed in the initial call

Expand(B, ė, ḟ ). So the current invocation was made from line 7, as Expand(Bi , ei , ei+1) for some
i ≤ k . The rest of the argument switches to this parent invocation, where we must show that ei

and ei+1 alternate when Bi is atomic or mature.
When i � {1,k }, ei and ei+1 are the edges of δ (Bi ,C (B)). The edges alternate for atomic Bi by the

definition of blossom. For mature Bi we use that definition and the definition of maturity. When
i is 1 or k (i.e., ei = e or ei+1 = f , or both) a similar inspection, using the definitions of P and P0,
shows ei and ei+1 alternate.

The alternation of e and f implies (I1′). For (I2), a blossom B is light by (I5). The properties of
(I2) for inner and outer B follow easily. (I3)–(I5) are unchanged.

Case line 5 is executed: e ∈ M makes B outer. So (I1′) holds trivially for f and B. The other
invariants hold trivially. (Note that B may be immature.)

Case line 6 is executed: It is easy to see B′ is a valid blossom. To establish (I2), first observe that
B′ is light: If u is atomic, then e � M makes B′ light with base u. If Bu is a contracted blossom, it is
light by (I2) and again B′ is light.

Next, observe B′ is outer: e is unmatched and in P and S when (this invocation of) Expand
starts. So, Bu is outer by the permissible alternation of e . This makes B′ outer. The other properties
of (I2) as well as (I3)–(I5) follow easily. (I1′) holds as in the previous case.

Case line 7 is executed: We claim line 7 is never executed for P a nonsimple trail, i.e., P =
P1 (β (B), β (B)). In proof, consider an invocation Expand(B, e, f ),whereC (B) is traversed this way.
If B is light then e and f are matched and both incident to β (B). So, line 5 is executed. If B is heavy,
then e and f are unmatched and both incident to β (B). So line 6 is executed.

Recall that (I3) implies the only Pi -trail that repeats a node ofC (B) is P1 (β, β ). Thus, P is a path

in line 7, and the recursive calls for line 7 keep P and S acyclic.
The discard step of this case ensures (I2). The remaining invariants hold by induction. �

We turn to the dual adjustment step. The following lemma and its corollary describe S when
duals are adjusted.
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Lemma 4.11. When duals are adjusted, S alternates at every node and every maximal blossom is

light and mature.

Proof. S alternates at every node when every blossom is mature. This follows from (I1) plus
the observation that (I2) prohibits a mature outer blossom being joined to a child by a matched
edge. (I2) also shows that every maximal blossom is light. Thus to prove the lemma we need only
show that every maximal blossom is mature when duals are adjusted. (I2) shows this for inner and
non-S blossoms. So we need only consider outer blossoms.

Let B be an immature outer blossom. We will show that a grow or blossom step can be done for
B. This proves the lemma, since duals are adjusted only when no such step can be done.

Let β be the base vertex of B. Let f ∈ δ (β,M ) be the edge leading to the parent of B in S; f
is undefined if B is free. (I2) implies either B is free and every x ∈ V (B) has d (x ,M ) = bβ (x ) or f
exists and every x ∈ V (B) has d (x ,M ) = b (x ). In both cases, B immature implies there is an edge
e = xy ∈ δ (B,M − f ) with x ∈ V (B). Clearly e is tight.

Case By � S: Since Bx is an outer blossom, e is eligible for Bx . Thus, a grow step can be done
to add By to S.

Case By ∈ S: Suppose By is inner. Then e � S. (e ∈ S − f makes By a child of Bx , so By is outer.)
As before, e is eligible for Bx , and e ∈ M shows it is eligible for By . So, a blossom step can be done
for e .

Suppose By is outer. Any matched edge is tight, so the unmatched copy e ′ of e is tight. e ′ � M
is eligible for both outer vertices Bx ,By . So, a blossom step can be done for e ′. �

In contrast to ordinary matching, duals may be adjusted with matched edges xy not in S but

incident to nodes of S: x and y can be atoms with x inner and y outer. This possibility is governed
by the following lemma.

Corollary 4.12. When duals are adjusted, any matched edge incident to a node of S joins an

inner node to an outer node.

Proof. Take e = xy ∈ M with Bx a node of S.

Case Bx is inner: Since no grow step can be done, y ∈ S. If e ∈ S, it goes to a child of Bx , which

is outer as claimed. If e � S, since no blossom step can be done By is an outer atom, as claimed.

Case Bx is outer: An unmatched copy e ′ of e is tight and not in S. Since no grow step can be
done for e ′, y ∈ S. Since no blossom step can be done for e ′, By is inner, as claimed. �

Let us check that the invariants are preserved when duals are adjusted. (I1)–(I3) are unaffected
by the adjustment. For (I4)–(I5), recall the dual adjustment step (Figure 19 of Appendix B).

(I4): Edges of S remain tight when duals are adjusted, by the alternation of the lemma. Matched

edges incident to S remain tight, by the corollary. Edges in contracted blossoms remain tight by
definition of the dual adjustment. Thus (I4) is preserved.

(I5): A dual adjustment only increases the duals of maximal blossoms (that are outer). So the lemma
implies (I5) for the blossoms whose z value increases from 0 to positive.

We have shown the dual adjustment preserves all the invariants. Furthermore, the dual variables
continue to be valid, i.e., they are feasible for the b-matching linear program (reviewed in Appen-
dix B). We have verified this for all cases except unmatched edges not in a blossom subgraph. This
case follows by exactly the same argument as ordinary matching.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 39. Publication date: June 2018.



39:38 H. N. Gabow

Termination, Correctness, and Initialization

As in ordinary matching, each step of the algorithm makes progress—it either finds an augmenting
trail or modifies the graph in a way that the current search will not undo. (Each nonaugmenting

step creates a new node of S. Obviously, the number of new outer atoms, outer blossoms, or
inner atoms is limited. The number of new inner blossoms is also limited—a given blossom from
a previous search can become an inner blossom only once.) Thus, the algorithm does not loop, it
eventually halts.

Next we show the algorithm halts with a perfect matching. We prove this using the fact that the
maximum size of a b-matching is

min
I ⊆V

(
b (I ) +

∑
C

�b (C )/2�
)
, (4.3)

where C ranges over all nontrivial connected components of G − I (a component is trivial if it
consists of one vertex x but no loop, i.e., xx � E) [34, Theorem 31.1]. In fact, it is straightforward to
see that the above quantity upper-bounds the size of a b-matching (a matched edge either contains
a vertex of I or has both vertices in a component C). Our derivation gives an alternate proof that
the bound is tight.

Consider a search that fails, i.e., no grow, blossom, or expand step is possible, and duals cannot
be adjusted to remedy this.

Lemma 4.13. In a failed search, any edge e ∈ E incident to an S-vertex is either spanned by a

blossom or incident to an inner atom.

Proof. A dual adjustment decreases the z-value of any inner blossom, and lowering it to 0
allows an expand step to be done. So there are no inner blossoms.

We can assume e � M ∪ S by using an unmatched copy. Let e = uv . If the lemma does not hold,

we can assume at least one of Bu ,Bv is outer, say Bu . Furthermore, either Bv � S, or Bv is outer
with either Bu � Bv or Bu = Bv atomic (since e is not spanned by a blossom). Since no grow or
blossom step can be done, e is not tight, in each of these cases. A dual adjustment decreases the
y-value of any vertex in an outer node. So, duals can be adjusted to make e tight. This makes a
grow or blossom step possible, contradiction. �

Consider a failed search. Let I be the set of inner atoms. The lemma shows that deleting I gives
a collection of connected components, each of which is either (a) an outer blossom, (b) an outer
atom that has no loop, or (c) a set of non-S vertices. (For (b), note that the existence of a loop
ensures the vertex is in a blossom, by the lemma.) Corollary 4.12 shows no matched edge joins
two vertices of I . Observe that

|M | = b (I ) +
∑

C

�b (C )/2�,

where the sum ranges over the components of type (a) or (c). (For (a), Lemma 4.11 shows the
blossom is mature. For (c), note that the non-S-vertices are perfectly matched, i.e., each v � S is
on b (v ) matched edges leading to other non-S-vertices.) This shows the upper bound (4.3) is tight.
It also shows that our algorithm, executed on an arbitrary input graph, halts with a maximum
cardinality b-matching.

When a perfectb-matching exists our algorithm finds such a matching of maximum weight. This
follows simply from the LP formulation of maximum b-matching of Appendix B. The argument is
the same as ordinary matching, so we just summarize it as follows.
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The primal LP is satisfied by any (perfect) b-matching. The dual LP requires every edge to be
dual-feasible, i.e.,

ŷz (e ) = y (e ) + z{B : e ⊆ B} ≥ w (e ).

The dual adjustment step enforces this. Complementary slackness requires tightness in the above
inequality for every e ∈ M . Complementary slackness also requires every blossom with positive
z to be mature. These two complementary slackness conditions are guaranteed by (I4) and (I5),
respectively. We conclude the final b-matching has maximum weight, and our algorithm is correct.
In fact, the algorithm provides an alternate proof that the LP of Appendix B is a correct formulation
of maximum b-matching.

As in ordinary matching, the algorithm can be advantageously initialized to use any informa-
tion at hand. The initialization must specify a partial b-matching M , dual functions y, z, and a
collection of blossoms B. The requirements are that the duals must be feasible on every edge,
tight on every edge of M or a blossom subgraph, and invariants (I2), (I3), and (I5) must hold. The
simplest choice is a functiony on vertices wherey (e ) ≥ w (e ) for every edge e , z ≡ 0, B = ∅, and M
a partial b-matching consisting of tight edges. (Here and elsewhere z ≡ 0 means z is the function
that is 0 everywhere.) This initialization is used in Section 4.4. A handy special case is when ev-
ery vertex is assigned the same initial y-value. This gives the invariant that every free vertex has
the same y-value, which is the minimum y-value. Using this initialization when the input graph
does not have a perfect b-matching, our algorithm finds a maximum cardinality maximum weight

b-matching, i.e., a partial b-matching that has the greatest number of edges possible, and subject
to that constraint, has the greatest weight possible. This is shown in Appendix B, along with other
maximum weight variants. Other choices for initialization allow various forms of sensitivity anal-
ysis to be accomplished in O (1) searches after finding a maximum b-matching (as in ordinary
matching).

Dual Variables and Efficiency Analysis

The numerical computations of the algorithm are organized around a parameter Δ maintained
as the total of all dual adjustment quantities δ in the current search. (δ is computed by the dual
adjustment algorithm of Figure 19, Appendix B.) We use Δ as an offset to compute dual variables
as they change, and in a data structure to adjust duals and determine the next step to execute. The
details are as follows.

The data structure records values Y (v ),Z (B) that are used to find the current value of any dual
y (v ), z (B) (v ∈ V ,B a blossom) in O (1) time. For example, let v be a vertex currently in an outer

node of S, with Δ0 the smallest value of Δ for which this is true, and y0 (v ) the value of y (v ) at
that point. (Δ0 may be less than the value of Δ when the current blossom Bv was formed.) Then

Y (v ) = y0 (v ) + Δ0,

y (v ) = Y (v ) − Δ,

since y (v ) decreases by δ in every dual adjustment where it is outer. Similarly, a blossom B that is

currently an outer node of S has

Z (B) = z0 (B) − 2Δ0,

z (B) = Z (B) + 2Δ,

for Δ0 the value of Δ when B became outer and z0 (B) the value of z (B) at that point. (z0 (B) is
the value of z (B) at the start of the search if B was formed prior to that, or 0 if B was formed
in the current search.) Modulo changes of sign, similar equations are used to compute y (v ) for v
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currently an inner atom and z (B) for B currently a maximal inner blossom. Other y and z values
are computed as described in Appendix D.

To adjust duals and determine the next step of the algorithm to be executed, we use a Fibonacci
heap F . F contains a node for each grow, blossom, and expand step that is a candidate for the
next step to execute. The key of each such node is the (future) value of Δ when the step can be
done. Specifically, when a blossom B becomes inner in a grow or expand step, a node for expand-
ing B is inserted in F with key equal to the current value of Δ plus z (B)/2. (This node may get
deleted before the expansion, in a blossom step.) Theorem 3.5 provides the node of F for the next
candidate blossom step. Gabow [14] gives an algorithm for future grow steps that uses total time
O (mα (m,n)). For completeness, Appendix D gives a simpler algorithm for grow steps. It uses to-
tal time O (m + n logn) and so suffices for our purposes. The algorithm is also valid for a pointer
machine.

The algorithms of Figures 9 and 10 use linear time. We use the data structure for blossoms of
Appendix C. Note that in the expand step of Figure 9 P0 should not be computed:9 Instead, the
various paths P in line 7 of Figure 10 are essentially precomputed, as shown in Appendix C.

Blossom steps are implemented using the tree-blossom-merging algorithm of Section 3.1. This
algorithm is unchanged from ordinary matching, assuming the supporting forest is maintained
correctly. (A new case is that matched edges can cause blossom steps, and such edges may be
incident to inner vertices. Such blossom steps are handled seamlessly by the tree-blossom-merging
algorithm. Alternatively they can be easily handled outside that algorithm, since matched edges
are always tight.)

Now consider the supporting forest. We modify Definition 3.1 of the supporting forest, which
uses the paths P (x , β ) of ordinary matching for inner blossoms B. The corresponding trail for b-
matching is P0 (x , β ). To keep the supporting forest acyclic we modify this trail as follows. Let
P−0 (x , β ) be P0 (x , β ) with every maximal subtrail of the form P1 (β (A), β (A)) replaced by the vertex
β (A). We modify Definition 3.1 so that inner blossoms B use P−0 (x , β ) as TB rather than P (x , β ).

Note that an inner blossom B still has β (B) a vertex of the supporting forest. This allows a
blossom step for the matched edge incident to β (B) to be handled correctly.

The algorithm for maintaining T is essentially unchanged for grow and blossom steps. For ex-
pand steps suppose Expand is executed for a blossom A, which as above is represented only by
the vertex β (A). We cannot have z (A) > 0. (That would make A light and mature, by (I5). But ma-
turity implies a subtrail Pi (β (A), β (A)) of P0 (x , β ) has i = 0, contradicting i = 1.) So, line 5 or 6 is
executed, making A a new outer vertex. β (A) is already in the supporting tree, and the remaining
vertices of A are added to T using add_lea f operations.

We conclude that our algorithm is correct and achieves the desired efficiency:

Theorem 4.14. A maximum b-matching can be found in time O (b (V ) (m + n logn)).

4.4 Strongly Polynomial Algorithm

To extend the algorithm to a strongly polynomial version, we follow previous approaches. They
use bipartite matching (i.e., network flow) to reduce the size of the given nonbipartite problem [3,
23, 34]. The high-level algorithm is as follows:

9The pseudocode uses P0 to facilitate specification of P . Explicitly computing P0 could lead to quadratic time when there is

a nesting of blossoms that get expanded, i.e., we have B = B0 ⊃ B1 ⊃ B2 ⊃ . . . where each Bi becomes inner when Bi−1

gets expanded.
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Set b ′ = 2�b/2�. Let M be a maximum cardinality maximum weight b ′-matching with corre-
sponding optimal dual function y. Using M,y (and z ≡ 0, B = ∅) as the initial solution, execute
the b-matching algorithm of Section 4.2.

This is a straightforward combination of previous algorithms [3, 23, 34]. For completeness, we
give the analysis. Correctness of the algorithm—that an optimum M,y actually exists—may not be
immediately clear. We establish correctness below as part of the efficiency analysis.

Since we assumeG has a perfect b-matching, it has a partial b ′-matching with ≥ b (V )
2 − n edges.

So, our b-matching algorithm performs ≤ n augmentations. Thus, the time for the entire algorithm
is O (n(m + n logn)) plus the time to find M,y. We will see the latter strictly dominates the time.

We find M,y as follows. Extend the given graphG toG+ by adding a vertex s with b ′(s ) = b ′(V ),
edges vs , v ∈ V of weight 0 and edge ss of weightWb ′(s ) for

W = max{1, |w (e ) | : e ∈ E (G )}.
It is easy to see there is a 1-1 correspondence between partial b ′-matchings of G and (perfect) b ′-
matchings ofG+, wherein a cardinality c partial matching corresponds to a perfect matching with
c loops ss . Furthermore, a maximum cardinality maximum weight b ′-matching of G corresponds
to a maximum b ′-matching ofG+. To verify this last assertion, it suffices to show any b ′-matching
ofG+ with c loops ss , say Mc , weighs more than any such matching with d < c loops, say Md . This
follows since the relation b ′(s )/2 ≥ c ≥ d + 1 gives

w (Mc ) ≥ (Wb ′(s ) −W )c ≥ (Wb ′(s )d +Wb ′(s )) −Wb ′(s )/2

=Wb ′(s )d +Wb ′(s )/2 > (Wb ′(s ) +W )d ≥ w (Md ).

We find a maximum b ′-matching of G+ by reducing to a bipartite graph BG. BG has vertex set
{v1,v2 : v ∈ V (G+)}, edge set {u1v2,u2v1 : uv ∈ E (G+)}, and edge weights and degree constraints
given, respectively, by

w (u1v2) = w (u2v1) = w (uv ) and b ′(v1) = b ′(v2) = b ′(v )/2.

(Note s has even b ′ value. Also, a loopuu ofG+ gives one edgeu1u2 in BG.) Let x be a maximum b ′-
matching onBG with optimum dual functiony (we show x andy exist below). Define ab ′-matching
M onG+ by taking x {u1v2,u2v1} copies of each edgeuv ∈ E (G+) (by our summing convention, this
means a loop uu has x (u1u2) copies). Define a dual function y by

y (v ) = y{v1,v2}/2. (4.4)

We will show that restricting M and y to G gives the optimum values desired for the main
algorithm.

We first prove that the b ′-matching x exists, and M is a maximum b ′-matching on G+. These
properties will follow from

(a) any b ′-matching x on BG gives a b ′-matching M on G+ of the same weight;
(b) any b ′-matching M on G+ gives a b ′-matching x on BG of the same weight.

Recall that G+ has a b ′-matching. So (b) implies x exists. Also, (a) is obvious from the above con-
struction of M on G+. So, we need only prove (b).

We prove (b) using the Euler tour technique: Let M be a b ′-matching on G+. Since b ′ is even
on G+, the edges of M form a collection of closed trails. Traverse each trail, and for each edge uv
traversed from u to v match edge u1v2. This applies to loops uu too. For each vertex v , the BG-
matching has exactlyb ′(v )/2 edges incident to each ofv1,v2. Clearly we have the desired matching
on BG.

Applying complementary slackness to the definition of the dual function for bipartite b-
matching [34, chap. 21] we get that a b ′-matching x on BG and a dual functiony are both optimum
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Fig. 12. f -factor search structure. The dashed edges αi are not part of the structure. They are all matched.

iff

y (e ) ≥ w (e ) for all edges e of BG, with equality when x (e ) > 0. (4.5)

(Recall our summing convention means that if e = uv, then y (e ) = y (u) + y (v ).) Thus, for every
edge e = uv of G+,

y (e ) = (y (u1) + y (u2) + y (v1) + y (v2))/2 ≥ (w (u1v2) +w (u2v1))/2 = w (e ).

Furthermore, equality holds for e ∈ M . This follows because the matching x on BG has a mir-
ror image x ′ defined by x ′(a1b2) = x (b1a2). Thus x (u1v2) > 0 implies y (u1v2) = w (e ) as well as
y (v1u2) = w (e ). This calculation remains valid when e is a loop uu (i.e., u = v). So the functions
y, 0 are optimum duals for b ′-matching on G+. Restricting M and y to G, and taking z ≡ 0, B = ∅,
gives permissible initial values for the b-matching algorithm of Section 4.2. (Recall the discussion
of initialization at the end of Section 4.2.) We have proved the main algorithm is correct.

We find x ,y on BG using an algorithm for minimum cost network flow. Specifically, the problem
on BG is a transportation problem, where x is an optimum integral solution and y is an optimum
dual function [34, chap. 21]. The optimality conditions, Equation (4.5), are precisely those for the
transportation problem (assuming the trivial sign flip to convert our maximum weight problem to
a minimum cost problem). Orlin solves the transportation problem (more generally, the tranship-
ment problem) in time O (n logn(m + (n logn)) [29]. It gives both x and y. Using this, we obtain
our strongly polynomial bound:

Theorem 4.15. A maximumb-matching can be found in timeO (min{b (V ),n logn}(m + n logn)).

5 f-FACTORS

The fundamental difference between f -factors and b-matching is illustrated in Figure 12, which
shows a search structure for f -factors. Recall that f -factors are defined on arbitrary multigraphs—
unlike b-matching, edges have a limited number of parallel copies. The parallel copies in b-
matching often allow a blossom to be enlarged using an incident matched edge and its parallel
unmatched edge (e.g., in Figure 12 blossom B and α3; also B3 and α2). The parallel unmatched edge
needn’t exist for f -factors (in fact, the search structure of Figure 12 might be maximal). This in
turn leads to another major difference: the linear programming z dual variables are assigned to
blossom/incident-edge-set pairs rather than just blossoms.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 39. Publication date: June 2018.



Data Structures for Weighted Matching and Extensions to b-matching and f-factors 39:43

The organization of the f -factor section is the same as b-matching: Section 5.1 gives the basic
properties of blossoms. Section 5.2 presents our algorithm. Section 5.3 gives the analysis, proving
we find a maximum f -factor in time O ( f (V ) (m + n logn)). Section 5.4 extends the algorithm to
achieve the strongly polynomial time boundO ((m logn) (m + n logn)), the same bound as known
for bipartite graphs.

We use the same terminology asb-matchings whenever possible—we introduce each such dupli-
cate term and point back to its complete definition in Section 4. For instance, the degree-constraint
function f , a partial f -factor, and all terminology regarding multigraphs and contractions are the
same as before.

5.1 Blossoms

Similar to b-matching, we define immature and mature blossoms, and show how blossoms are
updated when the matching gets augmented.

Blossoms are defined as before by Definition 4.2. We add the notion of “base edge” of a blossom.
It is the “exiting edge.” (It is used implicitly for b-matchings.)

Definition 5.1. The base edge of a blossomA, denotedη(A), is either an edge of δ (β (A)) ∩ δ (V (A))
with opposite M-type from A, or ∅. It satisfies these properties:

Blossoms with the same base vertex have the same base edge.
Suppose β (A) is not the base of a maximal blossom, i.e., some blossom B has A ∈ A (B) − α (B).

Then η(A) � ∅ is an edge of C (B).

It is easy to see this notion is well-defined. In particular, in the second property, the definition
of blossom B shows the edge of opposite M-type from A exists. Note that η(A) = ∅ only if β (A)
is the base of a maximal blossom. Using ∅ as a base edge is handy notation in what follows, e.g.,
Equation (5.1).

As before, we abbreviate β (B) to β when possible, and similarly for η(B). Heavy and light blos-
soms are defined as before. In Figure 12, the two free loop blossoms have ∅ base edges. B and B1 are
light blossoms and have base edge η1. In Figure 5(a), the triangle blossom has η arbitrarily chosen
as one of two matched edges incident to its base; similarly, the heavy blossom has η as one of the
two unmatched edges incident to its base.

The family of blossoms A∗ constructing B is defined as before. The trails Pi (v, β ) for f -factor
blossoms are the same as before. As before, any trail Pi (v, β (B)) passes through any A ∈ A∗ (B)
at most once, and if so it traverses a trail Pj (v, β (A)), v ∈ V (A) (possibly in the reverse direction).
Furthermore, η(A) is an edge in Pi (v, β (B)) unless β (A) = β (B). To prove this, we can assumeA is a
maximal blossom with base β (A) � β (B). Let D be the blossom withA ∈ A (D) (D ∈ A∗ (B) ∪ {B}).
Pi (v, β (B)) traverses the blossom trail C (D) on a subtrail, denoted P in the proof of Lemma 4.4.

For blossom A on P with A � α (D), P either contains both edges of δ (A,C (D)) or, when A is the

first vertex of P , the edge of δ (β (A),C (D)) of opposite M-type from A. Both alternatives have η(A)

in P .

Mature Blossoms

As before, complementary slackness dictates the sets that may have positive dual variables, and we
use this to define mature blossoms. Dual variables are associated with blossom/incident-edge-set
pairs (see the review in Appendix B) and the blossoms must satisfy the following “completeness”
property: Blossom B with base vertex β and base edge η is mature if

every x ∈ V (B) − β has d (x ,M ) = f (x ), and furthermore,
either d (β,M ) = f (β ) and η is an edge, or d (β,M ) = f (β ) − 1 and η = ∅.
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We shall see that in contrast to b-matching, the algorithm never creates immature blossoms.
Thus, the algorithm does not use a discard step.

Augmenting Trails

Augmenting trails, augmenting blossoms, and the augment step are defined exactly as in b-
matching. Any blossom B on the augmenting trail, maximal or not, remains a blossom after re-
matching. Lemma 4.5 shows this except for exhibiting the base edges of blossoms. We extend that
lemma to define base edges for rematched blossoms as follows.

Let AT denote the augmenting trail (P0 (v, ε ) − (v ′, ε ) in the discussion preceding the lemma).
For consistency with the lemma primes denote blossoms after rematching, e.g., B′ is the rematched
blossom B.

Lemma 5.2. For any mature blossom B with δ (B,AT ) � ∅, η(B′) exists and is the unique edge

satisfying

δ (B,AT ) − η(B) = {η(B′)}.

Remark. The lemma applies to all blossoms of our algorithm since all are mature. The lemma
also shows that after augmenting, every blossom remains mature—even a free blossom that occurs
at an end of AT .

Proof. For some x ∈ V (B) let xx ′ be the edge of δ (B,AT ) − η(B). To show this edge is uniquely
defined, first note the definition ofAT impliesd (B,AT ) is 1 or 2. (An augment may haved (B,AT ) =
0 but such a B is not mature, the base x has d (x ,M ) ≤ b (x ) − 2.) If d (B,AT ) = 2 then η(B) ∈ E (AT ),
by the definition of augmenting blossom. If d (B,AT ) = 1, then B contains a free vertex v or v ′ so
η(B) = ∅ by the definition of maturity. In both cases δ (B,AT ) − η(B) has exactly one edge.

Next note that AT , a Pi trail, passes through B on a trail Pj (x , β (B)) (possibly in the reverse
direction). Suppose Pj (x , β (B)) starts with an edge e . Lemma 4.5 shows β (B′) = x and the M-type
of B′ is that of the rematched e . This is the opposite of the M-type of the rematched xx ′. So we can
take η(B′) = xx ′.

The remaining possibility is that Pj (x , β (B)) has no edges, i.e., j = 0, x = β (B), B′ = B. There are
two possibilities.

Case B is not free: xx ′ alternates with η(B). So the rematched xx ′ has the original M-type of
η(B). The M-type of B does not change so we can again take η(B′) = xx ′.

Case B is free: B is a light blossom (even if it is not maximal, by the definition of augment-
ing blossom). This makes xx ′ unmatched before rematching (j = 0). So the augment makes xx ′

matched and we can take η(B′) = xx ′. �

For any mature blossom B define

I (B) = δ (B,M ) ⊕ η(B). (5.1)

The algorithm will assign positive values to dual variables of blossom/incident-edge-set pairs of
the form B, I (B) (recall Appendix B). As an example, note this is consistent with ordinary matching
and b-matching: Duals are associated with blossoms only because any blossom has I (B) = ∅. The
latter follows since η(B) is either the unique matched edge incident to B, or ∅ when this edge does
not exist.

The next lemma will be used to show that an augment step maintains validity of the dual vari-
ables (see Lemma 5.7).

Lemma 5.3. An augment step does not change I (B) for any mature blossom B (maximal or not),

i.e, I (B) = I (B′).
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Fig. 13. Pseudocode for an f -factor search.

Proof. Let M ′ be the augmented matching M ′ = M ⊕ AT . Thus

δ (B,M ′) = δ (B,M ) ⊕ δ (B,AT ).

Lemma 5.2 shows

{η(B′)} = δ (B,AT ) ⊕ η(B).

By definition, I (B′) = δ (B,M ′) ⊕ η(B′). Substituting the displayed equations transforms this to
δ (B,M ) ⊕ η(B) = I (B). �

5.2 f-factor Algorithm

Compared to b-matching, an f -factor algorithm has more restrictions on grow and blossom
steps, since edges have a limited number of copies. This necessitates assigning z duals to
blossom/incident-edge-set pairs. It also introduces the possibility of matched edges that are not
tight. But this simplifies the algorithm by making matched and unmatched edges more symmet-
ric! Similarly, heavy blossoms are required in both the linear programming formulation and the
algorithm.

We present the search algorithm as well as the dual adjustment step—the latter differs enough
from ordinary matching and b-matching to merit detailed discussion.

The search algorithm is stated in Figure 13. Many notions are defined just as they were for b-

matching, specifically the contracted graphG, its edge set E, the search structureS, its contraction
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Fig. 14. Six types of nodes v in a search tree. (a)–(c) are outer v , (d)–(f) inner. As labeled in (a), τ (v ) edges

are always drawn above v and edges eligible for Bx = v are always below. Edges in I (B) sets are so labeled.

In (e) and (f), τ (v ) can be matched or unmatched.

S, the Bx sets denoting blossoms or atoms, and free nodes. The following definitions are illustrated
in Figure 14.

To define the inner/outer classification letv be a node of S. Ifv is not a search tree root let τ (v )
be the edge to its parent.

Node v of S is outer if any of the following conditions holds:
v is a search tree root;
v is an atom with τ (v ) ∈ M ;
v is a blossom with τ (v ) = η(v ).

Otherwise, v is inner, i.e., τ (v ) exists but either of the following holds:
v is an atom with τ (v ) � M ;
v is a blossom with τ (v ) � η(v ).

In contrast with b-matching, an outer blossom can have τ (v ) � M (i.e., when it is heavy) and an
inner blossom can have τ (v ) ∈ M . These possibilities are illustrated by B2 and B3, respectively, in
Figure 12.

Eligibility is defined so that paths in S have the same structure as C (B) trails in blossoms (see
Figure 14):

An edge e = xy ∈ E − S, is eligible for Bx if any of the following conditions holds:
x is an outer atom and e � M ;
x is an inner atom and e ∈ M ;
Bx is an outer blossom;
Bx is an inner blossom and e = η(Bx ).
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Fig. 15. Dual adjustment step for f -factors.

In the algorithm statement of Figure 13, the current matching M and the paths S (x ,y) are as
before. Using the above definitions, much of the algorithm is identical to b-matching.

Now consider the dual adjustment step of Figure 15. We first recall terminology explained in
detail in Appendix B. Similar to b-matching, the function ŷz : E → R is defined by

ŷz (e ) = y (e ) + z{B : e ∈ γ (B) ∪ I (B)}. (5.2)

Say edge e is dominated, tight, or underrated depending on whether ŷz (e ) is ≥ w (e ), = w (e ), or
≤ w (e ), respectively; strictly dominated and strictly underrated correspond to > w (e ) and < w (e ),
respectively. The complementary slackness conditions for optimality require e to be dominated if
it is unmatched, as inb-matching. The condition for positive z-duals is that ofb-matching extended
to include I (B) sets. Finally, a new condition is that e must be underrated if it is matched.

As usual, our algorithm maintains duals to satisfy these requirements. As in b-matching there
may be strictly dominated unmatched edges; symmetrically there may be strictly underrated
matched edges. (This is expected since our algorithm has minimum cost network flow as a special
case.) The absolute values in the definitions of δ1 and δ2 reflect these possibilities, as ŷz (e ) −w (e )
may have arbtrary sign. The use of ŷz (e ) rather thany (e ) (as in ordinary matching andb-matching,
Figures 18–19) reflects the possibility that eligible edges can be in I (B) sets and so have positive z
contributions in ŷz (e ).

The rest of this section follows the same organization as b-matching, giving clarifying remarks,
invariants, examples, and then the formal proof of correctness.

Remarks. Many remarks for b-matching still apply, the exceptions being the simplifications in
the blossom and expand steps.

In the blossom step. consider the cycle C , which is constructed in line 1 and then processed as
either an augmenting blossom or an outer blossom. When the augment step is executed, we do
not considerC a blossom of the algorithm (since it is not mature). WhenC is processed as an outer

blossom, the definition η(C ) = τ (α ) assumes τ (α ) = ∅ when α is a root of S.
The expand step is simpler thanb-matching since all blossoms ofC (B) are mature. As in ordinary

matching a new blossom in S may have z-value 0.
The algorithm maintains η values in blossom, augment, and expand steps. In line 2 η-values of

blossoms in Ce are unchanged, so new blossoms of S may be inner or outer.
As before, when duals are modified, our assumption that the graph has an f -factor guarantees

the new duals allow further progress (as shown in the discussion following the proof of Equa-
tion (5.6)).
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Fig. 16. f -factor algorithm examples.

Invariants. The definition of S alternating at node v is unchanged.

(I1) S alternates at any atomic node. Any root blossom is light.
(I2) Every blossom B (maximal or not) is mature.

If B is inner, then it is either a leaf of S or its base edge leads to its unique child.
(I3) For every blossom B (maximal or not) C (B) is a cycle.

(I4) An edge is tight if it is an edge of S or an edge of a contracted blossom. Any nontight
edge is dominated if it is unmatched and underrated if matched.

Examples. Strictly Underrated Edges: Figure 12 illustrates how matched edges can become un-
derrated. Suppose a dual adjustment is done. (For this, we assume that α3 is strictly underrated or
that it does not exist.) Since α5 is incident to an outer atom, it is ineligible, and a dual adjustment
decreases ŷz (α5) by δ . Since α2 is incident to an inner blossom and belongs to its I set, it is ineligi-
ble and a dual adjustment increases ŷz (α2) by δ − 2δ = −δ . These adjustments exemplify the two
main cases where strictly underrated matched edges are created. (Note also that α2 or α5 may be

the base edge of a blossom not in S. So, in general, even η edges need not be tight.) The underrated
edge α3 may become tight in the dual adjustment since ŷz (α3) increases by (−δ + 2δ ) + δ = 2δ .

For another example, consider Figure 11(c), assuming the loop e is matched. A dual adjustment
decreases ŷz (e ) by 2δ . The same holds if e joins two different free vertices.

Eligibility: Consider Figure 12. No grow step can be done for the ineligible edge α2. No augment
step can be done for α1 or α4 since they are ineligible at one end.

Grow Step: In Figure 12, the grow step that added the inner blossom B3 used a matched edge.
This is not possible in b-matching.

Blossom Step: In Figure 16(a), a blossom step can be done for e if e = η(A) = η(B) and e is tight.
Such a blossom step—for two inner nodes joined by an unmatched edge—cannot be done in b-
matching. If e � η(A) then a blossom step cannot be done for e . In this case, e may even complete
an augmenting trail (when e is tight andd (v,M ) ≤ f (v ) − 2) yet the algorithm does not augment.10

The same holds if e � η(B), assuming B remains inner. This situation is further discussed in the
Dual Adjustment Step example below.

Augment Step: If an augment step is done for α3 in Figure 12, the edge joining blossom B3 to the
free root blossom becomes the (unmatched) base edge of both blossoms.

Expand Step: In Figure 16(b), an expand step is done for blossom B. B is made an outer node,
with base edge τ (B). So unlike b-matching an expand step may preserve B as a maximal contracted
blossom. If a similar expand step is done for B in Figure 16(c),A is made an inner blossom in S and

10This is the correct strategy: Augmenting might make the current η (A) strictly underrated. But it is unmatched.
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u and v become atoms not in S. Blossom A may not get expanded in this search even if z (A) = 0.
If it does get expanded, then A becomes an outer blossom.

Dual Adjustment Step: Returning to Figure 16(a), suppose e is not the base edge of either blos-
som A,B and B remains inner. A dual adjustment increases ŷz (e ) by δ + δ = 2δ . e becomes strictly
dominated, and the topologically valid blossom or augment step for e has been destroyed. Sub-
sequent dual adjustments take e even further from being tight. However, this cannot continue
forever: Eventually, one of the inner blossoms gets expanded, and dual adjustments now increase
ŷz (e ) by−δ + δ = 0. When the other blossom gets expanded e becomes an unmatched edge joining
two outer blossoms/vertices. Now dual adjustments decrease the slack (ŷz (e ) decreases by 2δ ) and
eventually a blossom step can be done for e .

5.3 Analysis

We follow the same organization as before: The first subsection proves the invariants. The second
subsection proves correctness and adds details on initialization and termination. The last subsec-
tion proves the desired time bound.

Proof of Invariants

As before, we show all the invariants are preserved by every step of the algorithm. Again our
discussion of grow, blossom, augment, and expand steps just treats the most interesting cases.
Start by noting that when a search begins any free blossom is light, by (I1) from the previous

search. So (I1) is preserved when S is initialized.

Lemma 5.4. The grow step preserves every invariant.

Proof. If blossom Bx is inner, then the definition of eligibility implies e = η(Bx ) and By will be
the unique child of Bx . So (I2) holds for Bx . e is tight so (I4) continues to hold. �

Lemma 5.5. The blossom step preserves every invariant.

Proof. Using the algorithm’s notation, e = xy is the edge triggering the blossom step and C is
the new outer blossom. We will verify that C satisfies Definitions 4.2 and 5.1, and that C is outer.
We first verify the conditions on α , then blossoms v ∈ C − α . There are four possibilities for α .

If α is an outer atom, then (I1) shows all edges to its children are unmatched. Also, if e is incident
to α then eligibility implies e is unmatched. So, blossom C is light. This preserves (I1) if α is an
atomic search tree root. If α is not a root, then τ (α ) is matched, so it is a valid choice for η(C ).
Contracting C makes η(C ) = τ (C ) so C is outer.

Similarly, if α is an inner atom, thenC is heavy, τ (α ) is unmatched, and η(C ) = τ (C ) makesC a
valid outer blossom.

If α is an outer blossom, then so is C , since η(C ) = η(α ).
Finally, α cannot be an inner blossom B: η(B) is the only edge of δ (B) that can lead to a child of

B or be e (by (I2) and the definition of eligibility). So, B cannot be the nca of Bx and By .
Next, consider a node v � α that is a blossom inC . Definition 5.1 requires η(v ) to be an edge of

C . If v is outer this holds since η(v ) = τ (v ). If v is inner, then, as before, τ (v ) and η(v ) must be the
two edges of δ (v,C ). �

Lemma 5.6. The expand step preserves every invariant.

Proof. Case Ce = C (B): We claim α is a vertex. In proof, suppose the contrary. v � α makes
Pi (v, β (B)) contain exactly one edge incident to α . v ∈ α makes Pi (v, β (B)) contain no edge inci-
dent to α . Neither alternative holds in this case.
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We conclude vertex α equals v = β (B) and i = 1 in Pi (v, β (B)). Thus, e and f are both incident
to β (B) and both have the same M-type. So changing η(B) to e preserves Definition 5.1. Clearly B
becomes outer. Since z (B) = 0 the change also preserves ŷz values, i.e., (I4) holds.

Case Ce � C (B): To show (I1), let x be an atom in Ce . If x � v, β (B) then Ce alternates at x . If
x = v, the choice of i gives the desired alternation. If x = β (B), alternation holds since η(B) has
opposite M-type from B. �

Lemma 5.7. The augment step preserves every invariant.

Proof. Recall that an augment step is given a valid augmenting blossom—in particular, a
nonatomic end v or v ′ is a light blossom by (I1). Lemma 5.3 shows no I (B) set changes in the
augment. Thus, Equation (5.2) shows every ŷz (e ) value remains the same and (I4) is preserved. �

Lemma 5.8. A dual adjustment preserves (I4) unless δ = ∞.

Proof. Any dual adjustment step has δ > 0. We will check (I4) for an arbitrary edge e = uv .
If Bu = Bv is a blossom, then (as in ordinary matching) ŷz (e ) does not change. So, assume the
opposite case, i.e., Bu � Bv or e is a loop that is not a blossom (i.e., u = v is an atom). In both cases,

e ∈ E.
The quantities in ŷz (e ) = y (e ) + z{B : e ∈ γ (B) ∪ I (B)} that may change in a dual adjustment are

limited to y (x ) and z (Bx ) for x ∈ {u,v} (since z (B) changes only on maximal blossoms B). Clearly

these quantities do not change if Bx � S. From now on, assume x ∈ {u,v} with Bx ∈ S. (If e is a
loop, consider the possibilities x = u and x = v to be distinct.)
y (x ) changes by ±δ and, if Bx is a blossom, z (Bx ) changes by ∓2δ , but this contributes to ŷz (e )

iff e ∈ I (Bx ). Define Δ(Bx ) to be the total change in ŷz (e ) at the x end. So ŷz (e ) changes by Δ(Bu ) +
Δ(Bv ). (This hold for loops e too.) It is easy to see that Δ(Bx ) = ±δ , more precisely,

Δ(Bx ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−δ if Bx is an outer atom, or an outer blossom with e � I (Bx ),

or an inner blossom with e ∈ I (Bx )
+δ if Bx is an inner atom, or an outer blossom with e ∈ I (Bx ),

or an inner blossom with e � I (Bx ).

(5.3)

Define a sign σ by

σ =

{
+1 e � M
−1 e ∈ M .

In the following analysis, it may be helpful to consult Figure 14. We consider two main cases.

Case e ∈ S: We claim

Δ(Bx ) =

{
+σδ e = τ (Bx )
−σδ e � τ (Bx ).

(5.4)

The claim implies Δ(Bu ) + Δ(Bv ) = 0 since one of Bu ,Bv is the child of the other. Hence, ŷz (e )
does not change and (I4) holds.

To prove the claim, consider the value of Δ(Bx ) in two symmetric cases.

Subcase Δ(Bx ) = −δ : Suppose e � τ (Bx ), i.e., e goes to a child of Bx . In all three cases of Equa-
tion (5.3), e is unmatched. Thus, Δ(Bx ) = −σδ as claimed.

Suppose e = τ (Bx ), i.e., e goes to the parent of Bx . In all three cases of Equation (5.3), e is
matched. Thus, Δ(Bx ) = σδ as claimed.

Subcase Δ(Bx ) = δ : Suppose e � τ (Bx ), e goes to a child. In all three cases of Equation (5.3), e
is matched. Thus, Δ(Bx ) = −σδ as claimed.
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Suppose e = τ (Bx ), e goes to the parent. In all three cases of Equation (5.3), e is unmatched.
Thus, Δ(Bx ) = σδ as claimed.

Case e � S: Let Bx be a node of S. We claim

Δ(Bx ) =

{
−σδ e eligible for Bx

+σδ e ineligible for Bx .
(5.5)

The first possibility, e eligible for Bx , is exactly the same as e � τ (x ) checked previously. So
suppose e is ineligible. As before, consider the value of Δ(Bx ).

Subcase Δ(Bx ) = −δ : This is impossible in the middle case, i.e., Bx outer with e � I (Bx ), since
e is eligible. In the other two cases of Equation (5.3), e is matched. Thus, Δ(Bx ) = σδ as claimed.

Subcase Δ(Bx ) = δ : This is impossible in the middle case. In the other two cases of Equa-
tion (5.3), e is unmatched. Thus, Δ(Bx ) = σδ as claimed.

Now we show (I4). For every edge e, define

slack (e ) = σ (ŷz (e ) −w (e )).

(I4) requires every edge to have nonnegative slack. A dual adjustment changes slack (e ) by
σ (Δ(Bu ) + Δ(Bv )). Equation (5.5) shows slack (e ) decreases iff e is eligible for Bx .

At least one of Bu ,Bv is a node of S, so assume Bu ∈ S. If Bv is also in S we can assume
Δ(Bu ) = Δ(Bv ), since, otherwise, ŷz (e ) does not change and the lemma holds. So, in the two cases

below, when Bv is a node of S either e is eligible for both Bu and Bv or ineligible for both.

Subcase e ineligible for Bu : The dual adjustment increases the slack. Clearly (I4) continues to
hold.

Subcase e eligible for Bu : When the dual adjustment starts. any edge has nonnegative slack, i.e.,

slack (e ) = |ŷz (e ) −w (e ) |. If Bv � S, then initially we have |ŷz (e ) −w (e ) | ≥ δ1 ≥ δ . Since slack (e )

decreases by δ , slack (e ) ≥ 0 after the dual adjustment and (I4) holds. Similarly, if Bv ∈ S, ini-
tially slack (e ) = |ŷz (e ) −w (e ) | ≥ 2δ2 ≥ 2δ . slack (e ) decreases by 2δ so after the dual adjustment
slack (e ) ≥ 0 and (I4) holds. �

Reconsidering the last subcase, when δ = δ1, the corresponding minimizing edge becomes tight.
Thus, a grow step can be done in the next iteration. Similarly, when δ = δ2 a blossom step has
become possible. Taking δ3 into account, we see that for any δ < ∞, the dual adjustment step
makes at least one grow, blossom, or expand step possible, just like ordinary matching and b-
matching.

We have now shown that every invariant is preserved throughout the algorithm.

Termination, Correctness, and Initialization

The algorithm does not loop, by exactly the same argument as b-matching. Next we show the al-
gorithm halts with an f -factor, i.e., no free vertices. We prove this using the fact that the maximum
size of a partial f -factor is

min

{
f (I ) + |γ (O ) | +

∑
C

⌊
f (C ) + |E[C,O]|

2

⌋ }
, (5.6)

where the set is formed by letting I and O range over all pairs of disjoint vertex sets, and in
the summation C ranges over all connected components of G − I −O [34, Theorem 32.1]. Also,
throughout this section, E[A,B], for A,B ⊆ V , denotes the set of edges with one end in A and the
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other in B. Our derivation provides an alternate proof of this min-max relation. We break the proof
up into two claims.

Claim. Equation (5.6) upper-bounds the size of any partial f -factor.

Proof. Any edge e of G satisfies exactly one of these conditions:

(i) e is incident to an I vertex;
(ii) e joins two O vertices;

(iii) e joins a vertex in some component C to another vertex of C or to an O-vertex.

Call e type (i), (ii), or (iii) accordingly. We shall see these three types correspond, respectively, to
the three terms of Equation (5.6). Note that a loop e may have any of the three types.

Clearly, the number of matched edges of type (i) and (ii) is bounded by the first two terms of
Equation (5.6), respectively. For type (iii) consider any component C . Counting edge ends shows
the number of matched edges of type (iii), |E[C,C ∪O] ∩M |, satisfies

2|E[C,C ∪O] ∩M | =
∑
x ∈C

d (x ,M ) − |E[C, I ] ∩M | + |E[C,O] ∩M |. (5.7)

Obviously, this implies

2|E[C,C ∪O] ∩M | ≤ f (C ) + |E[C,O]|. (5.8)

The third term of Equation (5.6) follows. So, Equation (5.6) is a valid upper bound. �

Claim. The upper bound of Equation (5.6) is tight.

Proof. Consider a search that fails, i.e., no grow, blossom, or expand step can be done and the

dual adjustment step has δ = ∞. Since δ1 = δ2 = ∞, no edge of E[S,V − S ∪ S] is eligible at its S
ends. Since δ3 = ∞, there are no inner blossoms.

Let I be the set of inner atoms and O the set of outer atoms. Deleting I ∪O gives a collection of
connected components C . There are exactly f (I ) matched edges of type (i). This follows since an
inner atom is not free, and a matched edge joining two inner atoms is eligible at both ends. There
are exactly |γ (O ) | matched edges of type (ii), since an unmatched edge joining two outer atoms
is eligible at both ends. For the type (iii) edges we will prove that any component C has a value
Δ ∈ {0, 1} with∑

x ∈C
d (x ,M ) − |E[C, I ] ∩M | + |E[C,O] ∩M | = f (C ) + |E[C,O]| − Δ. (5.9)

With Equation (5.7) this shows the left-hand side of Equation (5.8) is within 1 of the right. So

|E[C,C ∪O] ∩M | = � f (C )+ |E[C,O] |
2 �. Hence, the number of type (iii) matched edges equals the third

term of Equation (5.6). Thus, Equation (5.6) is a tight upper bound on the size of a partial f -factor.
To prove Equation (5.9), consider two types of components C:

CaseC ⊆ V − S: Since no vertex ofC is free, the first term on the left of Equation (5.9) is f (C ).

Consider an edge e fromC to a nodev ∈ S; e is not eligible forv , sov is not a blossom. Furthermore,
v ∈ I implies e � M and v ∈ O implies e ∈ M . Thus, the second term on the left of Equation (5.9)
is 0 and the third term is |E[C,O]|. So, Δ = 0 as desired.

Case C contains an S-node: We first show that C is a collection of blossoms forming a subtree

of S with no other edges, i.e., γ (C,E) ⊆ S. Any S-node Bx of C is an outer blossom (x � I ∪O).

Consider an edge e = xy ∈ E with Bx a blossom of C and By a node of C . By is also an S-node,
since e is not eligible for Bx . So By is also an outer blossom. e is not eligible for at least one of

Bx ,By , so e is an edge of S, as claimed.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 39. Publication date: June 2018.



Data Structures for Weighted Matching and Extensions to b-matching and f-factors 39:53

Let Br be the root of the subtree C . Let e = rs be the edge of S from Br to its parent Bs , if such
parent exists; e = ∅ if Br is a free blossom. We claim

δ (C,M ) ⊕ E[C,O] ⊆ {e}. (5.10)

Take any edge xy ∈ δ (C ) − e , Bx ∈ C . y ∈ I ∪O (since C is a connected component of G − I −O).
So the claim Equation (5.10) is equivalent to xy ∈ M iff y ∈ O . This follows from two cases: If xy

is an edge of S, then y is a child of Bx . Thus, xy ∈ M iff y is outer. If xy is not an edge of S, then
it is not eligible for y. Again, xy ∈ M iff y is outer.

Now we show Equation (5.9) holds with Δ = 1 in each of three possibilities for e .
If e = ∅, then Br contains the unique free vertex of C . Using Equation (5.10), the three terms on

the left of Equation (5.9) are f (C ) − 1, 0 and |E[C,O]|.
If e is an edge, then Bs = s is atomic. If s is inner, then e ∈ M . Using Equation (5.10), the three

terms on the left of Equation (5.9) are f (C ), 1 and |E[C,O]|. If s is outer, then e � M . Using Equa-
tion (5.10) the terms are f (C ), 0 and |E[C,O]| − 1.

We conclude the upper bound (5.6) is tight. �

We have also shown that our algorithm, executed on an arbitrary input graph, halts with a partial
f -factor of maximum cardinality. In proof, the analysis of a failed search shows if the algorithm
halts because δ = ∞, the current matching has size Equation (5.6), so its cardinality is maximum.

Now we verify that our algorithm is correct, i.e., assuming an f -factor exists the algorithm finds
one of maximum weight. We have verified the algorithm’s final matching is an f -factor. It remains
to verify the LP conditions for optimality (Appendix B). (I4) gives the complementary slackness
conditions for matched and unmatched edges. We need only discuss the primal inequalities for
blossoms and the corresponding complementary slackness conditions.

The blossom inequalities state that every pair B, I (B ⊆ V , I ⊆ δ (B)) satisfies

|(γ (B) ∪ I ) ∩M | ≤
⌊
f (B) + |I |

2

⌋
. (5.11)

It is easy to see this holds for any f -factor: The degree constraints imply 2|γ (B) ∩M | + |I ∩M | ≤
f (B). Arithmetic gives 2( |γ (B) ∩M | + |I ∩M |) ≤ f (B) + |I ∩M | ≤ f (B) + |I | and integrality gives
Equation (5.11).

Complementary slackness requires tightness in Equation (5.11) for every positive z (B, I (B)). We
will show every final blossom B and its set I (B) satisfy

2( |γ (B) ∩M | + |I (B) ∩M |) = f (B) + |I (B) | − 1, (5.12)

i.e., Equation (5.11) is tight. A light blossom B has η(B) ∈ M − I (B), so counting degrees gives
f (B) = 2|γ (B) ∩M | + |I (B) ∩M | + 1. Since I (B) ∩M = I (B) arithmetic gives Equation (5.12). A
heavy blossom B has η(B) ∈ I (B) −M , so counting degrees gives f (B) = 2|γ (B) ∩M | + |I (B) ∩M |.
Since I (B) ∩M = I (B) − η(B) arithmetic gives Equation (5.12). We conclude the algorithm is
correct.

The algorithm can be initialized with any partial f -factor F , collection of blossoms B, and dual
functions y, z that satisfy the invariants and definitions:

Every blossom is mature. Every free blossom is light.
Every blossom B has C (B) a cycle.
Every blossom B has I (B) = δ (B, F ) ⊕ η(B), and z is positive only on pairs (B, I (B)).
Every edge of a blossom subgraph is tight. Every nontight edge is dominated (underrated) if
it is unmatched (matched), respectively.
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As before, the simplest choice is any partial f -factor, no blossoms, z ≡ 0, and a function y on
vertices withy (e ) ≥ w (e ) (y (e ) ≤ w (e )) for every edge e that is unmatched (matched), respectively.
This and other initializations are used in Section 5.4. As withb-matching, appropriate initialization
shows that for arbitrary input graphs, our algorithm finds a maximum cardinality maximum weight

f -factor, i.e., a partial f -factor that has the greatest number of edges possible, and subject to that
constraint, has the greatest weight possible. See Appendix B.

Efficiency Analysis

The time to find a maximum f -factor isO ( f (V ) (m + n logn)). The analysis is essentially identical
to b-matching. The biggest difference is intepretation of the parameter m. In the simplest case,
every copy of a fixed edge xy has the same weight. Then as in b-matching,m denotes the number
of nonparallel edges in the given multigraph G. If G has parallel edges with possibly different
weights, the same interpretation ofm holds if we assume the copies of xy are given together with
their multiplicities and weights, sorted by decreasing weight. This follows since a given search
refers to at most two copies of any fixed edge xy (for a blossom step), and a new edge xy is chosen
with the greatest weight possible. IfG is not given in this required form, we assume a preprocessing
step does the sort.

As in b-matching, the algorithms of Figures 13 and 15 use linear time. In the expand step, Ce is
computed using the blossom data structure of Appendix C, just like b-matching. For tree-blossom
merging, the supporting treeT has minor changes from b-matching. In the definition, an f -factor
inner blossom is traversed by a trail Pi (x , β ), i ∈ {0, 1} (i = 0 for b-matching). Analogous to b-
matching, we define P−i (x , β ) to be Pi (x , β ) with every maximal subtrail of the form P1 (β (A), β (A))
replaced by the vertex β (A). In the new Definition 3.1, an inner blossomB is represented by P−i (x , β )
inTB . (This trail may actually be the single vertex β (B), as illustrated in Figure 16(b) and (c). In the
latter, note that Pi (x , β ) does not pass through u or v .)

The supporting tree is maintained similar to b-matching. A minor difference occurs when line

2 adds a blossom A represented by β (A) to S. If this makes A outer, then, as before, the remaining
vertices of A − β (A) are added to the supporting tree. If this makes A inner, the supporting tree
does not change.Amay become outer in a subsequent expand step (when z (A) = 0) or in a blossom
step. In both cases, the vertices of A − β (A) are added as before.

The tree-blossom-merging algorithm is used to track blossom steps for both unmatched and
matched edges. No modifications are needed. To justify this observe that Equation (5.5) shows
once xy becomes eligible at both ends, every dual adjustment decreases its slack by 2δ . Thus, the
numerical key used in the blossom-tree merging algorithm is correct, i.e., it gives the value of total
dual adjustment when xy becomes tight.

This argument depends on the simple fact that once an edge becomes eligible it remains so.
This property was also used in ordinary matching and b-matching, but we give a formal proof
for f -factors here. Say that an edge uv is eligible at u if it is eligible for Bu . The new term avoids
referring to the time-varying Bu . This term and the next lemma come in handy in Appendix D.

Lemma 5.9. Once an edge e = uv becomes eligible at u it remains so, until it leaves E − S.

Proof. We claim that if e is eligible at u at some instant, it remains eligible at u as long as it

belongs to δ (Bu ) − S. Clearly this claim implies the lemma. To prove the claim, we consider three
possilities for Bu at the instant e is eligible at u.

Case Bu is an outer blossom: Bu remains an outer blossom, even as it gets enlarged in blossom

steps. Clearly e remains eligible at u until it enters Bu or becomes an S-edge.
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Case Bu is an atom: Bu can only change by becoming an outer blossom B′u . If e ∈ E − S, it is
eligible for B′u , and the previous case applies.

Case Bu is an inner blossom: e must be the edge η(Bu ). Bu can change by becoming an outer
blossom, and again the first case applies. The other possible change occurs if Bu gets expanded.

Vertex u remains in S. Let B′u be the new maximal blossom containing u, B′u ∈ S. If B′u is an outer
blossom the first case applies. If B′u is an inner blossom, e is η(B′u ). So it remains eligible and this
case continues to apply. Finally, supposeB′u is an atom. The Pi trail used to expandBu is alternating,
including an alternation at u. So, either u is outer and uv � M or u is inner and uv ∈ M . In both
cases, uv is eligible at u and the previous case applies. �

Theorem 5.10. A maximum f -factor can be found in time O ( f (V ) (m + n logn)).

5.4 Related Algorithms

Degree-Bounded Subgraphs

For two functions �,h : V → Z+, a subgraph H of G is an (�,h)-subgraph if its degree function dH

satisfies � ≤ dH ≤ h.
We convert such a subgraph into an f -factor as follows. Starting with the given graph G form

graph Gs by adding a vertex s , with edges vs of multiplicity h(v ) − �(v ), v ∈ V , and the loop ss of
multiplicity �h(V )/2�. Every new edge weighs 0. Define a degree requirement function f by

f (v ) =

{
h(v ) v ∈ V
h(V ) v = s .

The (�,h)-subgraphs H of G correspond to the f -factors F of Gs , and corresponding subgraphs
have the same weight. In proof, starting with an H , construct F by adding h(v ) − dH (v ) copies of
vs for every vertex v ∈ V , and |E (H ) | copies of ss . This gives s degree exactly (h(V ) − 2|E (H ) |) +
2|E (H ) | = h(V ) = f (s ). Obviously, everyv ∈ V has degree f (v ), andw (H ) = w (F ). Similarly, start-
ing with an F , let H = F − s . Clearly, H is an (�,h)-subgraph and w (H ) = w (F ).

Corollary 5.11. A maximum or minimum weight (�,h)-subgraph can be found in time

O (h(V ) (m + n logn)). For a minimum weight (�,h)-subgraph the bound improves to O (�(V ) (m +
n logn)) if the weight function is nonnegative or if h ≡ dG (i.e., we seek a minimum weight �-edge

cover [34, chap. 34]).

Proof. To achieve the first time bound, execute the f -factor algorithm on Gs , using the given
weight function w for maximization and −w for minimization. Since f (V + s ) = O (h(V )) and Gs

has O (m) distinct edges, Theorem 5.10 gives the desired bound.
Next, consider minimum weight (�,h)-subgraphs with nonnegative w . Use the f -factor algo-

rithm onGs with weight function −w , and initial dual functionsy ≡ 0 and z ≡ 0 with no blossoms.
These duals are feasible for −w . To define the initial matching, let δ = �(V ) mod 2. Match every
copy of every edge vs , v ∈ V , and (�(V ) − δ )/2 copies of ss . To show this matching is valid, first
note the degree of s in the matching is (h(V ) − �(V )) + (�(V ) − δ ) = h(V ) − δ ≤ f (s ). Also, every
matched edge is tight since y ≡ 0.

The number of searches of the f -factor algorithm is (�(V ) + δ )/2 = O (�(V )). The time bound
for nonnegative w follows.

Finally, suppose w is arbitrary but h ≡ dG . Let N = {e : w (e ) < 0} and let G ′ be the graph G −
N . The minimum weight (�,h)-subgraph consists of N plus a minimum weight (�′,h′)-subgraph
on G ′, where �′ ≡ max{� − dN , 0} and h′ ≡ dG′ . Since G ′ has a nonnegative weight function, the
previous case shows the time is O (�(V ) (m + n logn)). �
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Strongly Polynomial Algorithm

We use essentially the same reduction to bipartite matching asb-matching. Assume the multigraph
G is specified by a function c : V ×V → Z+ that gives the number of parallel copies of each edge.
The algorithm below rounds c up to ensure that edges do not disappear.

Define graphG ′ by setting f ′ = 2� f /2� and c ′ = 2�c/2�. Let M ′ be a maximum cardinality max-
imum weight f ′-factor on G ′ with corresponding optimal dual function y. For every edge e with
c ′(e ) > c (e ) copies of e in M ′, remove 1 copy of e from M ′. Let M be the resulting partial f -factor
on G. Using M,y (and z ≡ 0, B = ∅) as the initial solution, execute the f -factor algorithm of Sec-
tion 5.2 on G.

The analysis is similar to b-matching. Since we assume G has an f -factor, G ′ has a partial f ′-

factor with ≥ f (V )
2 − n edges. At most m matched edges are deleted to form M . So our f -factor

algorithm performs ≤ m + n augmentations. Thus the time for the entire algorithm is O (m(m +
n logn)) plus the time to find M ′,y. As before, the latter strictly dominates the time.

We find M ′,y using a graphG+ similar to b-matching: Extend graphG ′ toG+ by adding a vertex
s with degree constraint

f ′(s ) = f ′(V ),

and edges vs (v ∈ V ) and ss with multiplicities and weights given, respectively, by

c ′(vs ) = f ′(v ), c ′(ss ) = f ′(V ), w (vs ) = 0, w (ss ) =W f ′(s ) forW = max{1, |w (e ) | : e ∈ E (G )}.
Note that f ′ and c ′ remain even-valued functions. A maximum cardinality maximum weight
f ′-factor of G ′ corresponds to a maximum f ′-factor of G+. The proof is exactly the same as b-
matching.

As before, we find a maximum f ′-factor ofG+ by reducing to a bipartite graph BG. BG has ver-
tices v1,v2 (v ∈ V (G+)) and edges u1v2,v1u2 (uv ∈ E (G+)) with degree constraints, multiplicities,
and edge weights given, respectively, by

f ′(v1) = f ′(v2) = f ′(v )/2, c ′(u1v2) = c ′(v1u2) = c ′(uv )/2, w (u1v2) = w (v1u2) = w (uv ).

A loop uu of G+ gives edge u1u2 with multiplicity c ′(uu) in BG. Let x be a maximum f ′-factor on
BG with optimum dual function y. Define an f ′-factor M ′ on G+ by taking x {u1v2,u2v1} copies
of each edge uv ∈ E (G+) (by our summing convention this means x (u1u2) copies of a loop uu). x
exists and M ′ is a maximum f ′-factor on G+, by the same proof as b-matching. (In applying the
Euler tour technique to prove (b), start the Euler tour with a closed trail of 2�x (uv )/2� copies of
uv for every uv ∈ E (G+). This includes loops uu.) Define a dual function y by y (v ) = y{v1,v2}/2.
Applying complementary slackness to the definition of the dual function for bipartite f -factors
[34, chap. 21] we get that an f ′-factor x on BG and a dual function y are both optimum iff for
every edge e of BG,

x (e ) = 0 =⇒ y (e ) ≥ w (e ); x (e ) = 1 =⇒ y (e ) ≤ w (e ). (5.13)

Now consider an edge e = uv ofG+ (e may be a loop). The matching x on BG has a mirror image
x ′ defined by x ′(a1b2) = x (b1a2). Suppose some copy of e in BG is unmatched, say x (u1v2) = 0.
(5.13) implies y (u1v2) ≥ w (uv ) as well as y (v1u2) ≥ w (uv ). Thus,

y (e ) =
(
(y (u1) + y (u2)) + (y (v1) + y (v2))

)
/2 ≥ 2w (uv )/2 = w (e ).

Similarly, if some copy of e in BG is matched then y (e ) ≤ w (e ). So the functions y, 0 are optimum
duals for an f ′-factor on (the non-bipartite graph) G+.

The matching M defined from M ′ is clearly valid on G (i.e., nonexistent matched edges are
deleted). y is also optimum onG (an unmatched edge ofG is present inG+ since c ′ rounds up). We
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conclude that restricting M and y to G, along with z ≡ 0, B = ∅, gives permissible initial values
for our f -factor algorithm. In conclusion the main algorithm is correct.

The problem on BG is a capacitated transportation problem, where x is an optimum integral
solution and y is an optimum dual function [34, chap. 21]. We solve it using Orlin’s algorithm
[29]. It reduces the capacitated transportation problem to the uncapacitated case. The reduction
modifies the graph, but it is easy to see that the optimum dual function y on the modified graph
gives an optimum dual on the given graph. (Alternatively, an optimum dual function can be found
from x itself using a shortest path computation, in time O (nm) [2].)

Orlin solves the capacitated transportation problem (more generally, capacitated transhipment)
in time O ((m logn) (m + n logn)) [29]. It gives both x and y. Using this, we obtain our strongly
polynomial bound:

Theorem 5.12. A maximum f -factor can be found in time O (min{ f (V ),m logn}(m + n logn)).

T-joins

Recall that for any set of verticesT of even cardinality, aT -join is a subgraph ofG that hasT as its
set of odd-degree vertices. For any edge-cost function, c , it is of interest to find a minimum cost
T -join. We proceed as follows.

Let N be the set of edges of negative cost. Define t = |T | + 2|N |. LetG ′ be the graphG enlarged
by adding t/2 loops at every vertex, where each loop has cost 0. Define a degree-constraint function

f (v ) =

{
t − 1 v ∈ T ,
t v � T .

A minimum cost f -factor is a minimum cost T -join augmented by enough loops to satisfy the
degree constraints exactly. In proof, let J be a minimumT -join and F a minimum f -factor. c (F ) ≥
c (J ) since F with all loops deleted gives a T -join of the same cost.

For the the opposite inequality, note that wlog J consists of |T |/2 paths, each joining two vertices
ofT , and ≤ |N | cycles (since we can assume every cycle contains a negative edge). Thus, any vertex
has degree d (v, J ) ≤ |T | + 2|N | = t , with strict inequality if v is a terminal. Furthermore, d (v, J )
and f (v ) have the same parity. Hence we can add loops at each vertex to make J an f -factor. We
conclude c (J ) ≥ c (F ).

For our algorithm, define edge weights to be the negatives of edge costs. So we seek a maximum
weight f -factor ofG ′. Initialize the algorithm with a matching M consisting of every N -edge, and
enough loops at each vertex to make f (v ) ≥ d (v,M ) ≥ f (v ) − 1. Furthermore,y ≡ 0 and there are
no blossoms. (This initialization is valid since every loop is tight and for edges ofG, every matched
edge is underrated and every other edge is dominated.) Then execute the f -factor algorithm.

The f -factor algorithm performs ≤ n/2 searches. A search uses time O (m + n logn) – although
the graph has many loops, only two loops at each vertex are processed in any given search. Also
note these special cases: When there are no negative edges, there are |T |/2 searches. When there
are no terminals, there are ≤ |N | searches.

Theorem 5.13. A minimum costT -join can be found in timeO (n(m + n logn)). If costs are nonneg-

ative the time isO ( |T |(m + n logn)). If there are no terminals the time isO (min{|N |,n}(m + n logn)).

Shortest Paths

Consider the shortest-path problem on a connected undirected graph G with a conservative cost
function c , i.e., negative edge costs are allowed but any cycle has nonnegative cost. We are in-
terested in the single-source shortest-paths problem, i.e., given a source vertex s , we wish to find
a shortest path from each vertex v to s . We will show the blossom tree provides a generalized
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Fig. 17. Shortest-path algorithm. (a) The given graph G with edge costs and distances from s . (b) The gsp-

structure. (c)Gr when δ = ∞: Edge weights and final dual values. (d) Matching of all loops, with its blossoms

Bi . (e) Arbitrary matching with its blossoms Bi . Each Bi has base edge ηi . Every edge is tight. In (e), the Ii
edges are not in a blossom subgraph.

shortest-paths tree, in four steps. Section 5.4.1 gives a “base algorithm.” It preprocesses the graph
to quickly return the shortest path for a given vertex. The base algorithm works for simple edge
cost functions. (In fact, it works for a slight perturbation of any conservative cost function.) Sec-
tion 5.4.2 shows the base algorithm gives a succinct representation of all shortest-paths from a
given source s . Also, for readers familiar with the generalized shortest-paths tree (the “gsp struc-
ture”) introduced by Gabow and Sankowski [19], it verifies that our representation is precisely
that structure. Section 5.4.3 extends the base algorithm to work for arbitrary conservative costs.
Section 5.4.4 shows the time bound for the entire algorithm is O (n(m + n logn)), the best-known
time bound to find a shortest sv-path for two given vertices s,v . A more precise bound based on
the number of negative edges is also given.

Figure 17 illustrates the discussion. Part (a) gives a conservative graph, with distances labelling
each vertex. Part (b) is the gsp-representation. (The arrow from a vertex v gives the first edge
of its shortest path, and the path continues in that direction. Further details are in Section 5.4.2.)
Our algorithm constructs the gsp-representation using an f -factor on the graph of part (c). Notice
how the optimum f -factor of part (d) resembles the gsp-representation. Less so for the optimum
f -factor of part (e). Part (d) illustrates the base algorithm, part (e) is the general case.

5.4.1 The Base Algorithm. We will use the f -factor algorithm to find a search structure S that
handles shortest-path queries. Specifically for any vertexv , a shortestvs-path P will be composed

of Pi trails in S. The query algorithm finds P in time proportional to its length. The base algorithm
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accomplishes this when every cycle of the given graph has positive cost. (A more general criterion
is given in what follows.)

The following base algorithm consists of a preprocessing step that constructs S and a query
algorithm that returns a shortest vs-path for a given v .

Preprocessing. Define edge weights as the negatives of edge costs. Let G ′ be the graph G with
a loop of weight 0 added at every vertex and the degree-constraint function f (v ) = 2 for every
v ∈ V . Execute the f -factor algorithm to find a maximum f -factor M and corresponding duals.

Let Gr be the graph G ′ enlarged by a new vertex r with degree-constraint f (r ) = 1 and new
weight 0 edge rs (Figure 17(c)). Perform a search of the f -factor algorithm: Initialize the search
with matching M , its duals, and y (r ) = −y (s ). Halt when δ = ∞. M remains the matching but the

duals and blossoms may change. Let S be the final search structure and y the final dual function.

Query algorithm. Given a vertex v , return a shortest vs-path, as follows. Return the quantity

y (v ) − y (s ) as the shortest distance from v to s . Let P be the path in S from Bv to Bs . Let P consist
of P plus for each blossom B in P , the trail P1 (x , β (B)) where

x =

{
v B = Bv

η(A) ∩V (B) A the blossom preceding B in P .

Return the trail P− consisting of P with its loop edges deleted.

Analysis. We prove the base algorithm is correct for arbitrary conservative costs, assuming the
matching M returned by our algorithm consists of all the loops. (This assumption includes the fact
that M has been found by our f -factor algorithm, so its corresponding blossom structure is also
available.) The assumption holds if every cycle ofG has positive cost. But it needn’t hold in general
(e.g., Figure 17(e)).

Proposition 5.14. S contains every vertex ofGr . Every node of S is outer. r is an atom and every

other node is a blossom. Every blossom, maximal or not, is heavy.

Proof. There are no inner blossoms since δ3 = ∞. There are no inner atoms x since the matched
loop xx would make δ2 < ∞. S contains every vertex since Gr is connected, and an edge from an

outer node to a non-S node would make δ1 < ∞.
r is an atom since it has degree one. There are no other outer atoms since M consists of loops.

No blossom B, maximal or not, is light, since a light blossom has η(B) matched and not a loop. �

To analyze the query algorithm fix a query vertex v . Consider the definition of P−. For each x ,
P1 (x , β (B)) is an alternating trail that starts and ends with a matched edge (since B is heavy). So

the edges are alternately matched loops and edges of E. P− is a path, i.e., no repeated vertices. This
follows since a repeated vertex in a P1 (x , β (B)) trail comes from a subtrail P1 (β (B′), β (B′)). This

subtrail is the loop (β (B′), β (B′)), which gets discarded from P .

To show P− is a shortest path define the graph Gv to be Gr enlarged with a vertex v ′ that has
f (v ′) = 1 and a weight 0 edgevv ′. Set y (v ′) = −y (v ).Gv satisfies all the invariants of the f -factor
algorithm, so we can imagine a hypothetical search of that algorithm. The hypothetical search
executes just one step, a blossom step for edge vv ′, which augments the matching. This follows
since vv ′ is tight and eligible for the outer nodes Bv ,Bv ′ .

The augmenting trail is P ∪ {rs,vv ′}. The augmented matching weighs w (P−), since all loops
weigh 0 as do the edges rs andvv ′. The construction ofGv shows a maximum f -factor has weight
equal to −d (v ), the negative of the distance from v to s . (Recall G is conservative, so Gv has no

positive cycles.) Thus w (P−) = −d (v ), i.e., P− is a shortest vs path.
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As a last step, we verify that the query algorithm returns the correct shortest-path distanced (v ).
The key is the next proposition. It actually holds for arbitrary augmenting trails in the f -factor
algorithm, generalizing a property of Edmonds’ algorithm. For notational simplicity, we only prove
the special case needed for our algorithm.

Proposition 5.15. The augmentation of the hypothetical algorithm changes the weight of the

matching by y (r ) + y (v ′).

Proof. Every edge of the augmenting trail A is tight by (I4). Thus, the weight of the matching
changes by ŷz (A −M ) − ŷz (A ∩M ). The y terms make a net contribution of y (r ) + y (v ′), since
A alternates at every interior vertex. So, the lemma follows if we show the z terms make no net
contribution. To prove this, consider any blossom B, maximal or not. Let AZ be the set of all edges
with a z (B) contribution, i.e., AZ = A ∩ (γ (B) ∪ I (B)). We claim AZ is an alternating trail of even
length. Clearly this implies the z (B) terms make a net contribution of 0 as desired.

To prove the claim, first observe that I (B) = {η(B)}. This follows since B is heavy and M consists
of loops. If B is maximal, using the notation of the algorithm gives AZ = P1 (x , β (B)) ∪ η(B). This
is an even-length alternating trail as desired. If B is not maximal, recalling the definition of Pi trails
shows that exactly the same characterization applies. �

Since all loops weigh 0 the augment changes the weight of the f -factor by w (P−). So the op-
timum f -factor weighs y (r ) + y (v ′). Thus, d (v ) = −y (v ′) − y (r ) = y (v ) − y (r ). This is the query
algorithm’s formula, assumingy (r ) = y (s ). To prove that, observe that inGs the augmenting trailA
weighs y (r ) + y (s ′). A = (s ′, s, s, r ), so it weighs 0 − 0 + 0 = 0. Thus 0 = y (r ) + y (s ′) = y (r ) − y (s )
as desired.

We note some further properties of our shortest paths, that will be required for the next section.
Every loop vv is a blossom. In proof, let B be the smallest blossom containing v . If v � β (B), then
v is atomic in B. C (B) alternates at v so vv is an edge of C (B). But this contradicts invariant (I3).
So,v = β (B), and B heavy implies B is the loop blossomvv . We have also deduced thatvv is tight.

Finally, note that P− is easily specified by using edges η(A) to leave blossoms A. By definition,

each edge of S is traversed by leaving a blossom A along η(A). To traverse the portion of P− in
a blossom B, starting at a subblossom A we leave A on η(A) and continue along edges of C (B)
to reach α (B); each subblossom B′ along this route is traversed recursively. As an example, in
Figure 17(d) the shortest path from the B1 vertex starts with edge η1 = η(B1) and continues around
the cycle to s . This involves traversing some η edges backwards, e.g., η4, but this does not violate
our description.

5.4.2 The Generalized Shortest-Paths Tree. As mentioned the, final search structure S is a suc-
cinct representation of all shortest paths from a fixed source s . This section sketches how S cor-
responds to the gsp-structure.

Our representation amounts to search structureS of the basic algorithm with r and the matched
loops removed. For the simplest example, observe that when every edge cost is positive the edges
η({vv}),v ∈ V − s form a shortest-paths tree. In proof, first note that no edge uv is both η({uu})
and η({vv}). (Such an edge must have nonnegative weight, since it satisfies y (u) −w (uv ) ≤ y (v )
and y (v ) −w (uv ) ≤ y (u).) This implies any blossom B contains a unique edge xy that is neither
η({xx }) norη({yy}) (sinceC (B) has |C (B) | edges that are |C (B) | − 1η-values). No shortest path uses
xy. (The shortest path for x leaves every subblossomA ∈ C (B) along η(A), as shown previously. So
η(A) points away from xy.) Thus discarding xy from every blossom (which discards loop blossoms
too!) gives a shortest-paths tree.
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In general, our representation consists of two parts: The overall structure is S, a tree whose
nodes are contracted blossoms that collectively contain all the vertices of G. The rest of the struc-
ture is the set of blossoms, represented as a collection of cycles, corresponding to Definitions 4.2
and 5.1 of blossom and the blossom tree T (B). The base edges of these heavy blossoms serve as
pointers to follow shortest paths, in the sense described at the end of last section. Again this is
illustrated in Figure 17(d), where there is just one nonsingleton blossom, and the η edges of the
heavy loop blossoms define the shortest paths.

The gsp-structure of Gabow and Sankowski [19] also consists of an overall tree whose nodes
are trees of nested cycles. Our η pointers are called τ (N ) edges for blossoms N in Reference [19];
the base vertex of N is called tN . This correspondence in Figure 17 between parts (b) and (d) is
clear.

In addition, the gsp-structure has numeric labels that prove its validity. (They guarantee that
the paths given by the structure, i.e., the paths of the query algorithm, are, in fact, shortest paths.
They also guarantee that the graph is conservative.) To describe the labels in our terminology, first
recall that every edge ofG is dominated, and is tight if in S. Also, every loop is tight. Furthermore,
d (v ) = y (v ) − y (s ). This gives

d (u) + d (v ) + c (uv ) = y (u) + y (v ) − 2y (s ) −w (uv ) ≥ −z{B : uv ∈ γ (B) ∪ η(B)} − 2y (s ),

with equality on S. Define z ′ : 2V → R by z ′(B) = −z (B), z ′(V ) = −2y (s ) to get

d (u) + d (v ) + c (uv ) ≥ z ′{B : uv ∈ γ (B) ∪ η(B)},
with equality for every edge of the representation (and equality for all loops). This is the exact
relation satisfied by the labels of the gsp-structure, wherein d labels each vertex, z ′ labels each
node as well as V , and it is required that z ′(B) ≤ 0 for every B � V . These labels are shown in
Figure 17(b); clearly they correspond to our algorithm’s numeric labels shown in Figure 17(c).

5.4.3 Arbitrary Conservative Costs. We extend the representation to arbitrary conservative
costs by perturbing the costs to eliminate zero-weight cycles. We do this twice. First, we wish to
show our representation exists for arbitrary real-valued conservative costs. This is accomplished
by a symbolic execution of the base algorithm. Details are in Appendix E. The second goal is an
efficient algorithm for integral costs. The details, that preserve both efficiency and integrality, are
as follows.

The given cost function c is conservative and integral-valued. We will execute the base algorithm
using an integral blow-up of c , specifically the cost function

c ′ = 4nc + 1.

c ′ has no 0-cost cycles. For any v , a shortest sv-path w.r.t. c ′ is a shortest sv-path w.r.t. c , that,
in addition, has the smallest length possible. We execute the base algorithm using c ′. Clearly this
algorithm can answer shortest path queries for c . However, we wish to find the complete gsp-
representation, which uses the optimum dual functionsy, z for its numerical labels. (As previously
mentioned, they allow correctness of the representation to be verified, in linear time.) So we need
another step, to transform the duals given by the algorithm for c ′ to those for c . The transformed
duals must maintain the algorithm’s blossom structure.

We use the following terminology. For any duals y, z, and corresponding blossom structure,
define the function Z on blossoms B by

Z (B) = z{A : A ⊇ B, A a blossom}.
Z uniquely defines the dual function z via the relations z (B) = Z (B) − Z (p (B)) for p (B) the parent
of B in the blossom tree, with the convention Z (p (B)) = 0 for every maximal blossom B.
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Call any edge e a witness for blossom B if e ∈ C (B) and e � I (A) for any blossom A ⊂ B. Since
any edge e ∈ C (B) is tight, i.e.,w (e ) = ŷz (e ) = y (e ) + z{A : e ∈ γ (A) ∪ I (A)}, a witness has the key
property Z (B) = w (e ) − y (e ).

In general, a blossom B may not have a witness.11 But a blossom at the end of our algorithm
does have a witness. In proof, first note this is clear if C (B) is a loop. So assume C (B) contains
r nodes, r > 1. Every node A is a heavy blossom (Proposition 5.14) and has I (A) = {η(A)} (since
the matching consists of loops). Node α (B) does not have its base edge in C (B). So the r nodes
collectively have at most r − 1 base edges in C (B). C (B) has r edges that are not loops. So at least
one of these edges, say e , is not the base of either of its ends. Thus e � I (A) for any blossom A. e is
the claimed witness for B.

Let y ′, z ′ be the algorithm’s duals for c ′. Let y, z denote the desired transformed duals for c . To
construct y, z first do an extra dual adjustment step to make y ′(s ) a multiple of 4n. (In other words
use δ = y ′(s ) − 4n�y ′(s )/4n� in a dual adjustment step. Note every vertex is outer for this dual
adjustment. For convenience let y ′, z ′,Z ′ now denote these adjusted duals.) The base algorithm
provides the shortest c ′-path for v , call it Pv . Define the transformed duals by

y (v ) = −w (Pv ) + y ′(s )/4n for every vertex v ∈ V
Z (B) = w (e ) − y (e ) for every blossom B and e a witness for B.

The transformed z is the dual function corresponding to Z . (Note the transformed duals are easily
constructed in linear time. In particular w (Pv ) = −c (Pv ) where c (Pv ) = 4n�c ′(Pv )/4n�.)

Lemma 5.16. The above functions y, z are valid optimum duals. Specifically, they satisfy invari-

ant (I4) for the unmodified weight function w = −c and the f -factor M and blossoms found by the

algorithm.

Proof. Let w ′ denote the modified weight function used in the algorithm, i.e.,

w ′(e ) = 4nw (e ) − μ (e ), where μ (e ) =

{
1 e an edge of G
0 e a loop.

(Recall w (e ) = 0 for e a loop.) Let �(Pv ) be the length of the sv-path Pv . Recalling the query algo-
rithm, y ′(v ) = −w ′(Pv ) + y ′(s ) = −4nw (Pv ) + �(Pv ) + y ′(s ). Thus,

y ′(v ) = 4ny (v ) + �(Pv ).

Consider any blossom B (even a loop) and any witness e = uv ∈ C (B). So,

Z ′(B) = w ′(e ) − y ′(e ) = (4nw (e ) − μ (e )) − 4ny (e ) − �(Pu ) − �(Pv )

= 4nZ (B) − r (B),
(5.14)

where

0 ≤ r (B) ≤ 1 + 2(n − 1) = 2n − 1.

There may be several choices for e, but Equation (5.14) shows Z (B) is uniquely defined, since the
interval [Z ′(B),Z ′(B) + 2n − 1] contains a unique multiple of 4n.

Observe that z (B) is nonnegative:

4nz (B) = 4n(Z (B) − Z (p (B))) = Z ′(B) + r (B) − Z ′(p (B)) − r (p (B))

= z ′(B) + r (B) − r (p (B)) ≥ −(2n − 1).

11For instance, if C (B ) consists of matched edges, α (B ) contributes two I edges. The remaining |C (B ) | − 2 edges may be

I values of the remaining |C (B ) | − 1 light blossoms.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 39. Publication date: June 2018.



Data Structures for Weighted Matching and Extensions to b-matching and f-factors 39:63

The last inequality follows since z ′(B) ≥ 0 and r (p (B)) ≤ 2n − 1 (even if B is maximal). Clearly,
4nz (B) ≥ −(2n − 1) implies z (B) ≥ 0.

Finally, we show (I4) for any edge e = uv (including loops). Let σ ′ = w ′(e ) − ŷ ′z ′(e ) and σ =
4n(w (e ) − ŷz (e )). We claim

|σ ′ − σ | ≤ 4n − 2.

The claim gives the desired conclusion (I4). In proof, consider two cases. If e is tight w.r.t. y ′, z ′,
then σ ′ = 0. Since σ is a multiple of 4n the claim shows it must be 0, so e is tight w.r.t. y, z. If e is
not tight, then |σ ′ | ≥ 1. The claim shows σ cannot have opposite sign from σ ′. Thus, either e is
dominated w.r.t. both pairs of duals or underrated w.r.t. both.

To prove the claim, let Au be the minimal blossom containing u and similarly for Av . Consider
two cases.

Case e is not the base edge of both Au and Av : This case implies there is a blossom B such
that {A : e ∈ γ (A) ∪ I (A)} = {A : A ⊇ B, A a blossom}. In proof, if e is a loop, then clearly we can
take B as Au = Av . If e is a nonloop witness for a blossom B, then B is the desired blossom. If
e = η(Au ) � η(Av ), then B = Au .

Using blossom B we have

σ ′ = w ′(e ) − y ′(e ) − Z ′(B) = 4n(w (e ) − y (e ) − Z (B)) − μ (e ) − �(Pu ) − �(Pv ) + r (B) = σ ± r ,

where 0 ≤ r ≤ 2n − 1. The claim follows since 2n − 1 ≤ 4n − 2.

Case e = η(Au ) = η(Av ): Let B be the minimal blossom containing both u and v . Thus,
e = η(A) for every blossom A with u ∈ A ⊂ B or v ∈ A ⊂ B. Clearly, {A : e ∈ γ (A) ∪ I (A)} = {A :
A a blossom containing Au or Av }. Thus,

σ ′ = w ′(e ) − y ′(e ) − Z ′(Au ) − Z ′(Av ) + Z ′(B)

= 4n(w (e ) − y (e ) − Z (Au ) − Z (Av ) + Z (B)) − 1 − �(Pu ) − �(Pv ) + r (Au ) + r (Av ) − r (B)

= σ ± r ,

where 0 ≤ r ≤ 4n − 2. The claim follows. �

In summary, the algorithm for general costs executes the base algorithm using c ′ and then trans-
forms the duals. The result is a blossom structure for the matching consisting of all loops. This can
be used in the query algorithm of Section 5.4.1 or the representation of Section 5.4.2.

5.4.4 The Time Bound. Regarding efficiency our analysis applies to both the simple base algo-
rithm and the general version. Since f (V ) = 2n, the complete execution of the f -factor algorithm
(on G ′ and Gr ) runs in time O (n(m + n logn)). This dominates the total time to construct the gsp
structure. As with the query algorithm, a shortest path for any vertex v can be computed in time
proportional to its length, using the data structure of Appendix C.

For a more precise estimate, the set N of negative edges for a conservative cost function is
acyclic. Thus |N | < n. Let W be the largest magnitude of a given edge cost. Initialize the dual
functions by z ≡ 0 with no blossoms and

y (v ) =

{
W d (v,N ) > 0
0 d (v,N ) = 0.

Match every loopvv wherey (v ) = 0. Now the f -factor algorithm performsO ( |N |) searches, using
time O ( |N |(m + n logn)) assuming N � ∅. This again dominates the time.
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Theorem 5.17. The generalized shortest-paths structure representing all shortest paths from s is the

f -factor algorithm search structureS. It can be constructed in timeO (n(m + n logn)). More generally,

if N � ∅ is the set of negative cost edges the time is O ( |N |(m + n logn)).

The first time bound is given in Gabow and Sankowski [19]. The second bound shows how the
time increases with more negative edges. For example, in a graph with O (1) negative edges the
algorithm is as fast as Dijkstra’s algorithm, which does not allow negative edges.

A similar dependence on negative edges holds for conservative directed graphs: The single-
source shortest-paths problem can be solved in time O (nN (m + n logn)), for nN the number of
vertices incident to a negative edge. In contrast, the Bellman-Ford algorithm runs in time O (nm)
with no dependence on N . To achieve this time bound, we model the digraph G as an undirected
bipartite graph: The vertex set is {v1,v2 : v ∈ V (G ) − s} + s2; the edge set is {v1v2 : v ∈ V (G ) − s} ∪
{u2v1 : uv ∈ E (G )}, with c (v1v2) = 0, c (u2v1) = c (uv ), f (v ) = 1 for every vertex. The initialization
sets y (vi ), i = 1, 2 toW (the largest magnitude of a given cost) ifv is on a negative edge else 0. The
initial matching consists of the edges v1v2 where v is not on a negative edge. A representation of
shortest paths from s is constructed similar to the gsp structure; it is exactly the shortest-paths
tree.

APPENDIXES

A DUAL ADJUSTMENT STEP FOR EDMONDS’ ALGORITHM

To state the dual adjustment step we first review the linear program for perfect matching. Its vari-
ables are given by the function x : E → R+, which indicates whether or not an edge is matched. The
following linear program for maximum matching uses our summing convention, e.g., x (δ (v )) =∑

e ∈δ (v ) x (e ):

maximize
∑

e ∈E w (e )x (e )
subject to x (δ (v )) = 1 for every v ∈ V

x (γ (B)) ≤ � |B |2 � for every B ⊆ V
x (e ) ≥ 0 for every e ∈ E.

The dual LP uses functions y : V → R, z : 2V → R+. Define ŷz : E → R by

ŷz (e ) = y (e ) + z{B : e ⊆ B}. (A.1)

(Note for e = vw , y (e ) denotes y (v ) + y (w ) and z{B : e ⊆ B} denotes
∑

e⊆B z (B).)

minimize y (V ) +∑
B⊆V � |B |2 � z (B)

subject to ŷz (e ) ≥ w (e ) for every e ∈ E
z (B) ≥ 0 for every B ⊆ V .

e is tight when equality holds in its constraint, ŷz (e ) = w (e ). The algorithm maintains the comple-
mentary slackness conditions:
x (e ) > 0 =⇒ e is tight.

z (B) > 0 =⇒ x (γ (B)) = � |B |2 �.
In addition, every edge in a blossom subgraph is tight (so blossoms can be rematched). It is easy

to see the dual adjustment step of Figure 18 maintains these conditions.
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Fig. 18. Dual adjustment step in Edmonds’ algorithm.

B DETAILS FOR b-MATCHING AND f -FACTOR ALGORITHMS

The primal and dual LPs for b-matching are simple generalizations of ordinary matching:

maximize
∑

e ∈E w (e )x (e )
subject to x (δ (v )) + 2x (γ (v )) = b (v ) for every v ∈ V

x (γ (B)) ≤ � b (B )
2 � for every B ⊆ V

x (e ) ≥ 0 for every e ∈ E,

minimize
∑

v ∈V b (v )y (v ) +∑
B⊆V � b (B )

2 � z (B)

subject to ŷz (e ) ≥ w (e ) for every e ∈ E
z (B) ≥ 0 for every B ⊆ V .

Similarly, the complementary slackness conditions are essentially unchanged:
x (e ) > 0 =⇒ e is tight.

z (B) > 0 =⇒ x (γ (B)) = � |b (B ) |
2 �.

To refine the complementary slackness condition for z (B), in the primal LP add the constraint
for every vertex v ∈ B to get

2x (γ (B)) ≤ x {δ (v ) : v ∈ B} + 2x {γ (v ) : v ∈ B} = b (B).

If b (B) is even, this gives x (γ (B)) ≤ b (B)/2 = � |b (B ) |
2 �. In other words, the primal constraint for

blossom B is redundant. Dropping it means there is no z variable for blossom B. So we can assume
b (B) is odd in the complementary slackness condition for z. Thus, complementary slackness can
be rewritten as
z (B) > 0 =⇒ 2x (γ (B)) = b (B) − 1,

i.e., Equation (4.2) holds.
The dual adjustment step of Figure 19 is similar to ordinary matching, extended to the more

general definition of eligiblity (e.g., a loop can trigger a blossom step).

Like ordinary matching, the numerical quantities in our algorithm are always half-integers.
More precisely assume all given weights w (e ) are integral. Assume either every initial y-value is
integral or every initial y-value is integral plus 1/2; furthermore, every initial z-value is integral.
This assumption holds for common initializations, e.g., y ≡ maxe ∈E w (e )/2 and z ≡ 0. It also holds
for the initialization in our strongly polynomial algorithm, Section 4.4. (Note the y-values for BG,
i.e., the transportation problem, are integral-valued. So, Equation (4.4) gives half-integraly-values.
Doubling the given weight function and these y-values preserves optimality by Equation (4.5). It
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Fig. 19. Dual adjustment step for b-matching.

allows using the above initialization.) We will show that throughout the algorithm

(∀v ∈V ) (y (v ) ∈ Z/2) and (∀B⊆V ) (z (B) ∈ Z). (B.1)

To prove Equation (B.1), assume it holds before a dual adjustment. Examining the changes of Fig-
ure 19 shows it suffices to prove δ is a half-integer. Clearly δ1 and δ3 are half-integers. We will show
any edge joining two vertices of S has integral y-value. This makes δ2 half-integral and completes
the proof.

Any tight edge has ŷz (e ) = w (e ). So Equation (B.1) (specifically, the integrality of z) implies
y (e ) ∈ Z. Any vertex v in S is joined to a free vertex x by a path P of tight edges. Thus y (v ) +
2y{u : u ∈ P −v − x } + y (x ) ∈ Z, i.e.,y (v ) + y (x ) ∈ Z. Taking any other vertexv ′ ofS with similar
relationy (v ′) + y (x ′) ∈ Z givesy (v ) + y (v ′) + y (x ) + y (x ′) ∈ Z. A free vertex is always outer, so its
y-value always decreases by δ . So, the initialization implies y (x ) + y (x ′) ∈ Z. Thus, y (v ) + y (v ′) ∈
Z as desired.

The magnitude of numbers computed by the algorithm can be bounded as follows. LetW be the
largest magnitude of an edge weight. There is no harm in assuming every initial y and z value has
magnitude ≤W . Let Δ be the total of all dual adjustment quantities δ over the entire algorithm.
We claim Δ ≤Wb (V ). Clearly, this implies every y and z has magnitude ≤ (2b (V ) + 1)W .

To prove the claim, consider any point in the algorithm. The current matching M weighs

w (M ) =
∑
e ∈M

ŷz (e ) =
∑
v ∈V

d (v,M )y (v ) +
∑
B∈B

⌊
b (B)

2

⌋
z (B). (B.2)

In proof, (I4) shows every matched edge is tight. (I5) shows every blossom B with positive z is

mature, so b (B) is odd and |γ (V (B),M ) | = b (B )−1
2 = � b (B )

2 �.
Let b ′(v ) be the remaining degree requirement at v , i.e., b ′(v ) = b (v ) − d (v,M ). Equation (B.2)

shows the current value of the dual objective function is∑
v ∈V

b ′(v )y (v ) +w (M ). (B.3)

Thus, each dual adjustment decreases the dual objective value by b ′(V )δ ≥ 2δ . No other step of the
algorithm changes the dual objective (as seen from the LP’s formulation of the objective function).
Thus, over the entire algorithm, the dual objective decreases by ≥ 2Δ.

The initial dual objective is ≤ b (V )W . (This clearly holds in the common case that initially z ≡ 0.
More generally, Equation (B.3) shows the initially matched edges contribute |M |W to the dual
objective and the missing edges contribute

∑
v ∈V b ′(v )y (v ) ≤W (b (V ) − 2|M |).) The final objective

is the weight of a maximum b-matching, which is ≥ −Wb (V )/2 ≥ −Wb (V ). So, we always have
2Δ ≤ 2b (V )W , as claimed.
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As with ordinary matching, other versions of weighted b-matching have LPs that are minor
modifications of the current ones. Correspondingly, minor modifications of our algorithm find
such matchings. We illustrate with maximum cardinality maximum weight b-matching (defined in
Section 4.3). It is convenient to treat the more general problem of finding ab-matching of maximum
weight subject to the constraint that it contains exactly k edges.

The primal LP relaxes the vertex-degree constraint to

x (δ (v )) + 2x (γ (v )) ≤ b (v ) for every v ∈ V ,
and adds the cardinality constraint

x (E) = k .

The dual problem has a variable c for the cardinality constraint, the left-hand side of the dual edge
constraint changes from ŷz (e ) to ŷz (e ) + c , and the nonnegativity constraint y (v ) ≥ 0 is added.
The additional complementary slackness constraint is

y (v ) > 0 =⇒ x (δ (v )) + 2x (γ (v )) = b (v ) for every v ∈ V .
To find such ab-matching, we initialize our algorithm using a common value for everyy (v ) (e.g.,

half the maximum edge weight). The algorithm halts after the search that increases the matching
size to k . For maximum cardinality maximum weight b-matching, this is the first time a search
fails. To get an optimal LP solution, let Y be the common final value for y (v ), v free, or 0 if no
such vertex exists. (Figure 19 implies that throughout the algorithm all free vertices have the same
y-value, and this value is the minimum y-value.) Decrease all y values by Y and set c = 2Y . This
solves the new LP. (In the dual edge constraint the new y-values decrease ŷz (e ) by 2Y , which is
balanced by the new LP term c = 2Y .) We conclude that our algorithm is correct. It also proves the
LP formulation is correct.

The LPs for f -factors incorporate limits on the number of copies of an edge as well as I (B) sets
of blossoms. For the former it is convenient to treat each copy of an edge separately, i.e., it has its
own variable x (e ).

maximize
∑

e ∈E w (e )x (e )
subject to x (δ (v )) + 2x (γ (v )) = f (v ) for every v ∈ V

x (γ (B) ∪ I ) ≤ � f (B )+ |I |
2 � for every B ⊆ V , I ⊆ δ (B)

x (e ) ≤ 1 for every e ∈ E,
x (e ) ≥ 0 for every e ∈ E.

The dual LP uses functions y : V → R, z : 2V × 2E → R+. Define ŷz : E → R by

ŷz (e ) = y (e ) + z{(B, I ) : e ∈ γ (B) ∪ I }.

minimize
∑

v ∈V f (v )y (v ) + u (E)+∑
B⊆V , I ⊆δ (B ) �

f (B )+ |I |
2 � z (B, I )

subject to ŷz (e ) + u (e ) ≥ w (e ) for every e ∈ E
u (e ) ≥ 0 for every e ∈ E
z (B, I ) ≥ 0 for every B ⊆ V , I ⊆ δ (B).

In our algorithm, every nonzero z value has the form z (B, I (B)) for B a mature blossom. So we
use the notation z (B) as a shorthand for z (B, I (B)).

Say that e is dominated, tight, or underrated depending on whether ŷz (e ) is ≥ w (e ), = w (e ), or
≤ w (e ), respectively; strictly dominated and strictly underrated refer to > w (e ) and < w (e ), respec-
tively. The complementary slackness conditions for optimality can be written with u eliminated
as
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x (e ) > 0 =⇒ e is underrated,
x (e ) < 1 =⇒ e is dominated,

z (B) > 0 =⇒ x (γ (B) ∪ I (B)) = � f (B )+ |I (B ) |
2 �.

(The first implication restates complementary slackness for x (e ), i.e., x (e ) > 0 gives equality in
the first dual constraint. The second implication restates complementary slackness for u (e ), i.e.,
u (e ) > 0 gives equality in the third primal constraint.)

The numbers computed by the algorithm are analyzed similar to b-matching. To wit, the same
argument shows the algorithm always works with half-integers. The same bound holds for the
magnitude of numbers. The proof is the same with two additional remarks to account for the new
function u (E):

(i) Similar to Equation (B.3), the dual objective function can be rewritten as
∑

v ∈V f ′(v )y (v ) +
w (M ) for f ′(v ) = f (v ) − d (v,M ). In proof, recall the optimumu function is defined by settingu (e )
equal to the slack in e , w (e ) − ŷz (e ), for every edge e ∈ M . So, Equation (B.2) has the analog

w (M ) =
∑
e ∈M

ŷz (e ) + u (e ) =
∑
v ∈V

d (v,M )y (v ) +
∑
B∈B

⌊
f (B) + |I (B) |

2

⌋
z (B) + u (E).

This formula also uses the fact that the algorithm maintains complementary slackness for blossoms
with positive z value, as verified after Equation (5.11). Substituting this expression into the LP’s
dual objective gives the desired result.

(ii) As in b-matching, examining the LP’s dual objective shows no other step changes its
value. To verify this for an augment step note that it does not change y or z, or any set I (B)
(Lemma 5.3). Furthermore, the augment only changes the matching on tight edges, sou (E) does not
change.

Similar to b-matching, our algorithm extends to variants of the maximum f -factor problem. We
again illustrate with maximum cardinality maximum weight partial f -factors. The LP is modified
exactly as in b-matching. Our modified algorithm and the definition of new LP variables is exactly
the same. The only difference in the analysis is that the new complementary slackness conditions
for edges are
x (e ) > 0 =⇒ ŷz (e ) + c ≤ w (e ),
x (e ) < 1 =⇒ ŷz (e ) + c ≥ w (e ).

As before, the quantity ŷz (e ) + c equals the algorithm’s value of ŷz (e ), so these conditions are
equivalent to the original ones.

C COMPUTING P-PATHS

This section presents a data structure for blossoms that supports efficient computation of the P-
paths for ordinary matching and the Pi -trails for b-matching and f -factors. Specifically, the time
to compute P or Pi is proportional to its length. We begin with ordinary matching.

Blossoms form a laminar family with a natural tree representation, as follows. Every maximal
blossom B∗ has a corresponding treeT (B∗). The root corresponds to B∗ and the leaves correspond
to V (B∗). The children of any interior node B are the subblossoms Bi of B. T (B∗) is an ordered
tree, with order given by the cycles defining blossoms. (Recalling Definition 2.1, the Bi are the
contracted vertices on the paths P (Xi ,Y ). The edges of B are the edges of those paths plus X0X1.
The corresponding cycle traverses the reverse path P (Y ,X0) followed by edge X0X1 and P (X1,Y ).)
T (B∗) has sizeO ( |V (B∗) |). In proof, the leaves of the tree form the setV (B∗). Each interior node

is a blossom with three or more subblossoms. So, there are < |V (B∗) |/2 interior nodes.
The data structure based on this tree has the following components. Each root node records the

base vertex β (B∗). The children of any node B form a doubly linked ring. We call this the sibling
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Fig. 20. Recursive routine to compute P-paths.

ring. Each link records the edge xy ofG (x ,y ∈ V (G )) that joins the two siblings. In turn, every such
edge xy points to the nodes of the two siblings that it joins. Also, every vertex v ∈ V (G ) points to
its incident matched edge, if such exists. Finally, the edges of the current matching M are marked
as such.

We note some simple properties of the data structure. In O (1) time, the algorithm can go from
v to the two siblings joined by contracting v’s matched edge. An interior node B � B∗ with a link
corresponding to edge xy ∈ M , x ∈ V (B) has base vertex x . If neither link from B is matched, then
the base vertex of B is that of its first ancestor having such an incident matched edge, or β (B∗) if
this ancestor does not exist.

The applications of the data structure are based mainly on the P (v, β ) paths. We now discuss
Figure 20, which shows how to compute these paths. Some applications only require the set of
edges in P (v, β ), while others need the edges in path order (details of these applications will be
given later). Figure 20 constructs P (v, β ) as a list of edges L, not necessarily in path order. In
Figure 20, L is a global list. Each recursive invocation of R adds its relevant edges to L.

Note how R navigates the blossom tree T (B∗): The first recursive call R(x ,w ) may descend an
arbitrary number of levels in T (B∗). The same holds for the second call, if y � β (B). If y = β (B),
the second call may move up an arbitrary number of levels.

The time for one invocation of R is clearly O (1). So, if correct, R finds P (v, β ) in the desired
time boundO ( |P (v, β ) |). We prove correctness by induction on the path length |P (v, β ) |. The base
case v = β is clearly correct. When v � β, the first edge of P (v, β ) is vw . Let B denote the blossom
containing siblings Sv and Sw . If w is an atom in B, i.e., Sw = {w }, the first recursive call adds no
edges. If Sw is a contracted blossom, the first recursive call is correct by induction. In both cases,
the remainder of P (v, β ) consists of edge xy followed by P (y, β ). (The matched edge vw shows
x � β .) P (y, β ) is found by the second recursive call, by induction. This completes the correctness
proof.

This routine is used in several ways in our implementation of Edmonds’ algorithm:

(i) The augment step executes R to find the entire augmenting path. It updates the
matched/unmatched status of each edge of L.

(ii) When a grow step adds an inner blossom, say B, R is executed. A bucket sort puts L into
path order. P (x , β ) is added to the supporting forest as described after Definition 3.1.

(iii) Also, in this grow step, the edges of L are marked in their sibling rings. These marks are
used in subsequent expand steps for B and its descendants, as follows.
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Fig. 21. Recursive routine to compute Pi -paths.

Suppose an expand step is done for B. First, consider the processing of S described in Figure 2.

The sibling ring for B’s children is traversed. The path of subblossoms Bi that replace B in S
corresponds to marked links. Subblossoms not among the Bi are no longer in S. Finally, the node
for B is discarded so B’s children become tree roots.

This procedure can be followed in later expand steps for Bi blossoms that get expanded, and also
for their descendants in T (Bi ) that get expanded. This works because all corresponding sibling
rings have been appropriately marked for P (x , β ).

Now consider the processing of the supporting tree in an expand step. As described after Defini-
tion 3.1, the new outer blossoms Bi , i odd, must be identified. This again is done using the marked
links. Additionally, the T (B) leaves descending from such Bi are the new outer vertices that get
merged into the supporting tree.

b-matching and f -factors. The data structure is similar to ordinary matching. The biggest differ-
ence is that each vertex v ∈ V (G ) has an additional pointer, to an unmatched edge. We call these

pointers the M-pointer and the M-pointer. To define them letA be the minimal blossom containing
v . If v � β (A) its pointers correspond to the two edges of δ (v,C (A)). If v = β (A), one pointer is
the first edge of C (A). (The last edge would do just as well.) The other is the edge η(A) of Defini-
tion 5.1, i.e., the edge of δ (v ) ∩ δ (V (A)) of opposite M-type from A. Note these pointers are easily
maintained in an augment step (wherein v may change back and forth between base vertex and
nonbase).

Other changes to the data structure are minor. A minimal blossom may be a loop vv . Its child
is the leaf vertex v . So our bound on the number of interior nodes increases to 3|V (B∗) |/2. But
the size of T (B∗) remains O ( |V (B∗) |). In the sibling ring, the node α (B) occurs only once, not
twice.

We use the letter μ to refer to an M-type M or M . μ ′ refers to the opposite type. An example is
that for any edge e , μ (e ) denotes the M-type of e , and μ ′(e ) is the opposite M-type.

Figure 21 gives the recursive routine to compute Pi trails. Consider the parameter μv of Ri.
When an invocation of Ri arrives at v by traversing an edge e ending at v , it issues a call with
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μv set to μ (e ). In other cases the parameter μv is set to the M-type that mimics this arrival. For
example, in the initial call to Ri, if Pi begins with a type μ edge then μv is set to μ ′. It is for this
reason that the value i is not used in our algorithm.

The test in Figure 21 to decide if w = β (Sw ) is implemented in O (1) time by checking if vw is
the μ (vw )-pointer of w .

The proof of correctness is similar to R. Observe that the special casew = x is handled correctly
in line 1: If μ (vw ) = μ (xy) then P1 (w,w ) is correctly added to L, since line 1 can be rewritten as
Ri(μ (vw ),w, μ ′(vw ),w ). If μ (vw ) � μ (xy), then Pi goes directly from vw to xy. This again corre-
sponds to line 1, which can now be rewritten as Ri(μ ′(vw ),w, μ ′(vw ),w ). Finally, note that this
discussion includes the case of a loop blossom vv .

The Ri routine is used the same way as R, with just simple modifications. In an augment step,
for edge xy the augmenting trail is traversed using two calls to Ri, both having first argument
μv = μ (xy). The same first argument is used in a grow step for edge xy. In constructing the
supporting tree, we eliminate maximal subtrails P1 (β (A), β (A)) (recall the paragraphs preceding
Theorem 4.14). This is easily done with a bucket sort.

D GROW/EXPAND STEPS

This section presents a simple data structure to handle grow and expand steps. To illustrate the
difficulty first consider ordinary matching. At any point in a search, for any vertex v ∈ V define
slack (v ) as the smallest slack in an unmatched edge from an outer node tov . Ifv � S then slack (v )
may decrease because of new outer nodes. Also, once slack (v ) < ∞, dual adjustments automati-
cally decrease slack (v ). When slack (v ) becomes zero a grow step can be performed to make Bv

inner. But if Bv is a blossom, it may become inner before slack (v ) becomes zero. This blossom may
later get expanded. This may cause v to leave S. If not some smaller blossom containing v may
get expanded causing v to leave S. Continuing in this fashion v may oscillate in and out of S, be-
coming eligible and ineligible for grow steps. This makes tracking potential grow steps nontrivial.
Note there is no such complication for grow steps using a matched edge to add a new outer node,
since matched edges are always tight and outer nodes never leave S.

The same overview applies to b-matching. f -factors are more general, since matched edges
needn’t be tight. We first present the algorithm that applies to ordinary matching and b-matching.
Then we extend the algorithm to f -factors.

Data Structures. We represent the laminar structure of blossoms using the treesT (B∗) of the last
section, as follows. At the start of a search, the current blossoms (from previous searches) form a
tree B. The root of B corresponds to V . The children of the root are the maximal blossoms and
the atoms not in a blossom. Each maximal blossom B∗ has T (B∗) from last section as its subtree.
In addition, each blossom B ∈ B records its base edge η(B).

Recall (Section 3.1) the rank of a B-node B is r (B) = � log |V (B) |�. A B-child of B is small if it
has rank < r (B), else big. Clearly, B has at most one big child. So, the rank r (B) descendants of B
form a path P that starts at B. Each node on P except B is the big child of its parent.12 The data
structure marks each node as big or small.

Furthermore, a small child of any node on the path P is called a small component of B. If B is a
blossom, then

V (B) = ∪{V (A) : A a small component of B}.

(This fails if B is a leaf of B. Such a B has no children or components.)

12P is a slight variant of the “heavy path” of References [24, 35].
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As before, G = (V ,E) denotes the current contracted graph in the algorithm. V consists of cur-
rently maximal blossoms, and atoms not belonging to a current blossom. As usual Bv denotes the

V -vertex currently containing v . The main task for the data structure is tracking slack (v ) values,
and this requires tracking Bv . The values node (v ), to be defined, will identify Bv in O (1) time.

node (v ) values are also used in blossom and augment steps to compute paths in S.
Recall these definitions from the data structure for numerical quantities (given in the last sub-

section of Section 4.3): Δ is the sum of all dual adjustment quantities δ in the current search. Any
outer vertex v has a quantity Y (v ) such that the current value of y (v ) is Y (v ) − Δ. A global Fi-
bonacci heap F has entries for candidate grow, blossom, and expand steps. An entry’s key is the
value of Δ when the corresponding step can be executed.

To compute current y and z values for nonouter vertices, we use an auxiliary quantity DEL(B).
It tracks z-values of expanded blossoms, that have been converted into y-values. To define this
quantity, let y0 and z0 denote the dual functions at the start of the current search. The algorithm
records the quantity

Y (v ) = y0 (v )

for every v ∈ V . Every node B of B is labeled with the quantity

DEL(B) =
1

2
z0{A : A a proper ancestor of B in B}. (D.1)

Observe that when B is a V -vertex, DEL(B) is the total of all dual adjustments made while B was
properly contained in an inner blossom. At any point in time current y values are given by

y (v ) =

{
Y (v ) + DEL(Bv ) Bv not in S
Y (v ) + DEL(Bv ) + Δ − Δ0 (Bv ) Bv an inner node,

(D.2)

where Δ0 (B) denotes the value of Δ whenV -vertex B became an inner node. We will computey (v )
in O (1) time when it is needed. To do this, we must identify Bv in O (1) time. This is done using
the pointer node (v ) to be described.

We track the best candidate edges for grow steps from outer nodes using a system of Fibonacci

heaps. At any point in the algorithm every nonouter V -blossom B has a Fibonacci heap FB . The

nodes of FB are the small components of B. Thus if B is not a node of S, the smallest slack of an
unmatched edge for a grow step to B is the smallest value slack (v ),v ∈ V (A),A a blossom or atom
with a node in FB .

The data structure must also handle nonouter V -atoms B. For uniformity we assume atoms are
handled like blossoms—they have a Fibonacci heap of one node, the atom itself. We will not dwell

on this case; the reader can make the obvious adjustments for nonouter V -atoms.
Returning to the general case, the data structure does not explicitly store values slack (v ) since

they change with every dual adjustment. Instead it stores offsetted versions of related quantities
as follows.

Whenever Bv is not in S, the slack in an unmatched edge uv with Bu outer is

y (u) + y (v ) −w (uv ) = (Y (u) − Δ) + (Y (v ) + DEL(Bv )) −w (uv ).

(This does not depend on prior history, i.e., when u first became outer or v’s movements in and
out of S.) So, the data structure stores the quantity

SLACK (v ) = min{Y (u) + Y (v ) −w (uv ) : Bu outer,uv ∈ E −M },
for every vertex v where Bv is not outer. The expression for a given edge uv never changes in
value even as Bu changes. The data structure also records the minimizing edge uv . SLACK (v ) and
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its minimizing edge are updated as new outer nodes are created. At any point in time when v is
not in S, the current value of slack (v ) is

slack (v ) = SLACK (v ) − Δ + DEL(Bv ). (D.3)

The key of a node A in FB is

key (A, FB ) = min{SLACK (v ) : v ∈ V (A)}. (D.4)

At any point in time when B is not in S, the current smallest slack of an unmatched grow
step edge to B is f ind_min(FB ) − Δ + DEL(B). Thus, a grow step for B can be done when

Δ = f ind_min(FB ) + DEL(B). So, every V -vertex B that is not a node of S has an entry in the
global heap F , with key maintained as f ind_min(FB ) + DEL(B).

For every vertexv ∈ V , node (v ) is the unique ancestor ofv that is currently a node of some heap
FB .node (v ) is used in Equation (D.4) to maintain keys in FB (i.e.,node (v ) givesA in Equation (D.4)).
node (v ) is also used in Equation (D.2) to determine the current blossom Bv . Specifically, node (v )
is in the heap FBv

.

Algorithms. When a new outer node B is created, every unmatched edge uv , u ∈ B is examined.
SLACK (v ) is decreased if appropriate. This may trigger a decrease_key for node (v ) in FBv

. This

may in turn trigger a decrease_key for Bv in F , if Bv is currently not in S.

When a grow step adds a blossom B to S, the node for B in F is deleted. Whether B becomes
inner or outer, it never gets reinserted in F in this search. If B becomes inner the value Δ0 (B) is
recorded. If B becomes outer, the values y (v ),v ∈ V (B) are required to redefine Y (v ) (recall from
Section 4.3). This is done using the first alternative of Equation (D.2). If B becomes inner and later
becomes outer in a blossom step, Y (v ) is redefined using the second alternative of Equation (D.2).

Consider an expand step for an inner blossom B. The B-children of B (i.e., the nodes of C (B))

become V -vertices, and we must update the data structure for them. Let B′ be the big B-child of
B, if it exists. For every B-child A � B′ of B, delete the node A of FB . Initialize a new F-heap FA as
follows (modifying appropriately if A is atomic):

For each small component D of A, create a node in FA. For every v ∈ V (D) update
node (v ) to D. Assign key (D,FA) ← min{SLACK (v ) : v ∈ V (D)}.

Let the new heap FB′ be the (updated) heap FB . Insert the B-children of B that are no longer nodes

of S as entries in F . For the B-children that are inner nodes of S record their Δ0 value. Process

B-children that are outer nodes of S as above.

The main observation for correctness of the expand procedure is that FB′ is the desired heap for
B′. This follows since the small components of B′ are those of B minus the small children of B.

It is easy to see the total time used in the course of an entire search is O (m + n logn). When a
small child A becomes maximal it is charged O ( logn) to account for its deletion from FB . For D a
small component of A, each vertex v ∈ V (A) is charged O (1) for resetting node (v ) and examining
SLACK (v ). (The new node (v ) values are found by traversing the subtree of A in the blossom tree
B. The traversal uses time proportional to the number of leaves, i.e.,O (1) time for each vertexv .)v
moves to a new small component D O ( logn) times, so this charge totalsO (n logn) for all vertices.
Finally, and most importantly, decrease_key uses O (1) amortized time in a Fibonnaci tree.

f -factors. Two new aspects of f -factors are that matched edges needn’t be tight and edges can
be in I -sets. We will use some simple facts about I -sets.
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Lemma D.1. Consider blossoms A,B with V (A) ⊆ V (B), and edge e ∈ δ (A) ∩ δ (B).
(i) e = η(A) ⇐⇒ e = η(B).

(ii) e ∈ I (A) ⇐⇒ e ∈ I (B).

Proof. (i) Consider three cases for A.

Case A � α (B): This makes η(A) ∈ γ (B). So, e ∈ δ (B) implies e � η(A). Also, e ∈ δ (A) implies
e � η(B).

Case A = α (B): This makes η(A) = η(B). Hence e = η(A) iff e = η(B).

Case A ⊂ α (B): Edge e of the hypothesis is in δ (A) ∩ δ (α (B)). By induction e = η(A) ⇐⇒ e =
η(α (B)). Since η(α (B)) = η(B) this implies (i).

(ii) By (i) there are two possibilities:

Case e � η(A),η(B): e ∈ I (A) ⇐⇒ e ∈ M ⇐⇒ e ∈ I (B).

Case e = η(A) = η(B): e ∈ I (A) ⇐⇒ e � M ⇐⇒ e ∈ I (B). �

Now, observe an edge e = uv ∈ I (Bv ) has

z0{A : V (A) ⊆ V (Bv ), e ∈ I (A)} = z0{A : v ∈ V (A) ⊆ V (Bv )} = 2(DEL(v ) − DEL(Bv )). (D.5)

The second equation is trivial and the first follows immediately part (ii) of the lemma.
The analog of the previous definition of slack is

slack (v ) = min{|ŷz (uv ) −w (uv ) | : uv ∈ E eligible at u}. (D.6)

(Recall Lemma 5.9 and its terminology.) As in Lemma 5.8, define a sign σ as −1 if uv ∈ M else +1,
so any edge uv has |ŷz (uv ) −w (uv ) | = σ (ŷz (uv ) −w (uv )).

The highest level outline of the data structure is as before: We track slack by maintaining the
invariant Equation (D.3), where the stored quantity SLACK (v ) will be defined below. We define
keys in FB and F exactly as before, e.g., Equation (D.4). The invariant implies that for any blossom

B not in S, the current smallest slack of a grow step edge to B is f ind_min(FB ) − Δ + DEL(B). So,
the data structure gives the correct value for the next dual adjustment.

Our definition of SLACK (v ) involves two quantities IU (uv ) and IV (uv ) that account for the
contributions of I -edges to the slack of uv , IU at the u end and IV at the v end. We will define IU
and IV to be fixed, stored quantities so the following two relations hold. At any time when v � S
and Bv is the V -vertex currently containing v ,

y (v ) + z{A : v ∈ V (A), uv ∈ I (A)} = Y (v ) + IV (uv ) + σDEL(Bv ). (D.7)

At any time after uv becomes eligible at u,

y (u) + z{A : u ∈ V (A), uv ∈ I (A)} = Y (u) + IU (uv ) − σΔ. (D.8)

IU and IV are computed at the instant uv becomes eligible at u. Thereafter they are not changed.
The only terms on the right-hand side of Equations (D.7)–(D.8) that change with time are DEL(Bv )
and Δ.

Define

SLACK (v ) = min{σ (Y (u) + Y (v ) + IU (uv ) + IV (uv ) −w (uv )) : uv ∈ E eligible at u}.
Let us show the above relations imply the desired invariant Equation (D.3) for SLACK . Adding the
two equations and multiplying by σ implies that at any point in time whenuv is eligible andv � S ,

|ŷz (uv ) −w (uv ) | = σ (Y (u) + IU (uv ) + Y (v ) + IV (uv ) −w (uv )) − Δ + DEL(Bv ).

Applying this for every edge uv in the definition of SLACK gives Equation (D.3) as desired.
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It remains to specify IV and IU . The contribution at the nonouter end v is defined by

IV (uv ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 uv � M ∪ η(Bv )
2DEL(v ) uv ∈ M − η(Bv )
2DEL(Bv ) uv = η(Bv ) ∈ M
2(DEL(v ) − DEL(Bv )) uv = η(Bv ) � M .

We will discuss this definition using the following terminology. Recall that the algorithm com-

putes IV (uv ) when uv becomes eligible at u. IV (uv ) is defined using theV -vertex Bv at that time.
However, we must verify Equation (D.7) whenever v � S, so Bv may change. To distinguish the
two possibilities say the defining Bv is used to compute IV (uv ), and a useful Bv is one that may
be required later on in Equation (D.7) to establish the invariant Equation (D.3). The defining Bv is
useful iff v � S when uv becomes eligible at u. Clearly, a useful Bv is a subset of the defining Bv .

To prove the definition is correct, we will analyze the four cases separately. We will show that
if the defining Bv belongs to that case, so does every useful Bv . Then we will show Equation (D.7)
is satisfied for every useful Bv . To do this we will compute the value of the left-hand side of
Equation (D.7) and deduce the correct value of IV (uv ) by comparing to the right-hand side.

We start with two relations that hold for every case. Just as before, whenever v � S the current
value of y (v ) is

Y (v ) + DEL(Bv ),

since every dual adjustment increases y (v ) by δ . Also, Equation (D.5) shows that when uv ∈ I (Bv )
the z contribution to the left-hand side of Equation (D.7) is

z0{A : v ∈ V (A) ⊆ V (Bv )} = 2(DEL(v ) − DEL(Bv )).

Case uv � M ∪ η(Bv ): We are assuming this case holds for the defining Bv . But any useful Bv ,
say B, also has uv unmatched and uv � η(B) (by Lemma D.1(i)). So this case holds for every useful
B.

Now we establish Equation (D.7) for any useful Bv . The contribution to the left-hand side of
Equation (D.7) is y (v ) = Y (v ) + σDEL(Bv ). This follows since σ = 1 (because uv � M) and this
case implies uv � I (Bv ) (so there is no z contribution). Comparing to the right-hand side of Equa-
tion (D.7) shows IV (uv ) = 0 as claimed.

Case uv ∈ M − η(Bv ): Again we are assuming this holds for the defining Bv . Just as before, this
case holds for every useful Bv .

Consider any useful Bv . If Bv is a blossom, thenuv ∈ I (Bv ). So the z contribution is 2(DEL(v ) −
DEL(Bv )). This also holds if Bv is atomic since the z contribution is zero. Since uv ∈ M , σ = −1.
Adding the y and z contributions to the left-hand side of Equation (D.7) gives total contribution

(Y (v ) + DEL(Bv )) + 2(DEL(v ) − DEL(Bv )) = Y (v ) + 2DEL(v ) + σDEL(Bv ).

Thus, IV (uv ) = 2DEL(v ), again independent of Bv .

The last two cases have uv = η(Bv ) for the defining Bv . If v ∈ S when IV (uv ) is defined, then
wlog Bv is inner. Since v = β (Bv ), v will remain in S for the rest of the search. So uv is irrelevant
to the data structure. If v � S then Bv is itself the first useful Bv . The first time this Bv becomes

a node of S, if it becomes inner the preceding argument shows there are no other useful Bv ’s.
The same holds if Bv becomes outer. In summary, we have shown that in the last two cases, every
useful Bv belongs to the same case.

Case uv = η(Bv ) ∈ M : Since uv � I (Bv ) there is no z contribution (by Lemma D.1(ii)). So,
the total contribution is y (v ) = Y (v ) + DEL(Bv ) = Y (v ) + 2DEL(Bv ) + σDEL(Bv ). Thus IV (uv ) =
2DEL(Bv ).
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Fig. 22. Precursor to structure of Figure 12.

Caseuv = η(Bv ) � M : This makesuv ∈ I (Bv ) so there is a z contribution. The total contribution
is

(Y (v ) + DEL(Bv )) + 2(DEL(v ) − DEL(Bv )) = Y (v ) + 2(DEL(v ) − DEL(Bv )) + σDEL(Bv ).

Thus, IV (uv ) = 2(DEL(v ) − DEL(Bv )).

Remark. It might seem that the cases for uv = η(Bv ) are subject to a simplification because
this edge is often tight. Specifically, if Bv was not a maximal blossom at the beginning of the
current search then η(Bv ) is tight when the search starts. η(Bv ) will still be tight when Bv becomes
maximal. But this needn’t be the case when η(Bv ) becomes eligible at u. For instance, suppose a
search starts out with the structure of Figure 22. Then the inner blossom B5 gets expanded to give
part of Figure 12, where α2 = η4 = η(B4). As mentioned (Section 5.2, Examples, Strictly Underrated
Edges) a dual adjustment makes α2 strictly underrated. A subsequent expansion of B3 may make
α2 eligible, but still strictly underrated.

Turning to the contribution at the S end u, define

IU (uv ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

DEL(Bu ) − Δ0 (Bu ) Bu inner,uv ∈ M
2DEL(u) − DEL(Bu ) + Δ0 (Bu ) Bu inner,uv = η(Bu ) � M
0 Bu outer,uv � M
−2Δ0 (Bu ) Bu outer,uv ∈ M,Au atomic
2(DEL(u) − DEL(Au ) − 2Δ0 (Bu ) + Δ0 (Au )) Bu outer,uv ∈ M,Au a blossom.

Au is defined below.
To verify correctness, let Δ0 be the value of Δ when uv first becomes eligible at u. (Δ0 = Δ0 (Bu )

in the preceding definition.) We will show Equation (D.8) holds at that instant. Thereafter, uv
remains eligible (Lemma 5.9) so Equation (5.5) shows the left-hand side of Equation (D.8) changes
by −σδ in every dual adjustment. This matches the change in the right-hand side. Thus, Equation
(D.8) continues to hold in every dual adjustment.

Case Bu inner,uv ∈ M : This makes uv � I (Bu ). (There are two cases: If Bu is a blossom, then
uv = η(Bu ) since uv is eligible, and η(Bu ) � I (Bu ). If Bu is atomic, then I (Bu ) = ∅.) Thus, the con-
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tribution is

y (u) = Y (u) + DEL(Bu ) = Y (u) + DEL(Bu ) − Δ0 (Bu ) − σΔ0.

Thus, IU (uv ) = DEL(Bu ) − Δ0 (Bu ).

Case Bu inner,uv = η(Bu ) � M : This makes Bu a blossom and uv ∈ I (Bu ). The contribution for
y (u) is the same as the previous case. The contribution for z is 2(DEL(u) − DEL(Bu )). The total con-
tribution is (Y (u) + DEL(Bu )) + 2(DEL(u) − DEL(Bu )) = Y (u) + 2DEL(u) − DEL(Bu ) + Δ0 (Bu ) −
σΔ0. Thus, IU (uv ) = 2DEL(u) − DEL(Bu ) + Δ0 (Bu ).

We are left with the possibility that uv first becomes eligible at u when Bu becomes an outer

node. If Bu is a blossom, then uv � η(Bu ), since an outer blossom has η(Bu ) = τ (Bu ) ∈ S.
Recall that when Bu is formed we redefine Y (u) to be the current value of y (u) plus Δ0 (Bu ).

Hence at any time after that

y (u) = Y (u) − Δ.

Also, since we are interested in Equation (D.8) when Bu is formed, z (Bu ) = 0 on the left-hand side.

Case Bu outer,uv � M : There is no z contribution in Equation (D.8). (This is by definition if
Bu is atomic. If Bu is a blossom we have noted uv � η(Bu ).) So the total contribution is y (u) =
Y (u) − Δ0 (Bu ) = Y (u) − σΔ0. Thus IU (uv ) = 0.

Case Bu outer,uv ∈ M : Bu is an outer blossom. It is not atomic since uv is matched and eligible

for Bu . We define Au as the V -vertex containing u right before Bu is formed. There are several
possibilities for Bu and Au :

Bu is formed in a grow step: Au = Bu . (Au changes from non-S to an outer blossom.)
Bu is formed in a blossom step: Au is an outer atom or an inner blossom. (Au is not an inner

atom since such vertices already have uv eligible at u and are treated in the first case.)
Bu is formed in an expand step:Au = Bu . (Au becomes a maximal outer blossom in the expand.)

To start the analysis, first suppose Au is an outer atom (from a blossom step). An atom has
no z contribution. So the left-hand side of Equation (D.8) is (Y (u) − Δ0 (Bu )) − Δ0 (Bu ) − σΔ0, and
IU (uv ) = −2Δ0 (Bu ).

The remaining possibilities all have Au a blossom. So uv ∈ I (Au ). The z contribution in Equa-
tion (D.8) is

z0{A : u ∈ V (A) ⊆ V (Au )} = 2(DEL(u) − DEL(Au )).

If Au becomes outer in a blossom step, Au is inner until it is absorbed into Bu . In that time interval
the z contribution decreases by

2(Δ0 (Bu ) − Δ0 (Au )).

This expression is also valid in the other possibilities – Au = Bu so the expression vanishes and
Au immediately becomes outer.

Combining the expressions shows the left-hand side of Equation (D.8) is

(Y (u) − Δ0 (Bu )) + 2(DEL(u) − DEL(Au ) − (Δ0 (Bu ) − Δ0 (Au )))

= Y (u) + 2(DEL(u) − DEL(Au ) − 2Δ0 (Bu ) + Δ0 (Au )) − σΔ0.

Thus, IU (uv ) = 2(DEL(u) − DEL(Au ) − 2Δ0 (Bu ) + Δ0 (Au )). This concludes the analysis of IU .
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The only changes to the algorithm are obvious ones for examining edges: Matched edges must
be examined and added to the data structure. IU and IV quantities must be computed. It is easy to
see the latter uses O (1) time per edge. So the timing estimate is not affected.

E SHORTEST-PATHS REPRESENTATION FOR REAL-VALUED COSTS

This appendix proves the shortest-paths representation of Section 5.4.2 exists for arbitrary real-
valued conservative edge-cost functions. Specifically, we show how to execute the f -factor
searches of the base algorithm on a perturbation of the given cost function, so the final match-
ing consists of all the loops, and the blossom structure and dual functions are valid for the given
unperturbed costs. The analysis of the base algorithm in Sections 5.4.1–5.4.2 shows this suffices to
construct the gsp-representation.

Conceptually increase each edge cost c (e ) by the same unknown positive quantity ϵ . The f -
factor algorithm will compute all numeric quantities as expressions of the form r + sϵ , where r
and s are known real-valued quantities and ϵ is a symbol. This is easily done since numeric values
are only manipulated using simple arithmetic operations in the dual adjustment step. Call the
resulting f -factor search the symbolic algorithm.

In contrast, call a version of the f -factor search that uses actual numeric values a numeric al-

gorithm. We will maintain a value ϵ0 > 0 and call every value ϵ ∈ [0, ϵ0) relevant. Every relevant
value has a corresponding numeric algorithm, wherein each numeric quantity r + sϵ has its actual
numeric value. We will maintain the invariant that every relevant numeric execution performs the
same sequence of grow, blossom, expand, and dual adjustment steps as the symbolic algorithm.
Let us describe how this is done.

The symbolic algorithm compares quantities using lexicographic order ≺, i.e., r + sϵ ≺ r ′ + s ′ϵ
iff r < r ′ or r = r and s < s ′. For any quantity r + sϵ define

ρ =

{
(r ′ − r )/(s − s ′) r < r ′ and s > s ′

∞ otherwise.

We use this simple fact:

Proposition E.1. r + sϵ ≺ r ′ + s ′ϵ implies that any ϵ ∈ (0, ρ) has r + sϵ < r ′ + s ′ϵ , and weak

inequality holds when ϵ = 0.

Proof. Weak inequality for ϵ = 0 follows from the assumed relation r ≤ r ′. For ϵ > 0 examine
the possibilities r = r ′ and s < s ′, r < r ′ and s ≤ s ′, and r < r ′ and s > s ′. �

Consider the dual adjustment step. Each slack value, e.g., |ŷz (e ) −w (e ) |/2 in the set defining δ2,
has the symbolic form r + sϵ . The symbolic algorithm compares slack values to find the minimum.
Each comparison with resulting outcome r + sϵ ≺ r ′ + s ′ϵ adjusts the value of ϵ0 to min{ϵ0, ρ}. The
result is that the smallest slack identified by the symbolic algorithm, say δ = r + sϵ , can be chosen
as the smallest slack by every relevant numeric algorithm, by the preceding proposition. So all
relevant numeric executions set δ = r + sϵ . All algorithms, symbolic and relevant, then proceed in
the same way: Eligible edges have their slacks decrease by r + sϵ . Then the same grow, blossom,
and expand steps are executed. (We assume any ties are broken the same way by all algorithms.)

Applying this reasoning to every dual adjustment step, we see that all relevant executions con-
struct the same final f -factor. It consists of all the loops, since ϵ > 0 implies no cycle of given edges
has cost 0. Thus, the execution for ϵ = 0 halts with the matching consisting of all loops, as desired.

ACKNOWLEDGMENTS

The author thanks Bob Tarjan for some fruitful early conversations, as well as Jim Driscoll. Also,
thanks to an anonymous referee for a careful reading and many suggestions.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 39. Publication date: June 2018.



Data Structures for Weighted Matching and Extensions to b-matching and f-factors 39:79

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. 1974. The Design and Analysis of Computer Algorithms. Addison-Wesley,

Reading, MA.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall,

Saddle River, NJ.

[3] R. P. Anstee. 1987. A polynomial algorithm for b-matchings: An alternative approach. Inform. Process. Lett. 24 (1987),

153–157.

[4] M. O. Ball and U. Derigs. 1983. An analysis of alternative strategies for implementing matching algorithms. Networks

13, 4 (1983), 517–549.

[5] R. Cole and R. Hariharan. 2005. Dynamic LCA queries on trees. SIAM J. Comput. 34, 4 (2005), 894–923.

[6] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. 1998. Combinatorial Optimization. Wiley and

Sons, New York.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2001. Introduction to Algorithms (2nd ed.). McGraw–Hill, New

York.

[8] W. H. Cunningham and A. B. Marsh. 1978. A primal algorithm for optimum matching. Math. Programming Study 8

(1978), 50–72.

[9] J. Edmonds. 1965. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. Standards 69B (1965),

125–130.

[10] M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms.

J. ACM 34, 3 (1987), 596–615.

[11] H. N. Gabow. 1973. Implementations of Algorithms for Maximum Matching on Nonbipartite Graphs. Ph.D. Dissertation.

Comp. Sci. Dept., Stanford Univ., Stanford, CA.

[12] H. N. Gabow. 1976. An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. J. ACM

23, 2 (1976), 221–234.

[13] H. N. Gabow. 1983. An efficient reduction technique for degree-constrained subgraph and bidirected network flow

problems. In Proceedings of the 15th Annual ACM Symposium on Theory of Computation. ACM Press, New York, NY,

448–456.

[14] H. N. Gabow. 1985. A scaling algorithm for weighted matching on general graphs. In Proceedings of the 26th Annual

Symposium on Foundations of Computer Science. IEEE Computer Society, 90–100.

[15] H. N. Gabow. 1990. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings

of the 1st Annual ACM-SIAM Symp. on Disc. Algorithms. SIAM, Philadelphia, PA, 434–443.

[16] H. N. Gabow. 2017. A data structure for nearest common ancestors with linking. ACM Trans. Algorithms 13, 4 (2017),

28 pages. Article 45.

[17] H. N. Gabow, Z. Galil, and T. H. Spencer. 1989. Efficient implementation of graph algorithms using contraction. J.

ACM 36, 3 (1989), 540–572.

[18] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan. 1986. Efficient algorithms for finding minimum spanning trees

in undirected and directed graphs. Combinatorica 6, 2 (1986), 109–122.

[19] H. N. Gabow and P. Sankowski. 2013. Algebraic algorithms for b-matching, shortest undirected paths, and f -factors.

In Proceedings of the 54th Annual Symposium on Foundations of Computer Science. IEEE Computer Society, Long

Beach, CA, 137–146. Revised version, 2016: Algorithms for weighted matching generalizations I: Bipartite graphs, b-

matching, and unweighted f -factors; Algorithms for weighted matching generalizations II: f -factors and the special

case of shortest paths.

[20] H. N. Gabow and R. E. Tarjan. 1985. A linear–time algorithm for a special case of disjoint set union. J. Comp. and

System Sci. 30, 2 (1985), 209–221.

[21] H. N. Gabow and R. E. Tarjan. 1991. Faster scaling algorithms for general graph matching problems. J. ACM 38, 4

(1991), 815–853.

[22] Z. Galil, S. Micali, and H. N. Gabow. 1986. An O (EV log V ) algorithm for finding a maximal weighted matching in

general graphs. SIAM J. Comput. 15, 1 (1986), 120–130.

[23] A. M. H. Gerards. 1995. Matching. In Network Models, M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser

(Eds.). Elsevier, Amsterdam, 135–224.

[24] D. Harel and R. E. Tarjan. 1984. Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13, 2 (1984),

338–355.

[25] H. W. Kuhn. 1955. The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2 (1955), 83–97.

[26] H. W. Kuhn. 1956. Variants of the Hungarian method for assignment problems. Naval Res. Logist. Quart. 3 (1956),

253–258.

[27] E. L. Lawler. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York.

[28] L. Lovász and M. D. Plummer. 1986. Matching Theory. North-Holland, New York.

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 39. Publication date: June 2018.



39:80 H. N. Gabow

[29] J. B. Orlin. 1993. A faster strongly polynomial minimum cost flow algorithm. Op. Res. 41 (1993), 338–350.

[30] C. H. Papadimitriou and K. Steiglitz. 1982. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall,

Inc., Englewood Cliffs, NJ.

[31] S. Pettie. 2005. Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. In Proceedings of the

16th International Symposium on Algorithms and Computation (LNCS 3827), X. Deng and D. Du (Eds.). Springer-Verlag,

Berlin, 964–973.

[32] W. R. Pulleyblank. 1973. Faces of Matching Polyhedra. Ph.D. Dissertation. Department of Combinatorics and Opti-

mization, Univ. of Waterloo.

[33] W. R. Pulleyblank. 2012. Edmonds, matching and the birth of polyhedral combinatorics. Documenta Mathematica

(2012), 181–197.

[34] A. Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer, New York.

[35] R. E. Tarjan. 1979. Applications of path compression on balanced trees. J. ACM 26, 4 (1979), 690–715.

[36] R. E. Tarjan. 1983. Data Structures and Network Algorithms. SIAM, Philadelphia, PA.

[37] M. Thorup. 1999. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 46, 3

(1999), 362–394.

[38] G. M. Weber. 1981. Sensitivity analysis of optimal matchings. Networks 11 (1981), 41–56.

Received August 2016; accepted January 2018

ACM Transactions on Algorithms, Vol. 14, No. 3, Article 39. Publication date: June 2018.


