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a b s t r a c t 

We investigate the approximability of the m parallel two-stage flow-shop (mP2FS) problem, where a set 

of jobs is scheduled on the multiple identical two-stage flow-shops to minimize the makespan , i.e., the 

finishing time of the last job. Each job needs to be processed non-preemptively on one flow-shop with- 

out switching to the other flow-shops. This problem is a hybrid of the classic parallel machine schedul- 

ing and two-stage flow-shop scheduling problems. Its strong NP-hardness follows from the parallel ma- 

chine scheduling problem when the number of machines is part of the input. Our main contribution is 

a polynomial-time approximation scheme (PTAS) for the mP2FS problem when the number of shops is 

part of the input, which improves the previous best approximation algorithm of a ratio (2 + ε) . Owing to 

the strong NP-hardness, our PTAS achieves the best possible approximation ratio. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the m parallel two-stage flow-shop (mP2FS) problem, n jobs

J = { J 1 , J 2 , . . . , J n } need to be assigned to m identical two-stage

flow-shops F 1 , F 2 , . . . , F m 

, each of which consists of two sequen-

tial machines. Denote F � by ( M � ,1 , M � ,2 ), � ∈ { 1 , 2 , . . . , m } . Each job

J i , i ∈ { 1 , 2 , . . . , n } consists of two operations, say the A -operation

and B -operation, and the operations A i and B i take a i and b i units

of time in the first and second stage, respectively. Every operation

needs to be processed without preemption and no job can switch

among flow-shops once it is assigned to a flow-shop. The objec-

tive of the mP2FS problem is to minimize the completion time

of the last job, which is called the makespan . The mP2FS problem

has wide applications in resource scheduling in manufacturing and

cloud computing, etc. For example, in the cloud computing and

transparent computing systems, a request from a client needs to

go through two stages. That is, the requested code/data is first read

from secondary memory into the main memory and then sent via

the network to the requesting client. The goal is to minimize the

maximum waiting time of the clients. 

It is easy to observe that the mP2FS problem reduces to the

classic two-stage flow-shop scheduling problem when m = 1 , and
∗ Corresponding author. 
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he parallel machine scheduling problem when each two-stage flow-

hop degenerates to the one-stage flow-shop, i.e., a single machine.

hough the two-stage flow-shop scheduling problem achieves an

ptimal schedule by the well-known Johnson’s algorithm ( Johnson,

954 ), the parallel machine scheduling problem is NP-hard when

 ≥ 2 and becomes strongly NP-hard when m is part of the input

 Garey & Johnson, 1979; Hochbaum & Shmoys, 1987 ), from which

he strong NP-hardness of the mP2FS problem naturally follows. 

Consider a minimization optimization problem � with the in-

tances I . The approximation ratio of an approximation algorithm

 is defined as ρ = max I∈I {A (I) / OPT (I) } . We, of course, prefer the

pproximation algorithms with a ratio as close to one as possible.

 polynomial-time approximation scheme (PTAS) is a type of ap-

roximation algorithm A ε , which admits an approximation ratio

(1 + ε) for any ε > 0 and whose time complexity is a polynomial

n the instance size. We say a PTAS is a fully polynomial-time ap-

roximation scheme (FPTAS) if its running time is a polynomial in
1 
ε and the instance size. 

Most previous work on the mP2FS problem has focused on the

pproximability, either considering a fixed m or allowing m to be

art of the input. The most important property leveraged in exist-

ng algorithms is that the optimal schedule for a two-stage flow-

hop instance can be a permutation schedule , in which the jobs are

rocessed on the two machines in the same order. Based on this

bservation, the general mP2FS problem can be broken down into

wo subproblems, a job partition problem and a classic two-stage

https://doi.org/10.1016/j.ejor.2019.08.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.08.019&domain=pdf
mailto:wtong.research@gmail.com
https://doi.org/10.1016/j.ejor.2019.08.019
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Table 1 

Summary of the best-known results for the mP2FS problem. Our result in this article improves the ratio (2 + ε) to 

(1 + ε) for any ε ∈ (0, 1). 

m = 1 m ≥ 2 is fixed: NP-hard 

( Garey & Johnson, 1979 ) 

m is part of the input: strongly NP-hard 

( Hochbaum & Shmoys, 1987 ) 

Polynomial 

( Johnson, 1954 ) 

FPTAS ( Dong et al., 2017b ) (2 + ε) -approx. ( Wu & Chen, 2018 ) 

PTAS (our article) 
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ow-shop problem ( Zhang & Velde, 2012 ). More precisely, jobs are

rst sorted into Johnson’s order ( Johnson, 1954 ) and then assigned

o each flow-shop in some way. Different assignment strategies re-

ult in different algorithms. 

The mP2FS problem was first investigated by Kovalyov (1985) in

985 and an FPTAS was presented when m is fixed, which is un-

ortunately not available online. The original paper (an abstract

ublished in Russian) is only archived in the Library CWI at the

etherlands. This result was not noted by the other researchers in

he last three decades until recently when Dong et al. (2017b) pro-

osed another FPTAS independently and a corrigendum ( Dong

t al., 2017a ) was published to credit Dr. Kovalyov for his work

 Kovalyov, 1985 ). 

Before that, He, Kusiak, and Artiba (1996) ’s work in 1996 was

elieved to be pioneering on the mP2FS problem. They modeled

n application from the glass industry as the mP2FS problem

nd proposed an efficient heuristic algorithm after formulating the

P2FS problem as a mixed integer linear program. Later in 20 0 0,

airaktarakis and Elhafsi (20 0 0) investigated the special case when

 = 2 , and presented an optimal algorithm that runs in a pseudo-

olynomial time. In 2012, Zhang and Velde (2012) designed a 3/2-

pproximation algorithm and a 12/7-approximation algorithm for

 = 2 and 3, respectively. The main idea behind these two algo-

ithms is that the job sequence in Johnson’s order is somehow

ut into two (three, respectively) parts for the two (three, respec-

ively) two-stage flow-shops to minimize the makespan. Their re-

ults were published in the European Journal of Operational Re-

earch . Recently, in 2017, Dong et al. (2017b) proposed an FPTAS

or the mP2FS problem when m ≥ 2 is a fixed constant. Their idea

s to combine a pseudo-polynomial time algorithm and a classic

caling technique for job sizes. An FPTAS is the best possible algo-

ithm owing to the NP-hardness of the mP2FS problem when m ≥ 2

s fixed. 

Wu, Chen, and Wang (2017) , Wu and Wang (2017) and Wu and

hen (2018) presented several approximation algorithms for the

P2FS problem considering m as part of the input. Recall that the

P2FS problem is strongly NP-hard when m is part of the input.

u et al. (2017) studied two special cases, assuming that either

he A -operation consumes no less time than the B -operation for

ach job, or the B -operation takes more time than the A -operation

or each job. Both cases admit approximation algorithms with the

ame ratio 11/6. Later, Wu and Wang (2017) proposed a 17/6-

pproximation algorithm for the general mP2FS problem. Recently,

u and Chen (2018) improved the approximation ratios from 17/6

nd 11/6 to (2 + ε) and (1 . 5 + ε) , respectively, for the general case

nd the previously introduced special cases, where ε ∈ (0, 1) is an

rbitrary small number. 

In 2018, Tong, Miyano, Goebel, and Lin (2018) designed a PTAS

or the m parallel d -stage flow-shop (mPdFS) problem when both

 ≥ 2 and d ≥ 3 are fixed integers. This closes the field of study-

ng the approximability of the mPdFS problem when m is fixed,

s a PTAS is the best possible algorithm due to its strong NP-

ardness when d ≥ 3. An open question was proposed in Tong et al.

2018) whether a PTAS exists for the mPdFS problem when m is

art of the input. Our main contribution of this article is a partial

rm answer to this open question, i.e., a PTAS for the mP2FS prob-
em when m is part of the input. A summary of the best known

esults for the mP2FS problem is shown in Table 1 . 

Different from the previous approximation algorithms for the

P2FS problem, we do not employ Johnson’s algorithm to sort

obs in advance. We first consider a type of specially restricted in-

tances for the mP2FS problem, named as restricted-type instances.

e show any feasible schedule for a restricted-type instance can

e transformed into a feasible strongly structured (FSS) schedule at

 cost of a small increase of the makespan. Then we introduce two

ovel concepts: configuration and a distribution of configurations

ver the m input two-stage flow-shops, the latter of which corre-

ponds to an “almost” FSS schedule 1 . In other words, we are able

o recover an “almost” FSS schedule from a distribution of con-

gurations over the m input two-stage flow-shops. To retrieve the

omplete FSS schedule, a mixed integer linear program (MILP) based

n the above distribution of configurations is constructed and the

roperties of its basic solutions are explored. As this MILP con-

ains a constant number of integer variables, it can be solved by

enstra’s algorithm ( Lenstra Jr, 1983 ) in polynomial time. In addi-

ion, this MILP describes FSS schedules for the given restricted-

ype instance, and therefore, we can obtain a near-optimal FSS

chedule from the solution to this MILP. In the end, we show any

P2FS instance can be reduced to a restricted-type instance using

 classic scaling technique by Schuurman and Woeginger (20 0 0) .

ur PTAS is the best possible algorithm for the mP2FS problem

onsidering its strong NP-hardness. Our result also improves the

urrent best approximation ratio 2 + ε presented by Wu and Chen

2018) . 

This article is organized as follows: Section 2 introduces more

elated work; Section 3 presents the PTAS and the analysis of its

ime complexity and approximation ratio; finally, Section 4 con-

ludes the article and proposes open questions. 

. Related work 

In this section, we introduce related work for the mP2FS prob-

em. The mP2FS problem is closely related to the classic two-stage

ow-shop scheduling problem ( Garey & Johnson, 1979 ) and the par-

llel machine scheduling problem ( Garey & Johnson, 1979 ). 

The two-stage flow-shop scheduling problem can be solved

ptimally within O ( n log n ) time by Johnson’s algorithm ( Johnson,

954 ). However, the general d -stage flow-shop scheduling prob-

em ( d ≥ 3) is strongly NP-hard ( Garey, Johnson, & Sethi, 1976 ).

or fixed d ≥ 3, Hall (1998) designed a PTAS for the d -stage flow-

hop scheduling problem. When d = 2 or 3, the d -stage flow-shop

cheduling problem admits an optimal schedule that is a permu-

ation schedule , in which the jobs are processed on all d machines

n the same order; but when d ≥ 4, it has been shown ( Conway,

axwell, & Miller, 1967 ) that there may exist no optimal sched-

le that is a permutation schedule. The inapproximability was

hown by Williamson et al. (1997) that no approximation algo-

ithm achieves a ratio within 1.25 when d is part of the input. In

act, the question of whether this case admits an approximation

lgorithm with a constant ratio remains open. 
1 The formal definition of the almost FSS schedule is given in Section 3.2 . 
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Table 2 

Known results for the hybrid d -stage flow-shop problem. 

m j machines in the j th stage, j ∈ { 1 , 2 , . . . , d} . 
m j = 1 m j is fixed m j is part of the input 

d = 1 Polynomial time FPTAS ( Sahni, 1976 ) PTAS ( Hochbaum & Shmoys, 1987 ) 

d = 2 Polynomial time ( Johnson, 1954 ) PTAS ( Hall, 1998 ) PTAS ( Schuurman & Woeginger, 2000 ) 

d ≥ 3 is fixed PTAS ( Hall, 1998 ) PTAS ( Hall, 1998 ) PTAS ( Jansen & Sviridenko, 2000 ) 

d is part of the input Cannot be approximated within 1.25 ( Williamson et al., 1997 ) 
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The m -parallel machine scheduling problem is a classic NP-

hard problem when m ≥ 2 ( Garey & Johnson, 1979 ), and becomes

strongly NP-hard if m is part of the input ( Hochbaum & Shmoys,

1987 ). On the positive side, Sahni (1976) presented an FPTAS when

m is fixed and Hochbaum and Shmoys (1987) proposed a PTAS

when m is part of the input. It is also worth mentioning that

Graham (1966) designed a neat and efficient List-Scheduling al-

gorithm with an approximation ratio (2 − 1 /m ) when m is part of

the input. 

The mP2FS problem is also closely related to the hybrid d - stage

flow-shop problem ( Lee & Vairaktarakis, 1994; Ruiz & Vázquez-

Rodríguez, 2010 ), another generalization of the d -stage flow-shop

scheduling problem and the parallel machine scheduling problem.

In a hybrid d -stage flow-shop, the j th stage j = 1 , 2 , . . . , d contains

m j ≥ 1 parallel machines, and the j th operation of J i needs to be

processed non-preemptively on any one of the m j machines in the

j th stage. The objective is also to minimize the makespan. We ab-

breviate this problem as (m 1 , m 2 , . . . , m d ) -HFS for simplicity. It is

easy to observe that when m 1 = m 2 = · · · = m d = 1 , the problem

reduces to the classic d -stage flow-shop problem; when d = 1 , the

problem reduces to the m -parallel machine scheduling problem.

The (m 1 , m 2 , . . . , m d ) -HFS has been studied extensively in the liter-

ature ( Lee & Vairaktarakis, 1994; Ruiz & Vázquez-Rodríguez, 2010 ),

in particular the special case ( m 1 , m 2 )-HFS with m 1 = 1 or m 2 = 1

( Chen, 1995; Gupta, 1988; Gupta, Hariri, & Potts, 1997; Gupta &

Tunc, 1991 ). Wang (2005) provided a detailed survey on the hy-

brid two-stage flow-shop problem with a single machine in one

stage. When max { m 1 , m 2 } ≥ 2, Hoogeveen, Lenstra, and Veltman

(1996) showed that the ( m 1 , m 2 )-HFS problem is strongly NP-hard.

Fortunately, Schuurman and Woeginger (20 0 0) presented a PTAS

for the ( m 1 , m 2 )-HFS, when m 1 and m 2 are part of the input.

For the general (m 1 , m 2 , . . . , m d ) -HFS with fixed parameters m 1 ,

m 2 , . . . , m d , Hall (1998) claimed that the PTAS for the classic d -

stage flow-shop problem can be extended to the (m 1 , m 2 , . . . , m d ) -

HFS problem. When m 1 , m 2 , . . . , m d are part of the input, Jansen

and Sviridenko (20 0 0) generalized the PTAS by Schuurman and

Woeginger (20 0 0) to the general (m 1 , m 2 , . . . , m d ) -HFS as long

as d is a fixed integer. Table 2 summarizes the results for the

(m 1 , m 2 , . . . , m d ) -HFS problem we reviewed thus far. In addition,

Ruiz and Vázquez-Rodríguez (2010) surveyed plenty of interesting

heuristic algorithms for the general (m 1 , m 2 , . . . , m d ) -HFS problem.

3. A PTAS for the mP2FS problem 

In this section, we present a PTAS for the mP2FS problem. In

Section 3.1 , we introduce the concept of a restricted-type instance,

a type of specially restricted instances for the mP2FS problem. We

also define a feasible strongly structured (FSS) schedule such that

any feasible schedule for a restricted-type instance can be trans-

formed into an FSS schedule without increasing the makespan too

much. In Section 3.2 , we design a mixed integer linear program

(MILP) to describe the FSS schedules for the given restricted-type

instance and then show how to convert the MILP solution to ob-

tain an FSS schedule. In Section 3.3 , we leverage the standard scal-

ing technique by Schuurman and Woeginger (20 0 0) to show that
ny mP2FS instance can be reduced to a restricted-type instance

t a fractional cost. The final PTAS for the mP2FS problem follows

rom the above discussion. 

Recall that in an mP2FS instance there are n jobs J =
 J 1 , J 2 , . . . , J n } with J i = (A i , B i ) , i ∈ { 1 , 2 , . . . , n } . We name the two

perations A i and B i as the A -operation and B -operation, respec-

ively, for J i . Let a i denote the size or processing time for A i . We

efine b i for B i analogously. A schedule for an mP2FS instance is

easible if the schedule satisfies the following restrictions: (1) each

ob can have at most one operation undergoing processing at any

oment; (2) each B -operation cannot be processed until the corre-

ponding A -operation is completed; (3) a job cannot be rearranged

o another flow-shop once it is assigned to one flow-shop; (4) each

achine in the flow-shops can process at most one operation at

ny time. Let π and π ∗ denote a feasible schedule and optimal

chedule, respectively. Define the makespan of a schedule π as

 max ( π ). 

.1. A restricted-type instance with an FSS schedule 

Let α = � 43 
ε � ≥ 1 be a constant integer for any ε ∈ (0, 1). Sup-

ose δ is a constant less than 1 and its value will be determined

ater in Eq. (15) . We call an operation a big operation if its process-

ng time is at least δ; otherwise, we name it as a small operation.

n mP2FS instance is called a restricted-type instance if it satisfies

he following conditions: 

1. a i , b i ∈ [0, α4 ], ∀ i ∈ { 1 , 2 , . . . , n } ; 
2. any big operation has an integral size. 

Given a restricted-type instance, we partition the job set J into

ubsets J (x, y ) , x, y ∈ { 0 , 1 , 2 , . . . , α4 } according to the sizes of job

perations. These subsets can be further grouped into four cate-

ories: jobs with two small operations, jobs with one small oper-

tion in the first stage and one big operation in the second stage,

obs with one big operation in the first stage and one small oper-

tion in the second stage, and jobs with two big operations. More

ormally, we define J (x, y ) , x, y ∈ { 0 , 1 , 2 , . . . , α4 } as follows: 

 (x, y ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{ J i ∈ J | a i < δ, b i < δ} , x = 0 , y = 0 ;
{ J i ∈ J | a i < δ, b i = y } , x = 0 , y > 0 ;
{ J i ∈ J | a i = x, b i < δ} , x > 0 , y = 0 ;
{ J i ∈ J | a i = x, b i = y } , x > 0 , y > 0 . 

(1)

An interval is named as an η-interval if the length of the inter-

al is η. We cut along the time dimension with (α2 + 2) -intervals

 t = 

[
t · (α2 + 2) , (t + 1) · (α2 + 2) 

)
, t ∈ { 0 , 1 , 2 , . . . } . For any feasi-

le schedule π , let s π ( O ) and f π ( O ) denote the starting processing

ime and finishing processing time of the operation O , respectively.

efine O 

π
�, j,t 

to be the sequence of operations that start processing

n the machine M � , j during the time interval I t , i.e., 

 

π
�, j,t = 

{{ A i | π assigns J i to F � and s π (A i ) ∈ I t } , j = 1 ;
{ B i | π assigns J i to F � and s π (B i ) ∈ I t } , j = 2 . 

(2)

f there is no ambiguity, the superscript π in s π ( O ), f π ( O ), and

 

π
�, j,t 

will be omitted in the following context. In addition, if only
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Fig. 1. Illustration of the transformation from π to ˜ π in Theorem 1 . Here we consider some flow-shop F � and the machine M � , j on stage j , and assume α = 2 , δ = 1 . Suppose 

the operations are assigned on M � , j according to the schedule π , which is shown in the top diagram. The second diagram shows the mapping of the starting time for each 

operation. The bottom diagram shows the schedule ˜ π after we delay the processing time of the first small and big operations at some integer time points. 
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ne flow-shop is considered, we may also omit the subscript � .

hen we define a feasible strongly structured (FSS) schedule for a

estricted-type instance. 

efinition 1. A feasible schedule for a restricted-type instance is a

easible strongly structured (FSS) schedule if it satisfies the following

onditions. 

1. For each machine M � , j and each time interval I t , all operations

in O �, j,t are processed in non-decreasing order with respect to

the size. 
• If the first operation is small, it starts processing at some

integer time point. 
• Every small operation in O �, j,t has to be completed in I t . 
• Every big operation in O �, j,t has to start processing at some

integer time point. 

2. For each job J i , the A -operation and B -operation cannot be pro-

cessed in the same interval. That is, if f ( A i ) ∈ I t , s ( B i ) must be in

I k with k > t . 

heorem 1. For a restricted-type mP2FS instance, if there exists a

easible schedule π with makespan at most α4 , then we can construct

rom π an FSS schedule π ′ with makespan at most (α2 + 2) 2 . 

roof. Recall that O 

π
�, j,t 

is the set of operations assigned by π to

tart processing on the machine M � , j during the time interval I t . 

For any feasible schedule π with makespan at most α4 ,

e cut the interval [0, α4 ) into uniform α2 -intervals I ′ t =
t · α2 , (t + 1) · α2 

)
, t ∈ { 0 , 1 , 2 , . . . , α2 − 1 } . Considering some op-

ration O , assume its starting processing time under π is s π (O ) =
 · α2 + p ∈ I ′ t . We construct a loose intermediate feasible schedule

˜ by mapping the starting time of each operation O to s ̃ π (O ) =
 · (α2 + 2) + p ∈ I t . Refer to the top two diagrams in Fig. 1 . Such a

hifting strategy will produce an extra gap of size two between the

nishing time of the last operation in O ̃

 π
�, j,t 

and the starting time

f the first operation in O ̃

 π
�, j,k 

, where O ̃

 π
�, j,k 

with k > t is the first

on-empty set after O ̃

 π
�, j,t 

. We can observe that the schedule ˜ π is

till feasible with a makespan at most α2 · (α2 + 2) . 

Let P be the total processing time, including the waiting time

etween operations, of operations in O ̃

 π
�, j,t 

. We sort operations in

 ̃

 π
�, j,t 

non-decreasingly with respect to the size. Then we mod-

fy the starting times for operations in O ̃

 π
�, j,t 

such that the oper-

tions’ starting times satisfy the first condition required by an FSS

chedule. 
• If O ̃

 π
�, j,t 

contains only small operations, P is less than

α2 + δ < α2 + 2 as the interval I ′ t has a length of α2 and

there might exist one unfinishing small operation (of size

less than δ < 1) in the end of the interval. If we de-

lay the sorted operations to start at � (t + 1) · (α2 + 2) − P � ∈[
t · (α2 + 2) , (t + 1) · (α2 + 2) 

)
= I t , the first small operation

starts processing at some integer time point and the maximum

finishing time of all operations is at most (t + 1) · (α2 + 2) . This

shifting strategy consumes at most one time unit. 
• If O ̃

 π
�, j,t 

contains only big operations, we delay the starting time

of the first big operation to the nearest integer time point. As

each big operation has an integer size, all the following big

operations also start at the integer time points. This delaying

strategy consumes at most one time unit. 
• If O ̃

 π
�, j,t 

contains both small and big operations, the total size of

the small operations is at most α2 . We combine the previous

two shifting strategies together, which consumes at most two

time units. Refer to the bottom two diagrams in Fig. 1 . 

As we rearrange the operations in O ̃

 π
�, j,t 

and also delay some

perations, the starting time for some A -operation may be delayed

y at most α2 + 2 time units whereas some B -operation may start

arlier by at most α2 + 2 time units. If these A - and B -operations

elong to the same job, the schedule’s feasibility will be destroyed.

o restore the feasibility, we delay the machines in the second

tage by 2 · (α2 + 2) . Refer to Fig. 2 . Denote the resultant schedule

s π ′ . We can observe that π ′ is a feasible schedule and actually

n FSS schedule. �

.2. Obtaining an FSS schedule by MILP 

According to Theorem 1 , with some cost we switch to

onsider FSS schedules with makespan at most (α2 + 2) 2 if

here is a feasible schedule with makespan at most α4 . In

ther words, we only need to consider the intervals I t =
t · (α2 + 2) , (t + 1) · (α2 + 2) 

)
, t ∈ { 0 , 1 , . . . , α2 + 1 } . 

.2.1. Configuration of a flow-shop 

We define a configuration for each flow-shop such that all flow-

hops with the same configuration form a group. Therefore, each

SS schedule corresponds to a distribution of the distinct config-

rations for the m input flow-shops. More precisely, a distribu-

ion of the distinct configurations for the m input flow-shops is

ble to roughly depict an FSS schedule. To find an optimal FSS
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Fig. 2. Illustration of the infeasibility caused by the rearrangement of operations in each interval. In the top diagram, O i ,2 could be started earlier by at most α2 + 2 time 

whereas O i ,1 could be delayed by at most α2 + 2 time. As shown the bottom diagram, delaying the machine M � ,2 by 2 · (α2 + 2) time relative to the machine M � ,1 will address 

the conflict. 
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schedule, instead of exploring all possible FSS schedules, we only

need to consider all possible distributions of different configura-

tions of the m flow-shops by constructing a mixed integer linear

program (MILP). By solving this MILP, we are able to identify a

near-optimal FSS schedule, i.e., an FSS schedule with an almost

smallest makespan. 

Given an FSS schedule π , we fix a flow-shop, say F � . Let L j,t , j ∈
{ 1 , 2 } , t ∈ { 0 , 1 , 2 , . . . , α2 + 1 } , be the ceiling of the total process-

ing time of small operations in O �, j,t . Note that the value of each

L j , t is at most α2 + 2 , the length of I t , according to Theorem 1 .

More specifically, L j,t ∈ { 0 , 1 , 2 , . . . , α2 + 2 } . Define n t , k , x , y to be the

number of jobs in J (x, y ) with the A -operation starting in I t and

B -operation starting in I k . The configuration for the flow-shop is de-

fined as a tuple 

(L j,t , n t,k,x,y ) j,t,k,x,y , (3)

where j ∈ { 1 , 2 } , t < k ∈ { 0 , 1 , 2 , . . . , α2 + 1 } , x, y ∈ { 0 , 1 , 2 , . . . , α4 } ,
x + y > 0 . 

Lemma 1. A flow-shop has at most (α2 + 2) 2(α2 +2)+(α2 +1) 2 ·(α4 +1) 2 

distinct configurations. 

Proof. Recall that we always round up the total processing time

of small operations in O j,t to the nearest integer. Here, L j , t has at

most α2 + 2 values. As each interval I t has the uniform size α2 + 2

and each big operation has size at least one, the number of big

operations in the interval I t is upper bounded by α2 + 2 and, thus,

n t , k , x , y is also upper bounded by α2 + 2 . To summarize, the number

of distinct configurations for one flow-shop is at most 

(α2 + 2) 2(α2 +2)+(α2 +1) 2 ·(α4 +1) 2 , 

where the exponent is due to the fact that a configuration (refer to

Eq. (3 )) contains at most 2(α2 + 2) components in the form of L j , t 
and (α2 + 1) 2 · (α4 + 1) 2 components in form of n t , k , x , y . �

We can observe that every FSS schedule restricted on one flow-

shop is associated with a configuration for this flow-shop, and

we say such a configuration is feasible . From a configuration c =
(L j,t , n t,k,x,y ) j,t,k,x,y , we know during which time interval each big

operation of a job (if it exists) starts processing and we also know

the total processing time of small operations that start processing

in each time interval on each machine. However, a configuration

does not provide the information about the size of each small op-

eration. Therefore, the feasibility of a configuration requires that

there is enough space for all operations and that the processing

time interval for two big operations of the same job cannot over-

lap. Indeed, we show how to transform a feasible configuration to
n FSS schedule except for the small operations, which is named

s an almost FSS schedule. 

emma 2. It takes O 

(
(α2 + 2) 2(α2 +2) 

)
time to check the feasibility

f a configuration and meanwhile convert the feasible configuration

o an almost FSS schedule. 

roof. Given a configuration of a flow-shop, we can obtain the set

f big operations assigned to start processing on each machine M j 

uring each time interval I t . Recall that O j,t denotes the set of all

perations that starts processing on machine M j during I t . For each

ime interval I t , we first treat all small operations as an entirety (as

e only know the rounded total processing time of small opera-

ions, not the size of each small operation), then sort all big opera-

ions in O j,t non-decreasingly with respect to size, and finally con-

atenate the big operations following the block of all small opera-

ions. This results in consecutive sub-schedules of all operations in

 j,t . Shifting the obtained sub-schedule in the time interval I t such

hat the sub-schedule starts at some integer time point will satisfy

he first condition required by an FSS schedule. As the length of

 t is α2 + 2 , there are at most α2 + 2 shifting strategies for each

ime interval on one machine. Shifting each sub-schedule indepen-

ently may result in an infeasible schedule as two consecutive sub-

chedules may overlap. 

By exhausting all possible shifted sub-schedules and concate-

ating the non-overlapping sub-schedules into one schedule on the

ow-shop, we can check whether there is enough space for all op-

rations. As the information { n t , k , x , y } t , k , x , y , x , y > 0 is included in the

onfiguration, we know all jobs with two big operations on the

ow-shop, and, thus, we are able to check the feasibility for such

obs easily. To summarize, if the configuration is feasible, the re-

ultant schedule is an almost FSS schedule, where only small op-

rations may cause infeasibility. 

As each interval I t has the uniform size α2 + 2 and each big

peration has size at least one, the number of big operations in

he interval I t is upper bounded by α2 + 2 . Sorting big opera-

ions in each interval takes O ( α2 ) time by some linear sorting

lgorithm, say RadixSort . As there are α2 + 2 (α2 + 2) -intervals

nd the flow-shop consists of two machines, the total time of

orting big operations takes O ( α4 ) time. In addition, exhausting

ll possible shifted sub-schedules takes O 

(
(α2 + 2) 2(α2 +2) 

)
. There-

ore, the time to check the feasibility of the given configuration is

 

(
(α2 + 2) 2(α2 +2) 

)
, which is a constant depending on α. �

Lemmas 1 and 2 guarantee that checking the feasibility of all

ossible configurations for one flow-shop takes a constant time

hat only depends on α. Without loss of generality, we only con-

ider the feasible configurations in the following context. 
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.2.2. Mixed integer linear program 

By Lemma 2 , a feasible configuration can be converted into an

lmost FSS schedule where only the small operations may cause

he infeasibility. The objective of the mixed integer linear program

MILP) is to find a distribution of feasible configurations for the

 flow-shops and figure out how to assign the remaining small

perations appropriately to achieve an FSS schedule. 

Let C be the set of all feasible configurations of a flow-shop.

efine Z ( c ) to be the integer variable to indicate the number flow-

hops with the configuration c ∈ C. For any FSS schedule, there is

 distribution of configurations { Z (c) | c ∈ C} for the m input flow-

hops. We have 
 

c∈C 
Z (c) = m, (4) 

 

(c) ∈ Z 

≥0 , ∀ c ∈ C. 

From the almost FSS schedule obtained from a configuration c

y Lemma 2 , we can calculate the number of jobs in J (x, y ) , x, y ∈
 1 , 2 , . . . , α4 } , such that under the configuration c , the big A -

peration finishes in I t and the big B -operation starts in I k , 0 ≤ t <

 ≤ α2 + 1 . Let bb (c) 
x,y,t,k 

denote this number. In any FSS schedule,

he jobs with two big operations have to satisfy Eq. (5) . 

 

c∈C 

∑ 

0 ≤t<k ≤α2 +1 

bb (c) 
x,y,t,k 

· Z (c) = |J (x, y ) | , ∀ x, y ∈ { 1 , 2 , . . . , α4 } . 

(5) 

Similarly, from the almost FSS schedule obtained from a config-

ration c , we can calculate bs (c) 
x, 0 ,t 

and sb (c) 
0 ,y,k 

, where bs (c) 
x, 0 ,t 

denotes

he number of jobs in J (x, 0) , x ∈ { 1 , 2 , . . . , α4 } , such that under

he configuration c , the big A -operation finishes in I t , 0 ≤ t ≤ α2 +
 ; sb (c) 

0 ,y,k 
denotes the number of jobs in J (0 , y ) , y ∈ { 1 , 2 , . . . , α4 } ,

uch that under the configuration c the big B -operation starts in

 k , 0 ≤ k ≤ α2 + 1 . Then in any FSS schedule, the jobs with one big

peration (either in the first stage or the second stage) have to sat-

sfy ( Eqs. (6) and ( 7 )). 
 

c∈C 

∑ 

0 ≤t≤α2 +1 

bs (c) 
x, 0 ,t 

· Z (c) = |J (x, 0) | , ∀ x ∈ { 1 , 2 , . . . , α4 } . (6)

 

c∈C 

∑ 

0 ≤k ≤α2 +1 

sb (c) 
0 ,y,k 

· Z (c) = |J (0 , y ) | , ∀ y ∈ { 1 , 2 , . . . , α4 } . (7)

Suppose L j , j ∈ {1, 2} is the total processing of small opera-

ions on the j th stage for jobs in J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) . Recall

hat in the definition of the configuration for a flow-shop, L j,t , j ∈
 1 , 2 } , t ∈ { 0 , 1 , 2 , . . . , α2 + 1 } is the ceiling of the total processing

ime of small operations in O j,t . Therefore, in any FSS schedule,

he total processing time of small operations needs to be bounded

y Eq. (8) such that there is enough space for small operations. 
 

c∈C 

∑ 

0 ≤t≤α2 +1 

L (c) 
j,t 

· Z (c) ≥ L j , j ∈ { 1 , 2 } . (8)

Define u (c) 
i,t,k 

, t < k be a binary variable, t, k ∈ { 0 , 1 , . . . , α2 + 1 } .
ere u (c) 

i,t,k 
= 1 indicates the job J i ∈ J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) is

ssigned to finish its A -operation in I t and start its B -operation in

 k with k > t . As each job J i ∈ J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) is assigned

xactly once in any FSS schedule, then Eq. (9) needs to be satisfied.

q. (10) is used to maintain the consistency between the variables

 

(c) 
i,t,k 

and Z ( c ) for the same configuration c . In particular, no u (c) 
i,t,k 

as a positive value when Z (c) = 0 . ∑ 

c∈C 

∑ 

0 ≤t<k ≤α2 +1 

u 

(c) 
i,t,k 

= 1 , 

∀ J ∈ J (x, y ) , x · y = 0 , x, y ∈ { 0 , 1 , 2 , . . . , α4 } . (9) 
i 
∑ 

 ≤t<k ≤α2 +1 

u 

(c) 
i,t,k 

≤ Z (c) , ∀ c ∈ C. (10)

 

(c) 
i,t,k 

∈ { 0 , 1 } . 
The assignments for jobs in J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) affect

he total processing time of small operations on each stage during

he interval I t , 0 ≤ t ≤ α2 + 1 . Recall that the variable L (c) 
j,t 

is always

ounded up to the nearest integer. Therefore, in any FSS sched-

le, the total processing time of small operations needs to be esti-

ated by ( Eqs. (11 ) and ( 12 )) such that there is enough space for

mall operations in each time interval. Meanwhile, the constraints

11) and (12) guarantee that if all operations in the interval are

orted non-decreasingly with respect to the size, the first small op-

ration in each interval can be shifted to start at some integer time

oint. 

 

(c) 
1 ,t 

− 1 < 

∑ 

y ∈{ 1 , 2 , ... ,α4 } 

∑ 

J i ∈J (0 , 0) ∪J (0 ,y ) 

∑ 

t<k ≤α2 +1 

u 

(c) 
i,t,k 

· a i ≤ L (c) 
1 ,t 

, (11)

 

(c) 
2 ,k 

− 1 < 

∑ 

x ∈{ 1 , 2 , ... ,α4 } 

∑ 

J i ∈J (0 , 0) ∪J (x, 0) 

∑ 

0 ≤t<k 

u 

(c) 
i,t,k 

· b i ≤ L (c) 
2 ,k 

, (12)

, k ∈ { 0 , 1 , . . . , α2 + 1 } , c ∈ C. 

he assignments for jobs in J (x, 0) ∪ J (0 , y ) also affect the dis-

ribution of big operations during the interval I t , 0 ≤ t ≤ α2 + 1 . To

eep the consistency with configurations, we have ( Eqs. (13) and

 14 )) ∑ 

 i ∈J (x, 0) 

∑ 

t<k ≤α2 +1 

u 

(c) 
i,t,k 

= bs (c) 
x, 0 ,t 

· Z (c) , (13)

∑ 

 i ∈J (0 ,y ) 

∑ 

0 ≤t<k 

u 

(c) 
i,t,k 

= sb (c) 
0 ,y,k 

· Z (c) , (14) 

, k ∈ { 0 , 1 , . . . , α2 + 1 } , x, y ∈ { 1 , 2 , . . . , α4 } , c ∈ C. 

The constraints (4) –(14) indeed depict the FSS schedules. In par-

icular, for every job, we require that its B -operation cannot start

ntil the A -operation finishes in the previous interval. In addition,

he constraints (6) –(8) requires the FSS schedule to remain con-

istent with the feasible configurations on the m flow-shops. The

onstraints (9) –(14) find the assignments 
{

u (c) 
i,t,k 

}
i,t,k,c for jobs each

f which has at least one small operations. The constraints (11) and

12) in the MILP imply every small operation starts and finishes in

he same interval I t for some t . 

The MILP (4) –(14) contains variables 

Z (c) , u 

(c) 
i,t,k 

}
i,t,k,c 

, 

here J i ∈ J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) . In fact, they are all integer

ariables. We relax 

{ 

u (c) 
i,t,k 

} 

i,t,k,c 
to non-negative fractional variables

or each job J i with at least one small operation. Then the integer

ariables are { Z ( c ) } c , whose cardinality is upper bounded by |C| , a

onstant only depending on α according to Lemma 1 . Therefore,

he MILP has a constant number of integer variables, a polyno-

ial number of continuous variables, and a polynomial number

f constraints. Lenstra’s algorithm ( Lenstra Jr, 1983 ) can be em-

loyed to solve such MILP in polynomial time, as its time com-

lexity is exponential in the number of integer variables but poly-

omial in the number of continuous variables, polynomial in the

umber of constraints, and polynomial in the logarithms of the

oefficients. 
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Suppose 
{

Z (c) , u (c) 
i,t,k 

}
i,t,k,c is a basic feasible solution to the re-

laxed MILP. Let C + = 

{
c ∈ C | Z (c) > 0 

}
. We partition the m flow-

shops into |C + | groups such that flow-shops in the same group

have the same configuration. Consider one flow-shop F in the

group with the configuration c ∈ C + . Recall that for a job J i 
with at least one small operation, 

{
u (c) 

i,t,k 

}
t,k,c determines the in-

dexes of time intervals, where the A -operation of J i finishes pro-

cessing and the B -operation of J i starts processing under the

configuration c . 

Lemma 3. There are at most a constant number of jobs in J (x, 0) ∪
J (0 , y ) ∪ J (0 , 0) such that the corresponding variable 

{
u (c) 

i,t,k 

}
i,t,k,c 

have fractional positive values. In other words, most 
{

u (c) 
i,t,k 

}
i,t,k,c have

integer values. 

Proof. Suppose 
 = 

∣∣⋃ 

x,y J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) 
∣∣. Our relax-

ation of 
{

u (c) 
i,t,k 

}
i,t,k,c replaces the constraints u (c) 

i,t,k 
∈ { 0 , 1 } with

u (c) 
i,t,k 

≥ 0 . Then the total number of variables is at most 

|C| + (α2 + 1) 2 · |C| · 
. 

Let γ be the total number of constraints in our MILP. There are

1, α8 , α4 , α4 , 2, 
, |C | , 2(α2 + 2) |C | , 2(α2 + 2) |C | , (α2 + 2) α4 |C | ,
(α2 + 2) α4 |C| constraints in Eqs. (4) –(14) , respectively. It is easy to

check that γ is upper bounded by 

3 + α8 + 2 α4 + 4(α2 + 2) |C| + 2 α4 (α2 + 2) |C| + |C| + 
, 

which is much less than the total number of variables when


 is a function of n and n is large enough, as |C| and α are

constants. 

It follows that the basic feasible solution to this MILP has at

most γ positive values. As |C| ≤ (α2 + 2) 2(α2 +2)+(α2 +1) 2 ·(α4 +1) 2 b y

Lemma 1 , we can further upper bound γ by 
 + 3 26 α12 
α50 α12 

,

which is a loose bound holding for any α ≥ 1. Let φ = 3 26 α12 
α50 α12 

.

Note that for every job J i ∈ 

⋃ 

x,y J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) , if

u (c) 
i,t,k 

has a positive fractional value, then there must be another

distinct combination ( t ′ , k ′ , c ′ ) such that u (c ′ ) 
i,t ′ ,k ′ also has a positive

fractional value. Suppose the total number of positive fractional

values in the basic feasible solution is γ ′ . Let 
1 denote the num-

ber of jobs in J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) for each of which there is

an associated variable having value 1, that is, the assignment is de-

termined in the basic solution; and let 
2 = 
 − 
1 . It follows that


2 ≤γ ′ /2, and thus 
1 ≥ 
 − γ ′ / 2 . Therefore, the total number of

positive values in the basic solution is at least 
 − γ ′ / 2 + γ ′ =

 + γ ′ / 2 . From 
 + γ ′ / 2 ≤ γ ≤ 
 + φ, we have γ ′ ≤ 2 φ and, thus,

we conclude that 


2 ≤ γ ′ / 2 ≤ φ, 

which is a constant only depending on α. �

Lemma 4. Any basic feasible solution to the relaxed MILP (4) –(14)

can be used to construct an FSS schedule for the corresponding

restricted-type mP2FS instance with makespan at most (α2 + 2) 2 + 2 .

Proof. Lemma 2 shows how to convert the feasible configuration c

into an FSS schedule except for the small operations. The feasible

configuration occupies at most (α2 + 2) time intervals each having

length α2 + 2 . Lemma 3 demonstrates for the jobs with at least

one small operations, we are able to assign most of them explicitly

to the m flow-shops. 

Consider a job J i ∈ 

⋃ 

x,y J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) such that

u (c) 
i,t,k 

has a fractional value. If J i ∈ 

⋃ 

x,y> 0 J (x, 0) ∪ J (0 , y ) , its big

operation has been scheduled appropriately by Lemma 2 . We can

insert the remaining small A -operation ( B -operation, respectively)

to the front (end, respectively) of the flow-shop to which the
orresponding big B -operation ( A -operation, respectively) was as-

igned according to the configuration c . Such assignment strategies

aintain the second property of the FSS schedule. If J i ∈ J (0 , 0) ,

e execute the two small operations sequentially and append

obs to the end of the current schedule arbitrarily on any flow-

hop. It is easy to check that the resultant schedule is an FSS

chedule. 

Each small operation has size at most δ. By Lemma 3 , there

re at most φ jobs in 

⋃ 

x,y J (x, 0) ∪ J (0 , y ) ∪ J (0 , 0) such that the

orresponding variable 
{

u (c) 
i,t,k 

}
i,t,k,c have fractional positive values.

or each job from J (x, 0) ∪ J (0 , y ) , the above assignment strategy

ncreases the makespan by at most δ. The amplitude becomes 2 δ
hen the job is from J (0 , 0) . Therefore, the makespan increases

y at most 2 · δ ·φ. Let 

= 

1 

φ
. (15)

he total makespan of the resultant feasible schedule is at most 

(α2 + 2) 2 + 2 . 

�

Combining Theorem 1 and Lemma 4 , we have the following

heorem. 

heorem 2. For the restricted-type mP2FS instance, if there exists a

easible schedule with makespan at most α4 , the corresponding MILP

4) –(14) admits at least one feasible solution. In addition, we can find

n FSS schedule with makespan at most (α2 + 2) 2 + 2 . 

.3. The PTAS 

In this section, we first show how to transform an arbitrary

P2FS instance into a restricted instance which is introduced in

ection 3.1 . Then we present a PTAS for the general mP2FS prob-

em when m is part of the input. 

For any ε ∈ (0, 1), set α = � 43 
ε � . Let C g be a guess of the

 max ( π ∗). For each operation of a job J i ∈ J , say A i , we scale a i
s follows ( b i can be scaled similarly): 

 

′ 
i = 

{ 

a i · α4 

C g 
, if a i · α4 

C g 
< δ;

� a i · α4 

C g 
� , otherwise . 

(16)

By such a scaling method, an arbitrary mP2FS instance

s transformed into a restricted-type instance introduced in

ection 3.1 . Denote the scaled job set as J 

′ = { J ′ 1 , J ′ 2 , . . . , J ′ n } with

 

′ 
i 
= (A 

′ 
i 
, B ′ 

i 
) . 

Then construct the MILP for the scaled restricted-type instance

 

′ . If the MILP does not admit a feasible solution, we say that the

uess C g is incorrect . Otherwise, we say the guess C g is correct . Use

emma 4 to transform the feasible solution into a feasible sched-

le. Then enlarge the sizes of operations by a factor 
(α+1) C g 

α5 . Sup-

ose the new instance is J 

′′ = { J ′′ 1 , J 
′′ 
2 , . . . , J 

′′ 
n } with J ′′ 

i 
= (A 

′′ 
i 
, B ′′ 

i 
) .

hen 

 

′′ 
i = a ′ i ·

(α + 1) C g 
α5 

≥ a i ·
α4 

C g 
· (α + 1) C g 

α5 
= a i ·

α + 1 

α
≥ a i . 

imilarly, we have b ′′ 
i 

≥ b i . This indicates the feasible schedule for

 

′′ is also a feasible schedule for the original instance J . 

emma 5. If C g ≥ C max ( π ∗), then our guess is correct and a feasible

chedule can be produced with makespan at most α+21 
α · C g . 

roof. If C g ≥ C max ( π ∗), there exists a feasible schedule with

akespan C g for J , which implies the scaled job set J 

′ admits a

easible schedule with makespan at most α4 . By Theorem 2 , we are

ble to find an FSS schedule with makespan at most (α2 + 2) 2 + 2 .
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hen we can obtain a feasible schedule for the enlarged job set J 

′′ 
ith makespan at most (

(α2 + 2) 2 + 2 

)
· (α + 1) C g 

α5 

= 

(
α5 + α4 + 4 α3 + 4 α2 + 6 α + 6 

)
· C g 

α5 

≤ α + 21 

α
· C g , 

here the last inequality is because α ≥ 1. �

Let P i = a i + b i denote the total processing time of the job J i 
ver both machines, and assume without loss of generality that

 1 ≥ P 2 ≥ ��� ≥ P n . Define P = 

∑ n 
i =1 P i as the summed processing

ime for all jobs. The optimal makespan C max ( π ∗) can be bounded

y Lemma 6 , which is shown in Tong et al. (2018) . Our PTAS just

uesses the makespan of the optimal schedule by bisecting the in-

erval 
[
max 

{
P 

2 m 

, P 1 
}
, P 

m 

+ P 1 
]

recursively until the a near-optimal

akespan is found. Then Lemma 5 can be used to find a feasible

chedule with this near-optimal makespan. Owing to the search-

ng manner of the guess, we name our algorithm as BinarySearch .

he details are given in Algorithm 1 . 

lgorithm 1 Binary Search 

nput: m parallel 2-stage flow-shops, J = { J 1 , J 2 , . . . , J n } ; 
utput: a feasible schedule π with makespan at most 

(1 + ε) C max (π ∗) . 

1: Upper = 

P 
m 

+ P 1 ; 

2: Lower = max 
{

P 
2 m 

, P 1 
}

; 

3: while α+1 
α Lower < Upper do 

4: Mid = 

1 
2 ( Low + Upper ) ; 

5: if Mid is incorrect then 

6: Lower = Mid ; 

7: else 

8: Upper = Mid ; 

9: end if 

10: end while 

11: Set the guess C g = Upper ; 

12: Produce a feasible schedule by Lemma 5; 

13: return the final schedule denoted as π . 

emma 6. Tong et al. (2018) We have the following upper and lower

ounds on C max ( π ∗) : 

ax 

{ 

P 

2 m 

, P 1 

} 

≤ C max (π
∗) ≤ P 

m 

+ P 1 . 

heorem 3. Our algorithm BINARYSEARCH is a PTAS. That is, it out-

uts a schedule with makespan at most (1 + ε) C max (π ∗) in polyno-

ial time. 

roof. First, we show C max ( π ∗) ∈ [Lower, Upper] is a loop invariant.

nitially, Lemma 6 ( Tong et al., 2018 ) bounds the C max ( π ∗) within

Lower, Upper]. During the execution of the loop, if Mid is an incor-

ect guess of the makespan, Lemma 5 guarantees Mid < C max ( π ∗);

f Mid is a correct guess of the makespan, Lemma 5 implies

id ≥ C max ( π ∗). Therefore, the update of Low and Upper in the if–

lse statement maintains C max ( π ∗) ∈ [Lower, Upper]. 

As the initial Upper = 

P 
m 

+ P 1 and Lower = max 
{

P 
2 m 

, P 1 
}
, we

ave Upper ≤ 4 · Lower or Upper/Lower ≤ 4. The difference ( Upper −
ower ) decreases by half each iteration. Thus, the number of itera-

ions of the while loop in BinarySearch is O (log α). 

When the loop terminates, we have Upper ≤ α+1 
α Lower and the

oop invariant C max ( π ∗) ∈ [Lower, Upper] still holds. Of course, Up-

er is a valid guess of the makespan. According to Lemma 5 , we
re able to find a feasible schedule π with makespan at most 

 max (π ) ≤ α + 21 

α
· C g = 

α + 21 

α
· Upper 

≤ α + 21 

α
· α + 1 

α
· Lower 

≤
(

1 + 

43 

α

)
· C max (π

∗) 

≤ (1 + ε) · C max (π
∗) , 

here the last inequality comes from the fact that α = � 43 
ε � . �

. Conclusions 

We have considered the m parallel two-stage flow-shops

mP2FS) problem when m is part of the input. Our main contri-

ution is a polynomial-time approximation scheme (PTAS), which

artially addresses the open question proposed in Tong et al.

2018) . As the mP2FS problem is strongly NP-hard when m is part

f the input, our PTAS is the best possible approximation unless

 = NP. Consider the m parallel d -stage flow-shops (mPdFS) prob-

em. It is interesting to investigate whether the mPdFS problem

lso admits a PTAS if d is a fixed constant. When d is part of the

nput, the mPkFS problem is APX-hard following the APX-hardness

f the classic d -stage flow-shop problem. Another open problem is

hether the mPdFS problem admits an approximation algorithm

ith a constant ratio when d is part of the input. 
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