Chapter 9

Probabilistic Methods

Probabilistic methods have been developed and become a very powerful
and widely used tool in combinatorics and computer algorithm design. In
particular, randomized algorithms have found widespread applications in
many problem domains. A randomized algorithm is an algorithm that can
use the outcome of a random process. Typically, such an algorithm would
contain an instruction to “flip a coin,” and the result of that coin flip would
influence the algorithm’s subsequent execution and output. Two reasons
that have made randomized algorithms popular are their simplicity and
efficiency. For many applications, randomized algorithms often provide the
simplest, most natural and most efficient solutions.

The original ideas of probability methods, initiated by Paul Erdos, can be
described as follows: in order to prove the existence of a combinatorial object
with a specified property A, we first construct an appropriate probabilistic
space for all related objects, with or without the property A, and then show
that a randomly chosen element in this space has the property A with a
positive probability. Note that this method is somehow “non-constructive”
in the sense that it does not tell how to find an object with the property A.
A comprehensive discussion for probabilistic methods is given in Alon and
Spencer [3].

An implementation of the above probabilistic methods in randomized
algorithms is for certain combinatorial structures to prove that a randomly
chosen object has the property A with a high probability. This in general
implies a simple and efficient randomized algorithm for finding an object
with the property A: just randomly pick a few objects, then with a very
high probability, an object with the property A should be picked. Readers
are referred to Motwani and Raghavan [106] for more systematic discussions
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on randomized algorithms.

In many cases, randomized algorithms can be “derandomized”. De-
randomization is a process that converts a randomized algorithm into an
efficient deterministic algorithm that performs equally well. Therefore, the
probabilistic methods have also become an important technique in designing
efficient deterministic algorithms.

A common misconception regarding probabilistic methods is that one
must have deep knowledge in probability theory in order to use the meth-
ods. This is far from the truth. In fact, a basic understanding of probabil-
ity theory along with familiarity with some clever combinatorial reasoning
is sufficient in many cases to derive interesting results using probabilistic
methods and develop very powerful randomized algorithms. In this chapter,
we illustrate how efficient approximation algorithms for optimization prob-
lems can be developed based on probabilistic methods. We start with a few
basic concepts and useful principles in probability theory that are directly
related to our discussion, followed by a very simple randomized algorithm
for the MIN-CUT problem that well illustrates the beauty of randomized
algorithms. We then describe a general derandomization technique, using
Johnson’s algorithm for the MAX-SAT problem as an illustration (see Fig-
ure 8.10). Randomized approximation algorithms for a variety of NP-hard
optimization problems are then presented. These randomized algorithms
can be derandomized based on the derandomization techniques.

9.1 Basic probability theory

In this section, we describe several basic concepts and a few useful principles
in probability theory that are directly related to our discussion. The reader
may read Appendix C in this book or any elementary probability theory
textbooks to get quick familiarity of the fundamentals of probability theory.

Definition 9.1.1 A probability space is a triple (2, F, Pr), where
1. Q is the sample set, which we will assume to be countable;
2. F is the set of events, where each event is a subset of €2; and
3. Pr is the probability measure, a function from F to real numbers.

The event set F must satisfy the following conditions:

2.a the sample space {2 is an event;

2.b for an event E, the complement E¢ = Q\ E of E is an event; and

2.c for finite or countable many events E1, Eso, ... in F, the union
U,;>1 Ei is also an event.
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The probability measure Pr must satisfy the following conditions:

3.a for all events F in F, 0 < Pr[E] < 1,

3.b Pr[Q] =1; and

3.c for finite or countable mutually disjoint events Fy, Fo, ...,
Pr[UiZl E] = 2121 Pr[E;].

Remark. We can simply let F be the power set 22 of Q, i.e, F con-
sists of all subsets of €. In this case, the probability Pr[E] of an event
FE can be defined via the probabilities of the elements included in F, i.e.,
Pr[E] = %", cp Prla] (note here we have used Rule 3.c). Such a probability
space is called a discrete probability space, for which many results become
more intuitive with easier proofs. In the following discussions, we will con-
sider only discrete probability spaces. As a result, the set F of events in a
probability space is implied and a probability space can be simply written
as (2, Pr) with a sample space €2 plus a probability measure Pr.

Two events Ey and Es are independent if Pr[Ey N Ey] = Pr[E4] - Pr[Es).

Definition 9.1.2 Let E and F be two events, where Pr[F| # 0. The con-
ditional probability of E given F' is defined as

Pr[E|F] = Pr[E N F]/Pr[F].

Thus, the conditional probability Pr[E|F] is the probability of the event
FE under the assumption that the event F' happens. In particular, if £ and
F are independent events, then Pr[E|F| = Pr[E].

A random wariable on a sample space €2 is just a function from 2 to
the set of real numbers. Instead of writing a random variable as f(w) for
an element w in the sample space 2, the convention is to write a random
variable as a capital letter such as X and Y and make the argument implicit.
Thus, X is really X (w) on elements w in the sample space (2.

Definition 9.1.3 The expectation E[X] of a random variable X on the
probabilistic space (€2, Pr) is defined as

E[X] = 3 X(w)- Prlu],

weN

provided that the sum “converges absolutely,” i.e., > o |X(w)|- |Prlw]| <
oo. In this case we say that the expectation E[X] exists.
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Intuitively, the expectation of a random variable X is the “average value”
of X over all elements in the sample space €2, weighted by their probabilities.

Two random variables X and Y are independent if for any two real
numbers y; and y2, we have

PI‘[Xl = yl,XQ = yg] = PI‘[Xl = yl] . PI‘[XQ = yQ].

The Linearity of Expectations, as given in the following theorem, is prob-
ably the most useful trick when we play with probability and analyze ran-
domized algorithms.

Theorem 9.1.1 (Linearity of Expectation) Let X1, Xo, ..., X, be random
variables on a probability space (1, Pr) such that E[X;] exists for all 1 <i <

n, and let c1, ca, ..., ¢, be any constants. Then the expectation B[ " | ¢; X;]
exists, and B[Y " ¢; X;] =" ¢ BIX;].

PROOF. First note that Y = )"" | ¢;X; is a random variable on the proba-
bility space (€2, Pr). The absolute convergence of the sum

ZY(w)Pr[w]—Z(ch ) -Prlw] = Z(ch i Pr[w])

weN weN we

follows from the absolute convergences of the sums o X;(w)Prlw], for
1 <i < n (note that n is finite). Thus, the expectation E[Y " | ¢; X;] exists.

The equality in the theorem can be easily proved based on the definition
of expectations:

E ZZ;CX] = Z(Zc f Pr[w])

we)
= E<c,-2(X( Pr[w]) ZCZE[X
=1 weN

Note that in the second equality we were able to exchange the summations
because of the assumption of the absolute convergence of the sums. [

The most interesting (and most useful) property of Linearity of Expecta-
tion is that it enforces no conditions on the relationship among the random
variables X1, Xo, ..., X;,. In particular, the random variables X;, Xo, ...,
X, do not have to be independent. In fact, it does not even exclude the
cases where some of the random variables are identical such as X7 = Xs.
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Theorem 9.1.2 (Markov Inequality) Let X be a random variable that takes
only non-negative values. Then for all t > 0, we have Pr[X > t] < E[X]/t.

PROOF. Let E>; be the event that consists of the samples w such that
X(w) > t, and let E-; be the event that consists of the sample elements w
such that X (w) < ¢. Then E>; N E-; =0 and E>; U E<; = Q. Therefore,

EX] =) XPrw] = Y XwPrwl+ » X(w)Prlwl.

weN WeEZt weF <t

Since X (w) >t for all w € E>, and X (w) > 0 for all w € E~; (because X
takes only non-negative values), we have

E[X]> Y X(w)Prlw] >t Y Prlw] =t Pr[Ex]=t-Pr[X >1].

WEEEt wEEZt

Dividing both sides by the positive number ¢ gives Markov Inequality. []

9.2 A randomized algorithm for MiN-CuUT

In this section, we present a simple randomized algorithm that constructs a
minimum cut of a graph.

We have discussed the minimum cut problem on directed and weighted
graphs in Section 3.4. In this section, we will be focused on a simpler version
of the problem, which is on undirected and unweighted graphs.

Let G be an undirected and unweighted graph. A cut of G is a set
of edges whose removal disconnects the graph G. The size of the cut C
is the number of edges in C'. A min-cut of G is a cut of G whose size is
the minimum over all cuts of G. In this section, we will allow graphs to
have multiple edges (i.e., there can be more than one edges between a pair
of vertices). On the other hand, we will assume that graphs contain no
selfloops (i.e., edges whose both ends are at the same vertex): it is easy to
see that no selfloops can be in a min-cut of a graph, which, thus, can be
ignored. The problem is formally defined as follows.

MIN-CuT = (Ig, S, fg, optg), where
Ig: the set of all unweighted and undirected graphs G
Sg: S(G) is the set of all cuts in the graph G

fo:  fo(G,C) is equal to the number of edges in the cut C' of
the graph G
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opty: min

It is not difficult to see that the MIN-CUT problem given above can
be reduced to the MIN-CUT problem on directed and weighted graphs, by
replacing each undirected edge [u,w] with two directed edges (u,w) and
(w,u) and assigning each unweighted edge with a weight 1. As given in
the Max-Flow-Min-Cut theorem (Theorem 3.4.1), the MIN-CUT problem
on directed and weighted graphs can be reduced to the MAxiMuM Frow
problem, thus, can be solved in polynomial-time. As a consequence, the
MiIN-CuT problem given above on undirected and unweighted graphs can
also be solved in polynomial time. In the following discussion, the MIN-CUT
problem will always be referred to the problem defined above on undirected
and unweighted graphs.

We present a randomized algorithm for the MIN-CUT problem. Consider
the algorithm given in Figure 9.1, where G/e denotes the graph G with the
edge e “contracted”. A formal description of contracting an edge e = [u, v]
in a graph G is given as follows: first remove all edges between v and v in G,
then merge the vertices u and v into a single vertex w (so that all edges of
the form [z, u] or [z, v] in the original graph G, where z # u, v, now become
edges between x and w). Note that after contracting an edge, the number
of vertices of the graph is decreased by 1. Therefore, if we assume n is the
number of vertices in the input graph G, then the graph G}, in the algorithm
Contraction, 2 < h < n, has exactly h vertices.

Algorithm. Contraction
INPUT: an undirected and unweighted graph G of n vertices
OUTPUT: a cut of G
1. Gn=G;
2. for (h=n; h>2; h——) do
randomly pick an edge ep, in Gp; Gp—_1 = Gp/en;
3. return all edges in Ga.

Figure 9.1: Constructing a cut by edge contractions.

Assuming that the graph G of n vertices and m edges is given in its
adjacency matrix Mg, which is an n X n matrix in which Mg][i, j] is equal
to the number of edges between the vertices ¢ and j. With a careful imple-
mentation of the edge contraction operation, it is not difficult to see that
the algorithm Contraction runs in time O(n?). Moreover, the facts in the
following lemma can be easily verified.
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Lemma 9.2.1 Let e be an edge in a graph G. Then
(1) every cut C" of the graph G/e is also a cut of the graph G; and
(2) a min-cut C of G that does not contain e is also a min-cut of G/e.

PROOF. Fact (1) in the lemma is simple: for the cut C” of the graph G/e,
the vertex w of G/e resulted from contracting the edge e is in a connected
component of (G/e) \ C’. Thus, expanding the vertex w back to the edge
e would not make this connected component to connect with other compo-
nents, i.e., G\ C’ is still disconnected so C’ is a cut of the graph G.

To see Fact (2) in the lemma, first observe that since the cut C does not
contain the edge e, C is also a cut of G/e. Thus, the size of C' is not smaller
than that of a min-cut for G/e. Moreover, by Fact (1) that has been proved
above, every min-cut of G/e is also a cut for G. Thus, the size of a min-cut
of G/e is not smaller than that of the min-cut C' of G. Combining these, we
conclude that C is also a min-cut of G. [

Fix a min-cut C of the graph G. By Lemma 9.2.1, if we can ensure that
during the execution of the for-loop in step 2 of the algorithm Contraction,
each time the edge ey, picked in the graph G}, for the contraction is not in C,
then C' remains as a min-cut for all the graphs Gj,, 2 < h < n, constructed in
step 2. In particular, since the graph G in step 3 has only two vertices, it has
a unique min-cut, which consists of all the edges between the two vertices.
On the other hand, since C remains as a min-cut for Go, we conclude that
the set returned in step 3, i.e., the output of the algorithm Contraction,
is just the min-cut C' of the original input graph G = G,,.

Thus, now the problem becomes: “what is the probability that none of
the edges picked in step 2 of the algorithm is in the min-cut C?”

Let E; be the event that the edge e; picked in the graph G; by the
algorithm Contraction is not in the min-cut C, where 3 < i < n. Then, the
probability that the min-cut C' remains in the graph G9 when the algorithm
reaches step 3, i.e., the probability that the algorithm Contraction returns
a correct min-cut of the input graph G, is Pr[;_; E;].

By the definition of conditional probability, Pr[A|B] = Pr[AN B]/Pr[B],
or Pr[AN B] = Pr[A|B] - Pr[B]. Therefore, we have

n

N

1=3

Pr = Pr =Pr

n
ES‘ ﬂEz

1=4

Esn (m E;)
i=4
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We repeatedly apply this equality, and will get

n
Pr ﬂEz
Li=
M n
~ Pr Eg‘ N E| P | E:
L i=4 1=4
r n n n
— Pr Eg‘ N & -Pr E4‘ NE| -Pr|NE (9.1)
i=4 =5 =5

Now we consider the probability Pr[Ej, | (i, Ei] for a general h > 3
(note that for h = n, this conditional probability is equal to Pr[E,]). Under
the condition ﬂfz ny1 Ei, no edges e, €p—1, - .., €p+1, Which are in the graphs
Gn, Gn-1, ..., Gy, respectively, and picked in the first n — h executions
in step 2 of the algorithm for edge contractions, is in the min-cut C. By
Lemma 9.2.1, C remains as a min-cut for the graph G}, after the first n —h
iterations of the for-loop in step 2. The number of vertices in the graph Gy,
is h. Let k = |C|. Since the size of a min-cut of a graph cannot be larger
than the degree of any vertex (otherwise the edges incident to the vertex
would make a smaller cut), each vertex v in G}, has degree at least k. Thus,
the total number of edges in Gy, is at least kh/2, and, the probability that
an edge in C is picked for contraction in the (n — h + 1)-st iteration of the
for-loop in step 2 of the algorithm is not larger than k/(kh/2) = 2/h. In
conclusion, under the condition (), 41 Li, the probability of the event Ej,
is at least 1 — 2/h:
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Bring this in Equation (9.1), we get

Pr|()Ei
=3
— Pr Eg‘ N E:|-Pr E4‘ NE|--- Pr[E,_1 | En] - Pr[Ey]
=4 =5

(932 ()
(OO CDEDE)

2
n(n —1)
2
n?’

v

Therefore, the probability that the algorithm Contraction fails in re-
turning a correct min-cut of the input graph G is bounded by 1 —2/n?. Now
consider the algorithm in Figure 9.2:

Algorithm. Karger

INPUT: an undirected and unweighted graph G

OUTPUT: a min-cut of G

1. run the algorithm Contraction ¢tn? times;

2. return the cut that is the smallest among those constructed in step 1.

Figure 9.2: Karger’s algorithm for MiN-CuUT.

Theorem 9.2.2 The algorithm Karger returns a min-cut of the graph G
with a probability at least 1 — 1/e%, where e = 2.718--- is the base of the
natural logarithm.

Proor. We will use the well-known inequality 1 + = < €%, where x is any
real number (see, for example, Proposition B.3 in [106]). Let » = —2/n?,
we get 1 —2/n% < e=2/"" or

92 n?/2
(1 — $> <e L. (9.2)

The algorithm Karger does not return a min-cut of the input graph G
only if none of the calls to Contraction in step 1 returns a min-cut of G.
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By the above discussion, the probability that Contraction does not return
a min-cut of G is bounded 1 — 2/n?. Therefore, the probability that none
of the calls to Contraction in step 1 of the algorithm Karger returns a
min-cut of the graph G, i.e., the probability that the algorithm Karger fails
returning a min-cut of G, is bounded by

where we have used the inequality in (9.2). The theorem then follows. [J

As an example, if we let t = 10, then the probability that the algorithm
Karger returns a min-cut of G is larger than 0.99999999.

As we described, the algorithm Contraction runs in time O(n?), which
leads to the following theorem:

Theorem 9.2.3 For any constant € > 0, the algorithm Karger can be
implemented to run in time O(n*), and returns a min-cut for the input
graph G with a probability larger than 1 — €.

The algorithm Karger in Figure 9.2 is due to Karger [79], which can be
further refined and polished to improve the running time of the algorithm,
as given below. This algorithm is due to Karger and Stein [81].

Theorem 9.2.4 For any constant € > 0, there is an algorithm that runs in
time O(n%logn) on an input graph G of n vertices and returns a min-cut
for G with a probability larger than 1 — €.

9.3 Randomized algorithms for MAX-SAT

As we have seen from the last section, probabilistic methods in many cases
supply effective randomized algorithms for various computation problems.
In this section, we describe a general framework for randomized algorithms
for the MAX-SAT problem. The study of these randomized algorithms, com-
bined with other algorithmic techniques such as deranandmizations and re-
laxations to be discussed in the next section, will lead to improved approx-
imation algorithms for the MAX-SAT problem.

Recall that an instance of the MAX-SAT problem is a set of clauses
F ={C1,Cy,...,Cy} on aset of Boolean variables {x1, xa, ..., z,}, with the
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Algorithm. R-MaxSAT(F;p1,...,pn)

INPUT: aset FF = {C1,...,Cm} of clauses on n Boolean variables {z1,...,Zn},
and n real numbers p;, 0 <p; <1for1 <i<n

OUTPUT: an assignment 7 to {z1,...,2n}

1. for (i=1;i<n;i++) do
randomly assign 7(z;) = TRUE with probability p;;

2. return the assignment 7 constructed in step 1.

Figure 9.3: A randomized algorithm for MAX-SAT.

objective of finding an assignment 7 on the Boolean variables that maximizes
the number of satisfied clauses. Consider the randomized algorithm for the
MAX-SAT problem given in Figure 9.3.

The algorithm R-MaxSAT(F;p1,...,p,) in Figure 9.3 builds a proba-
bilistic space (€2, Pr) as follows: each sample point 7 in the sample space (2
is an assignment to the Boolean variables {xi,x2,...,z,}. Therefore, the
sample space € is finite and has totally 2" elements. From our construc-
tion, we know Pr[z; = TRUE] = p; and and Pr[z; = FALSE] = 1 — p;, for all
1 <4 < n. For an assignment 7, we will denote by 7(z;) the value of the
Boolean variable z; under the assignment 7. For each assignment 7 € (Q,
the probability Pr[r] is naturally defined by (note that by our construction,
the events [x; = 7(z;)] and [z; = 7(z;)] for i # j are independent):

Pr[r] = Pr[zy=71(z1)]----- Pr[z,, = 7(z,)]

= Il » JI - (9.4)

7(x;)=TRUE  7(2},)=FALSE

Thus, we have

> Prir] =) IIT » II a-»o0). (9.5)

TEQ 7€Q \7(x;)=TRUE  7(z))=FALSE

Let Q,_1 be the set of all assignments to the Boolean variables xs, 3, ...,
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Zp. From the equality in (9.5), we have

> Prfr] (9.6)

TEN
= > o [ » ] Q-
7(x1)=TRUE, 7’ €Qpn_1 7/(2;)=TRUE  7/(x},)=FALSE
+ > A-p) ] » JI @-pn
7(x1)=FALSE, 7/ €Qy_1 7/(x;)=TRUE  7/(xp)=FALSE

= pm Y, II » 11 @-» (9.7)

T'€Qpn—1 \7/(z;)=TRUE  7/(z},)=FALSE

+ (1—p) > II » I -pn

7'€Qn 1 \7/(x;)=TRUE  7/(xp)=FALSE

From (9.7), and by induction on the number n of variables, it is easy
to verify that > . Pr[r] = 1. Thus, (€2, Pr) indeed makes a probabilistic
space.

Recall that we say that an assignment satisfies a clause if the assignment
makes the clause to have value TRUE. For each clause C; in the instance F'
of the MAX-SAT problem, 1 < j < m, define a random variable X; on the
sample space €2 such that for each assignment 7 to the Boolean variables
{z1,..., 2}, we let

1 if 7 does not satisfy C;;
X;(r) = { T

0 if 7 satisfies C;. (9-8)

The linear combination Xypgat = X1 + - -+ + X, of these random variables
X defines a new random variable on the sample space ) such that for each
random assignment 7 in €, Xynsat(7) is the number of clauses in F' that are
not satisfied by the assignment 7. Thus, the random variable Xypnsat gives
the number of clauses in F' that are not satisfied by the assignment con-
structed by the algorithm R-MaxSAT (F;pi,...,p,). We will call Xypsat
the unsatisfied number of the algorithm R-MaxSAT(F;p1,...,p,). In case
we also need to indicate how this number is related to the parameters py,
., D, We also write Xyngat as Xl(lfllsgg’p ”). In the following, we first consider
the expectations of the random variables X, for all j, and Xypgas-

Suppose that the clause C; has k literals in F': Cj = (I1V--- V), where
Iy, are literals in {x1,...,z,}. Without loss of generality, we assume that
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no variable z; has both z; and Z; in the clause C; (such a clause would be
satisfied by all assignments). Let N; be the set of assignments in 2 that do
not satisfy the clause C;. Then Nj is an event of (2, and an assignment 7 in

(1 is in the event N; if and only if 7 makes all literals [y, ..., [ have value
FALSE. Thus,
Pr[N;] = Pr[(7(l1) = FALSE) A (7(l2) = FALSE) A - - - A (7(l,) = FALSE)]
= Pr[r(l;) = FALSE] - Pr[r(l2) = FALSE]| - - - - - Pr[7(l;) = FALSE]
= JI a=p) ] »n
xiEC’j fhECj

Note that the second equality is because the values for two different Boolean
variables x; and x; were assigned independently and the clause C; does not
contain both z; and Z; for any variable z;, so the events [7(l;) = FALSE| and
[7(l;) = FALSE] are independent.

By the definition of expectation,

EX;] = Y X;(nPrlrl= Y 1-Prrl+ Y 0P

TEQ 7: X;(1)=1 7: X;(1)=0
= > Pir)=PrNj] =[] 0 -p) [] on (9.9)
T: Xj(T)Z]. .’IZ,jECj .’EhECj

Now consider the unsatisfied number Xynsat = X1+ - -+ X, of the algorithm
R-MaxSAT(F;pi,...,pn). By the Linecarity of Expectation, we have

E[Xunsat] = ZE[XJ] = Z H (1 _pi) H Ph | - (910)

7j=1 Jj=1 \z;€Cj zpeC}

By the definition of the unsatisfied number Xypgat, the value E[Xypgat] =

E[Xlgflls;{’p ")] given in (9.10) is the expectation of the number of clauses in
F' that are not satisfied by the assignment constructed by the randomized
algorithm R-MaxSAT(F;pi,...,p,). Thus, m — E[Xl(lﬁls;g’p")] is the ex-
pected number of clauses in F' that are satisfied by the algorithm. By giving
different values to the probability p; with which we assign each Boolean
variable z; with value TRUE, we will obtain approximation algorithms with
different (expected) approximation ratios.

For example, let p; = 1/2 for all Boolean variables x; in the algorithm

R-MaxSAT in Figure 9.3. Then the unsatisfied number x W21/

unsat
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the algorithm R-MaxSAT(F;1/2,...,1/2) has the following expectation
(where |C}| denotes the number of literals in the clause C}):

m

EXU ) =3 1/290) < my2. (9.11)

unsat
j=1
Thus, the expected number of clauses satisfied by the assignment con-
structed by the algorithm R-MaxSAT(F;1/2,...,1/2) is at least
m — E[X(l/Q’”"l/Q)] >m—m/2=m/2.

unsat
We summarize this discussion in the following theorem.

Theorem 9.3.1 The expectation of the unsatisfied number Xl%/sig”’l/m of

the algorithm R-MaxSAT(F;1/2,...,1/2) is bounded by m/2. In other
words, the expectation of the number of clauses satisfied by the assignment
constructed by the algorithm is atl least m/2.

By Markov Inequality Pr[X > ¢] < E[X]/t (Theorem 9.1.2) and (9.11),
we can get randomized algorithms for MAX-SAT with guaranteed approxi-
mation ratios. For example, letting ¢ = 2m/3 in Markov Inequality gives

PriX (/22 > 9m 3] < BIXY2YD)/(2m)3) < (m)2)/(2m/3) = 3/4.

unsat unsat

That is, with a probability at least 1 —3/4 = 1/4, the randomized algorithm
R-MaxSAT(F;1/2,...,1/2) constructs an assignment that satisfies more
than m —2m/3 = m/3 clauses in the instance F' of the MAX-SAT problem.
This gives a randomized approximation algorithm of ratio 3 for the MAX-
SAT problem.

In the following, we show that if we select more carefully the probability
p; for assigning the Boolean variable x; with value TRUE, for each ¢, we can
decrease the expectation of the unsatisfied number X .t of the algorithm
R-MaxSAT(F;pi,...,pn). This will allow to get assignments with a larger
(expected or guaranteed) number of satisfied clauses, thus, improving the
approximation ratio.

A unit clause is a clause that contains only one literal. Two unit clauses
(11) and (I2) make a pair of conflicting unit clauses if Iy = I;. We observe that
any assignment to an instance F of MAX-SAT satisfies exactly one clause
in a pair of conflicting unit clauses. Thus, intuitively, pairs of conflicting
unit clauses would not affect the approximation ratio of an algorithm for
the MAX-SAT problem. More formally, let MAX-SAT* be the MAX-SAT
problem in which instances contain no pairs of conflicting unit clauses. We
have the following lemma.
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Lemma 9.3.2 If the MAX-SAT* problem has an approximation algorithm
of ratio r, then the general MAX-SAT problem also has an approximation
algorithm of ratio r.

PROOF. Let A* be an approximation algorithm of ratio r for the MAX-
SAT* problem. Consider the following algorithm for the general MAX-SAT
problem: for a given instance F of MAX-SAT,

(1) let F™* be the instance F' with all pairs of conflicting unit clauses
removed. ™ is an instance of MAX-SAT™;

(2) apply the algorithm A* on the instance F** to get an assignment
T to F™*

(3) convert the assignment 7* to F™* into an assignment 7 to F":
(1) if x; is a variable in F*, then let 7(z;) = 7*(x;);
(2) if z; is not a variable in F™* (i.e., if z; is only in F'\ F*), then

let 7(z;) = 1.

Let opt(F') and opt(F*) be the numbers of clauses satisfied by optimal
assignments to the instances F' and F™*, respectively, and let |7| and |7*| be
the numbers of clauses satisfied by the assignments 7 and 7* to the instances
F and F*, respectively. Finally, let k& be the number of pairs of conflicting
unit clauses in F'. Because each assignment to I’ satisfies exactly one clause
in each pair of conflicting unit clauses, we have |r| = |7*| + k, and can
easily verify that opt(F') = opt(F*) + k. Moreover, by the assumption of
the lemma, opt(F™)/|7*| < r. Therefore,

opt(F) _ opt(f71 )+ k < op‘c(f1 ) <r
7] [T+ k 7%

where the first inequality has used the fact that opt(F*) > |7*]. As a
result, the approximation algorithm described above for the general MAX-
SAT problem has an approximation ratio bounded by r. This completes
the proof of the lemma. [l

By Lemma 9.3.2, we only need to focus on the instances of MAX-SAT
that contain no pairs of conflicting unit clauses. Let £™* be such an instance
in the following discussion.

Consider a unit clause C; = (I) in F*, where [ is a literal. If we assign
| = FALSE then the clause C; becomes unsatisfied, so we “lose” the clause
Cj. On the other hand, if we assign [ = TRUE, then the clause Cj is satisfied
so we “gain” the clause C;. Moreover, assigning [ = TRUE does not cause
a direct loss of any clauses (recall that F* contains no pairs of conflicting
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unit clauses so the literal [ cannot be in a unit clause). This observation
suggests that we may want to give a higher priority to assigning [ = TRUE if
the literal [ appears in a unit clause in F™*. For this, we pick a real number
r, 1/2 < r <1 (the exact value of r will be determined later), and assign
[ = TRUE with a probability r if the literal [ appears in a unit clause. More
precisely, we assign the Boolean variables x; using the following rules:

(a) if (x;) is a unit clause in F™*, then let pf = r;
(b) if (z;) is a unit clause in F™*, then let pf =1 —r
(¢) if neither z; nor Z; appear in unit clauses in F*, then let pf = 1/2.

Note that rules (a) and (b) do not cause any conflicts because F™* contains

no pairs of conflicting unit clauses. Now consider the unsatisfied number
Xﬁfﬂsgg’p ") of the algorithm R-MaxSAT (F*;pj,...,p}), where the instance
F* contains no pairs of conflicting unit clauses, and pj, p3, ..., p;, are the

real numbers obtained using the above rules (a)-(c). By (9.10),

E[X uii;;t’p“]—z ITa-»0 IT # - (9.12)

7=1 :ciECj fiECj

By rules (a)-(c), the values p! in (9.12) can be either 1/2, r, or 1 — r.
Therefore,

(1) for a unit clause Cj, |Cj| =1, the term [, ec, (1 —pj) Ha‘cieCj D}
in (9.12) is equal to 1 —r;

(2) for a clause Cj with |Cj| = 2, the term [, cc (1 = p}) [Iz,cc, P}
in (9.12) can be one of the following values

1

1—
Z: 7”2, (1_T)27 7“(1—1"), T'

r
27 2

(9.13)

Recall that 7 > 1/2. Thus, the largest number in (9.13) is r2.

(3) for a clause Cj with |Cj| > 2, the term [[,, <c, (I—p7) Hiqecj D}
in (9.12) is equal to one of the values in (9. 13) times the product
of |Cj| — 2 other numbers that are all bounded by 1. Thus, the
term [, e (1—p!) H:mec*] p} in (9.12) cannot be larger than r2.

Summarizing the discussions in (1)-(3), we conclude that for any clause
Cj in the instance F™, the term [[ . ec; (1—p}) Hiiecj pi* in (9.12) is not
larger than max{1 — r,72}. Setting 1 —r = 2, we get r = (v/5 —1)/2 =
0.6180 - - -. Thus, if we let » = (v/5 — 1)/2, then for any clause Cj, the term
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szecj(l — i) Hiiecj pi is bounded by 1 —r < 0.382. This plus (9.12) gives

E[XP0P)] < 0.382m.

unsat

As a result, the expectation of the number of clauses in F* that are
satisfied by the assignment constructed by the randomized algorithm R-

MaxSAT(F*;pt, ..., pt) is at least m — E[XP1P)] > 0.618m. We sum-

unsat
marize the discussion in the following theorem.

Theorem 9.3.3 For an instance F* of MAX-SAT with no pairs of conflict-
g unit clauses, the expectation of the unsatisfied number x Pi-pn) of the

unsat
randomized algorithm R-MaxSAT(F*;pi,...,p}) is bounded by 0.382m,
where the numbers pi, p5, ..., py are obtained by rules (a)-(c).

9.4 Derandomization

As we have seen in previous sections, the probabilistic methods in many
cases supply simple and effective randomized algorithms for various compu-
tation problems. In some cases, the randomized algorithms can be “deran-
domized” and converted into deterministic algorithms without losing much
computational efficiency. In this section, we give a detailed discussion on
how the randomized algorithms for the MAX-SAT problem described in
the previous section can be derandomized. Interesting enough, this discus-
sion re-interprets Johnson’s algorithm (see Figure 8.10) for the MAX-SAT
problem as a derandomization of the randomized algorithm for MAX-SAT in
Figure 9.3. Based on this interpretation, we then show how to develop deter-
ministic approximation algorithms for the MAX-SAT problem with further
improved approximation ratios.

Consider the randomized algorithm R-MaxSAT(F;p,...,p,) in Fig-
ure 9.3. As we have proved, the expectation E[X\sa] of the unsatisfied
number X, et of the algorithm R-MaxSAT(F;pi,...,ps) is equal to

E[Xunsat] = Z H (1 _pi) H Pn | - (9'14)

j=1 \z;€C; zp€C;

Our derandomization process proceeds by trying to deterministically as-
sign each Boolean variable x; in F' with a value TRUE or FALSE, with the
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objective of not increasing the expectation E[Xsat] of the unsatisfied num-
ber of the algorithm. For this, consider any Boolean variable z; in the
instance F'.

Case-True. Suppose that we assign x; = TRUE. Then each clause
(s that contains the literal z; is satisfied so that the probability that Cj
is not satisfied becomes 0. Thus, the corresponding 0-1 random variable
X5 (see its definition in (9.8)) has its expectation change from its current
E[X;] to 0, decreased by E[X] —0 = E[X,]. On the other hand, under
the assignment z; = TRUE, the literal Z; disappears from every clause CY
that contains Z; because Z; = FALSE. By Equation (9.9), the expectation
of the corresponding random variable X; changes from its current E[X;] to
E[X,]/pi, where p; is the probability we assign z; = TRUE, decreased by
E[Xi] — E[Xi]/pi = E[X¢](1 — 1/pi).

The expectation of the clauses that contain neither x; nor z; are obvi-
ously unchanged under the assignment x; = TRUE.

Summarizing the above discussion over all clauses Cs in F' that con-
tain the literal z; and all clauses C; in F' that contain the literal z;, and
considering the expectation of the random variable X2t = Z;n:1 X (sce
(9.10)), we conclude that the assignment x; = TRUE decreases the expecta-
tion E[Xynsat] = Z;n:l E[X;] of the unsatisfied number Xnsat of the algo-
rithm by

Dy, —rrue = Z s] + (1 — 1/]%) Z E[Xt]

Z; cCy Z; cCy

Case-False. Suppose that we assign x; = FALSE. Then each clause
C} that contains the literal Z; is satisfied so that the probability that C%
is not satisfied becomes 0. Thus, the corresponding 0-1 random variable
X; has its expectation change from its current E[X;] to 0, decreased by
E[X:] — 0 = E[X}]. On the other hand, under the assignment z; = FALSE,
the literal x; disappears from every clause C; that contains x;. By Equation
(9.9), the expectation of the corresponding random variable X changes from
its current E[X;] to E[X,]/(1 — p;), decreased by E[X,] — E[X,]/(1 —p;) =
E[X,](1-1/(1—p;)). Summarizing over all clauses in F', we conclude that the
assignment z; = FALSE decreases the expectation E[Xyneat] = Z;”:l E[X;]
of the unsatisfied number X ,sa¢ of the algorithm by

xl—FALbE = Z 1 - 1/(1 _pZ)) + Z E[Xt]

z,€C5 z,€C

at least one of Dy, —rrur and Dy, —rarse is non-negative. Thus, if we assign the

Note that p; Dy, —rror = (Pi — 1) Day=rparse, pi > 0, and p; — 1 < 0. Thus,
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Boolean variable z; with a value that causes a larger decrease in E[Xsat],
we will always gain a non-negative decrease in the expectation E[Xunsat),
thus keeping E[Xpsat] non-increased.

We give some remarks on the process above from a view of probability
theory. Deterministically assigning the Boolean variable x; with value TRUE
or FALSE corresponds to changing the assigning probability p; for z; = TRUE
from its current value to a new p/, which is 1 or 0 depending on if we assign
x; with TRUE or FALSE, respectively. This change of the value p; implicitly
builds a new probabilistic space (€2, Pr’) from the original probabilistic space
(2, Pr), which has the same sample space € that is the set of all assignments
to F, with the probability measure Pr’ changed: for an assignment 7 in €,
Pr'[7] = p}-Pr[r]/pi (see (9.4) for the definition of Pr[7]). The only difference
is that in the new probabilistic space (£2, Pr’), the assighment to the Boolean
variable z; has become deterministic. More important, as discussed above,
by properly selecting the value assigned to x;, we can keep the expectation
of the unsatisfied number of the algorithm R-MaxSAT non-increasing.

Repeatedly applying the above process on each of the Boolean vari-
ables in the instance F' will eventually make the randomize algorithm R-
MaxSAT to become a deterministic algorithm that constructs a unique
assignment 79 to the variables in F'. This final algorithm can still be re-
garded as a randomized algorithm in which each parameter p; = 79(z;) is
either 1 or 0. By the above analysis, the expectation of the unsatisfied num-
ber of the final algorithm is still bounded by that for the original random
assignment. Note that the probabilistic space (€2, Prg) corresponding to the
final algorithm has Pro[rg] = 1, and Pry[r] = 0 for all other assignments
T # 719 in Q. Therefore, the expectation E[X nsat] of the unsatisfied number
of the final algorithm is equal to

E[Xunsat] = Z Xunsat(T) : PTO(T) = Xunsat(TO)v
TEQ

which is exactly the number of clauses in F' that are not satisfied by the as-
signment 79. As a result, we conclude that the number of clauses in F' that
are not satisfied by the assignment 79 constructed by the final deterministic
algorithm is not larger than E[Xl(l‘ﬁlsg{’p ")], where p1, ..., p, are the initial
values assigned to the randomized algorithm R-MaxSAT(F;py,...,pn) be-
fore we start the derandomization process.

This leads to a deterministic approximation algorithm DeRandom for
the MAX-SAT problem, which is formally presented in Figure 9.4. The algo-
rithm DeRandom(F;py,...,p,) derandomizes the randomized algorithm
R-MaxSAT(F;pi,...,p,) in Figure 9.3. In the algorithm DeRandom,
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we denote by w(C;) the expectation E[X;] of the random variable X (see
definition in (9.9)), and let L be the set that keeps all clauses C; in F' with
w(Cj) > 0. Thus,

w(L)= Y w(C) =Y w(C) =Y BX)] = Xyl

CjeL j=1 j=1

relation p; >, o BIXs] > (1 —pi) >z cc, E[Xt], which, by the definition
of w(Cy), is the same as p; >0, o, w(Cs) > (1 —pi) Yz e, w(Ch).

By the definitions, the relation Dy,—rrur > Dy;=rarse 1S equivalent to the

Algorithm. DeRandom(F';p1,p2,...,pn)

INPUT: a set of clauses F = {C1,C2,...,Cm} on {z1,z2,...,Zn}
and n real numbers p1, p2, ..., pn, 0 < p; <1
OUTPUT: a truth assignment 7 to {z1,z2,...,2n}

1. for (each clause Cj) do w(C;) = Hw5607 (1—ps)- HitECj Dt;
2. L={C1,Co,...,Cn};
3. fori=1tondo
3.1 let T be the set of clauses in L that contain x;;
let F' be the set of clauses in L that contain Z;;

32 i (i So,er w(C) > (1-p) Doyep w(Ch))
3.2.1 then 7(z;) = TRUE; delete all clauses in T from L;
for (each clause Ct in F) do w(Ct) = w(Ct)/pi;
3.2.2 else 7(x;) = rALSE; delete all clauses in F from L;
for (each clause Cs in T) do w(Cs) = w(Cs)/(1 — ps).

Figure 9.4: Derandomizing the algorithm R-MaxSAT.

We give a detailed examination on the algorithm in Figure 9.4. The

algorithm DeRandom(F'; p1,po,...,p,) derandomizes the randomized al-
gorithm R-MaxSAT(F;p1,ps2,...,pn) by assigning values to the Boolean
variables x1, x9, ..., T, in the given order. Step 1 sets for each clause

C; the value w(Cj) = Hmsecj(l — ps) - H:ztecj pt, which, by (9.9), is
equal to E[X;] for the randomized assignment constructed by the algo-
rithm R-MaxSAT(F;p1,p2,...,pn). As a result, step 2 of the algorithm
ensures that w(L) = 377", w(Cj) is equal to E[Xunsat] = D7 E[Xj],
where Xunsat 1S the unsatisfied number of the randomized algorithm R-
MaxSAT(F;p1,p2,--.,pn). Thus, steps 1-2 of the algorithms correctly set
the initial values of w(L) and w(Cj), for 1 < j < m.

By the discussions on Case-True and Case-False above, if D, —rgue >
Dy=paLse, or equivalently, if p; y 0, o w(Cs) > (1 —pi) Yz co, w(Ct), then
assigning x; = TRUE will not increase the expectation E[Xnsat]. Other-
wise, assigning x; = FALSE will not increase E[Xypsat]. As a result, the
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assignments of the variable z; in step 3.2 of the algorithm guarantees that
E[Xunsat) is not increased. Moreover, as we discussed in Case-True, if we
assign x; = TRUE then the expectation E[X] for a clause Cy that contains
xz; becomes 0 so we can delete Cs from the set L, while the expectation
E[X;] for a clause C} that contains Z; has its value changed from the current
E[X;] = w(Cy) to w(Cy)/p;. All these are correctly handled by step 3.2.1
of the algorithm. Similar, by the discussion for Case-False, the set L and
values of the related clauses under the assignment x; = FALSE are correctly
updated by step 3.2.2. In conclusion, for each variable x;, step 3 of the algo-
rithm keeps the expectation E[Xypsat] non-increasing, and correctly updates
the set L and the values w(C}) for all clauses C; so that w(C;) = E[X]] for
all j and w(L) = E[Xnsat] hold after the assignment of x;.

Therefore, the algorithm DeRandom(F;p1,pe,...,p,) constructs an
assignment 7 to the instance F', and the number of clauses not satisfied by
the assignment 7 is bounded by E[Xl(lflls;,':"p ")), where Xl(flls;,':”p ") is the unsat-
isfied number of the randomized algorithm R-MaxSAT(F';p1,p2,...,Pn)-
We summarize the above discussion in the following theorem.

Theorem 9.4.1 The wunsatisfied number of the deterministic algo-

rithm DeRandom(F';p1,pa,...,pn) is bounded by E[X(pl""’p")], where

unsat
Xq(ﬁs;'t"p ) s the unsatisfied number of the randomized algorithm R-

MaXSAT(F;pl,p% s 7pn)
Combining Theorem 9.4.1 with Theorem 9.3.1, we obtain:

Corollary 9.4.2 There is a polynomial-time (deterministic) approximation
algorithm for MAX-SAT whose approximation ratio is bounded by 2.

ProoOF. By Theorem 9.3.1, the expectation of the unsatisfied number of
the randomized algorithm R-MaxSAT (F;1/2,...,1/2) is bounded by m/2.
By Theorem 9.4.1, the unsatisfied number of the deterministic algorithm
DeRandom(F;1/2,...,1/2) is bounded by m/2. That is, the assignment
constructed by the deterministic algorithm DeRandom(F;1/2,...,1/2) on
an instance F' of m clauses for the MAX-SAT problem satisfies at least
m/2 clauses in F. Therefore, the approximation ratio of the deterministic
algorithm DeRandom(F';1/2,...,1/2) is bounded by m/(m/2) =2. O

Corollary 9.4.2 gives a deterministic approximation algorithm for MAX-
SAT whose approximation ratio is the same as that of Johnson’ algorithm
(see Figure 8.10 and Theorem 8.3.3). It is interesting to see that if we let
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pi = 1/2 for all 7 in the algorithm in Figure 9.4, then, the algorithm, i.e.,
DeRandom(F;1/2,...,1/2), is just Johnson’s algorithm in Figure 8.10.
That is, Johnson’s algorithm can be interpreted as derandomization of the
randomized algorithm R-MaxSAT(F;1/2,...,1/2).

Similarly, consider an instance F* of m clauses on n Boolean vari-
ables for the MAX-SAT problem such that F* contains no pairs of con-
flicting unit clauses. By Theorem 9.3.3, we can properly choose real num-
bers pi, p5, ..., py, 0 < pi < 1, such that the expectation of the un-
satisfied number of the randomized algorithm R-MaxSAT (F*;pj,...,p})
is bounded by 0.382m. By Theorem 9.4.1, the unsatisfied number of
the deterministic algorithm DeRandom(F*;pj,...,p}) is bounded by
0.382m. Therefore, the assignment constructed by the deterministic algo-
rithm DeRandom(F*;p7,...,p) on the instance F* of m clauses with no
pairs of conflicting unit clauses satisfies at least 0.618m clauses in F', so the
algorithm has an approximation ratio bounded by m/(0.618m) = 1.6181.
This, combined with Lemma 9.3.2 , gives the following corollary.

Corollary 9.4.3 There is a polynomial-time (deterministic) approzimation
algorithm for MAX-SAT whose approzimation ratio is bounded by 1.6181.

Compared with Theorem 8.3.5, Corollary 9.4.3 does not give an approx-
imation ratio better than that of Johnson’s algorithm. On the other hand,
it suggests a new approach to approximation algorithms for MAX-SAT.

9.5 Linear programming relaxation

In this section, we study a powerful technique, linear programming relax-
ation, and illustrate how the technique is used to help selecting probability
of assigning Boolean variable values in Theorem 9.4.1 to obtain further im-
proved approximation algorithms for the MAX-SAT problem.

We first reduce an instance F' = {C',...,Cp,} of m clauses on n Boolean
variables {1, x9,...,z,} of the MAX-SAT problem to an instance IPp of
the INTEGER LINEAR PROGRAMMING problem (INTEGER LP), which is
given as follows.

(IPr) :  maximize 21 + 204 -+ 2
subject to
Z x; + Z(l—fb’i)sz for j=1,...,m,
z;€C; 7,€C,
zi,zj=0or 1 forl1<i<n, 1<j5<m.
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It is easy to see that, if we interpret the integer 1 as the Boolean value
TRUE and the integer 0 as the Boolean value FALSE, then an optimal so-

lution (z¢,...,22,27,...,29,) to the instance IPp of INTEGER LP gives
an optimal assignment o, = (x9,...,22) to the Boolean variables in

the instance F' of MAX-SAT that maximizes the objective function value
opt(F) = opt(IPp) = 2{+- - -+22,. Unfortunately, the INTEGER LP problem
is NP-hard [54].

Since general linear programming problem LP is solvable in polynomial
time [54], we try to “relax” the integral constraint in the instance IP g for
INTECER LP and see how this relaxation would help in deriving a good
approximation for the instance F' of the MAX-SAT problem.

(LPp): maximize 23 +z22+ -+ 2n, (9.15)
subject to
Dmid Y (I—m) >z forj=1,...,m,
z,€C; z;eC;
0<z4,2 <1 for1<i<n, 1<j<m.

Let A* = (27F,...,2},2],...,2}) be an optimal solution to the instance
LPr with a maximized objective function value opt(LPp) = 2§ + - -+ + 2.
The solution A* can be constructed for LPg in polynomial time. Since each
solution to the instance IPz is also a solution to the instance LP p, we have
opt(LPg) > opt(IPF), which gives an upper bound opt(LP ) for the optimal
value opt(IPg) = opt(F'). This estimation of the value opt(F') is obviously
more precise than the bound m, which is the total number of clauses in F,
and has been used for an upper bound of opt(F') in our previous analysis for
approximation algorithms for the MAX-SAT problem.

Unfortunately, the values (z7,...,z}) in A* cannot be directly used as
an assignment to the Boolean variables x1, ..., x, in the instance F of
MAX-SAT. In general, the value z] can be a non-integral number between
0 and 1 while assigning a Boolean variable x; with a value that is not 0
(i.e., FALSE) and 1 (i.e., TRUE) makes no sense. On the other hand, the
values (z7,...,x}) do provide useful information for a good assignment to
the Boolean variables z1, ..., z,. For example, suppose that 7 = 0.95 and
x5 = 0.03. Then we would expect that in order to achieve a larger objective
value of z; + 2o+ - - -+ z;m, the variable x; seems to need to take a large value
while the variable x5 seems to need to take a small value. In particular, if
x1 and xo must be either 0 or 1, then it seems more likely that x; should
take value 1 while z9 should take value 0.

A natural implementation of the above idea is to assign each Boolean
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variable x; = TRUE with probability x} (note we have 0 < 27 < 1) in
the randomized algorithm R-MaxSAT(F;z7,...,xz}), so a larger =} value
would make the Boolean variable x; to have a large probability to get value
TRUE. Then run the algorithm DeRandom(F;z3,...,z}) in Figure 9.4
whose unsatisfied number is not larger than the expectation of the unsatisfied
number of R-MaxSAT (F;x7,...,z}). The algorithm based on this idea is
given in Figure 9.5.

Algorithm. LP-Relaxation(F)

INPUT: a set of clauses F' = {C1,Co,...,Cn} on {z1,22,...,Zn}
OUuTPUT: a truth assignment 7* to {z1,z2,...,2n}

1. solve the instance LPr of LP in (9.15);

let the optimal solution of LPg be (xF,..., 25, 27,...,25);
2. call the algorithm DeRandom(F;z7,...,x},) in Figure 9.4;
3. return the assignment 7* constructed in step 2.

Figure 9.5: Approximating MAX-SAT by LP Relaxation.

Let E[X (xf’""I:L)] be the expectation of the unsatisfied number of the

unsat

randomized algorithm R-MaxSAT(F;z7,...,z}). By (9.10),

EXo =S T -2 I =

j=1 LL‘iECj Li’hECj

By Theorem 9.4.1, the unsatisfied number of the deterministic algorithm
DeRandom(F;z7,...,z}) is not larger than E[X(xl’“"x")]. Therefore, the

unsat
assignment 7* constructed by the algorithm LP-Relaxation(F') satisfies at

least

m—BXGL] = w3 | [T a-e) I =

J=1 \=:€C; zpel;
m
= > |1-JIla-=) I = (9.16)
j=1 I,ECJ' iiECj

clauses in the instance F'.

To derive a lower bound for the value in (9.16), let (x7,..., 2%, 27, ..., 2})
be the optimal solution for the LP instance LPp in (9.15) constructed in
step 1 of the algorithm LP-Relaxation(F') .
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Lemma 9.5.1 Let C; be a clause of k literals in the instance F'. Then
* * * 1 *
1-— H (1—2a7) H x; > Bz > <1—;)zj,
xiECj EiECj
where B = 1—(1—1/k)*, and e = 2.718 - - - is the base of natural logarithms.
PROOF. It is well-known that for any & nonnegative numbers ai, as, ...,

ay, the arithmetic mean is at least as large as the geometric mean:

ay +ag + -+ ag

> Yaraz - - ag.
L = 1042 k

Therefore, we have

* * k
3 1 —
xlECj fiEC] k

* * k

N k

2\ *
< (1 — f) : (9.17)
The last inequality is because (z7,...,x;,27,...,25),) is a solution to the

instance LPp of the LP problem so we have

doai+ ) (1-a)) >z

z:€C; 7,€C;
From (9.17), we get immediately
1—H(1—m*)1‘[x*>1_(—z—;>k (9.18)
2:€C; l T.€C; T k) .

Define a function ¢(z) = 1 — (1 — z/k)¥. Then t(0) = 0 and (1) = SB4.
Since the second derivative of the function ¢(z) is not larger than O:

t"(2)=—(k—1)(1 - 2/k)*2/k<0, for0<z<1,

(we assume k > 1), the function ¢(z) is concave in the interval [0,1]. This
implies that the curve y = {(z) is above the straight line y = Sz connecting
the two points (0,0) and (1, 8x) in the interval [0, 1] (see Figure 9.6).
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Figure 9.6: The value t(z) is larger than fjz.

In particular, since 0 < z7 < 1, we have ¢(2]) > Bgz;. Combining this
with (9.18), we obtain

1
1= [T =2 ] =8 ><1——>j
:CiGC CCEC

The second inequality is because [ is non-increasing in terms of k, and
limg oo B = 1 — 1/e. This completes the proof of the lemma. [J

Lemma 9.5.1 gives immediately the following theorem.

Theorem 9.5.2 The algorithm LP-Relaxation in Figure 9.5 for the
MAX-SAT problem runs in polynomial time and has an approrimation ratio
bounded by e/(e — 1) ~ 1.58.

PROOF. Since linear programming problem LP is solvable in polynomial
time, the algorithm LP-Relaxation runs in polynomial time.

As discussed above, the number of clauses |7*| in the instance F' of MAX-
SAT that are satisfied by the assignment 7* constructed by the algorithm
LP-Relaxation(F') is at least

m
2 m - EXS =3 (- [T a2 [] «
By Lemma 9.5.1,
1
1— H (1—ab) H x> <1——>
2,€C; z;€C;

and noticing that 77", z7 is the value of the optimal solution to the instance
LPp of the LP problem, which is at least as large as opt(IPr) = opt(F') for
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the instance F' of the MAX-SAT problem, we obtain

| > (1 _ %) ilz* > (1 — %) opt(F).
=

This implies directly that the approximation ratio opt(F')/|7*| of the algo-
rithm LP-Relaxation(F’) is bounded by e/(e —1), and completes the proof
of the theorem. []

Recall that Theorem 8.3.5 shows that the approximation ratio for John-
son’s original algorithm (Figure 8.10) is 1.5. Therefore, the ratio e/(e—1) ~
1.58 of the algorithm LP-Relaxation is not better than that of Johnson’s
original algorithm.

On the other hand, it is interesting to observe that the algorithm LP-
Relaxation and Johnson’s algorithm in some sense complement each other.
By Lemma 8.3.2, the number of clauses satisfied by the assignment 7 con-
structed by Johnson’s algorithm is at least

Sy () r e

j=1 k>1|Cyl=k k>1|Cyl=k

where we have let oy, = 1 — 1/2%. By (9.16) and Lemma 9.5.1, the number
of clauses satisfied by the assignment 7* constructed by the algorithm LP-

Relaxation is at least
DD B
k>1|C4|=k

where B = 1 — (1 — 1/k)*. The value a3 increases in terms of k while the
value B decreases in terms of k. More specifically, Johnson’s algorithm does
better for clauses with more literals while the algorithm LP-Relaxation
does better for clauses with fewer literals. This observation motivates the
idea of combining the two algorithms to result in a better approximation
ratio. Consider the algorithm given in Figure 9.7.

Theorem 9.5.3 The algorithm Relax-Johnson for the MAX-SAT prob-
lem runs in polynomial time with an approximation ratio bounded by 4/3.

PrOOF. The algorithm obviously runs in polynomial time.
Let mj be the number of clauses in F' satisfied by the assignment 7y
constructed by Johnson’s original algorithm, and let my, be the number of
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Algorithm. Relax-Johnson(F')
INPUT: a set of clauses F' = {C1,C2,...,Cm} on {z1,%2,...,2n}
OUTPUT: a truth assignment to {z1,x2,...,2n}

1. call algorithm LP-Relaxation(F') to construct an assignment 7, for F;
2. call Johnson’s algorithm to construct an assignment 7; for F;
3. return the better one of 7, and 7.

Figure 9.7: Combining the LP Relaxation and Johnson’s algorithm.

clauses in F' satisfied by the assignment 77 constructed by the algorithm
LP-Relaxation. By the above discussion, we have

mjzz Z a  and mLZZ Z Brzj,

k>1|C;=k| k>1|C;=k]|

where a = 1—1/2F and By = 1—(1—1/k)*. According to the algorithm, the
number of clauses satisfied by the assignment constructed by the algorithm
Relax-Johnson is

max{mj,mL} > w
> T T wr Y Y s
k>1|C;=k| k>1|C;=k|
> 3 (T T g Y A
k>1|C;=k]| k>1|C;=k|
= Z Z <ak+6k)z;.
k>1|C;=k|

In the second inequality, we have used the fact 0 < 27 <1 for all j. Now it
is not difficult to verify that for all £ > 1, ay + B > 3/2. Thus, we conclude
3 3
max{mj, mrp} > - z; Z opt(F).
7j=1

Here we have used the fact that Z i_1 2; is the value of an optimal solution
to the instance LPg of the LP problem which is at least as large as the
optimal value opt(F') for the instance F' of the MAX-SAT problem.

This implies immediately that the approximation ratio of the algorithm
Relax-Johnson is bounded by 4/3.
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Approximation algorithms for the MAX-SAT problem have been a very
active research area in the past decades. Reference [64] surveyed the research
up to 1990. For more recent research, see [9]. We make two remarks before
we close this section.

A natural generalization of the MAX-SAT problem is the WEIGHTED
MAX-SAT problem in which each clause has a weight and we are looking for
assignments to the Boolean variables that maximize the sum of the weights
of the satisfied clauses. All algorithms we have discussed can be easily
modified to work for the WEIGHTED MAX-SAT problem without affecting
the approximation ratio.

Relaxation techniques have been very successful in the study of approxi-
mation algorithms for MAX-SAT. After the discovery of the approximation
algorithm for MAX-SAT based on linear programming relaxation, as we dis-
cussed in this section, relaxation of other mathematical programmings has
also been investigated. In particular, relaxations on semidefinite program-
ming have been investigated carefully for further improvement of approx-
imation ratio for MAX-SAT. In the other research direction, the study of
inapproximability of MAX-SAT has also been making significant progress.
We refer readers to [65, 83] for updates of the research.

9.6 Semidefinite program relaxation

The last problem we study in this chapter is the MAX-CUT problem. Let
G = (V,E) be a graph. A cut of the graph G is a partition D = (Vg, Vg) of
the vertex set V of G. That is, V;, UVg =V and V;, N Vg = 0. We say that
an edge e of G is crossing in the cut D if one end of e is in V7, and the other
end of e is in V. The size of a cut D = (Vr,Vg) of G is the number of
crossing edges in the cut D. The MAX-CuUT problem is defined as follows.

Max-Cut = (Ig, Sg, fq,optq), where

Ip:  the set of all undirected graphs G

Sg: Sg(G) is the set of all cuts of the graph G

fo:  fo(G, D) is equal to the size of the cut D of the graph G
optg: max

While the MAX-CuT problem is NP-hard [54], it has a very simple ap-
proximation algorithm, as shown in Figure 9.8.
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Algorithm. ApxCut-I(G)
INPUT: a graph G whose vertex set is {vi,v2,...,vn}
OutpPuT: a cut (Vp,VRg) of the graph G

1. Vp=0; Vg=0;

2. fori=1tondo
if (v; has more adjacent vertices in V7, than in Vg)
then Vg = VR U{v;} else Vi, =V U{uv;};

3. return (V,VR).

Figure 9.8: First pproximation algorithm for MAX-CUT

Theorem 9.6.1 The algorithm ApxCut-I for the MAX-CUT problem has
approrimation ratio bounded by 2.

PrROOF. When the vertex wv; is considered by the algorithm, the edges
connecting v; to the vertices vy, ..., v;_1 are counted. According to the
algorithm, at least half of these edges become crossing edges. Therefore,
at the end of the algorithm, at least half of the edges of the graph G are
crossing edges. Since no cut can have size larger than the total number of
edges in G, the theorem follows. [

Remark 1. The algorithm ApxCut-I can be regarded as derandomiza-
tion of the simple randomized algorithm for MAX-CuUT that simply places
each v; of the vertices of the graph G = (V, E) in either the set Vj, or the set
Vgr at random with equal probabilities. In fact, if for each edge e in G, we
let X¢ be the 0-1 random variable that is equal to 1 if and only if the edge
e is crossing between Vi and Vg, then it is easy to see that E[X.] = 1/2.
Therefore, the expectation E[X] of the number X = > 5 X, of crossing
edges between Vy, and Vg is equal to |F|/2. Now the algorithm ApxCut-I
simply ensures that placing each vertex v; does not decease the expectation
E[X] of the number of crossing edges.

Remark 2. The simple algorithm ApxCut-I stood as the best ap-
proximation algorithm for MAX-CUT for more than 20 years, despite of the
consistent calls for improvements. The record was eventually broken by Goe-
man and Williamson in their seminal work based on semidefinite program
relaxation [56], which will be discussed in detail in the rest of this section.

Let G = (V, E) be an instance of the MAX-CUT problem, which is an
undirected graph with the vertex set V' = {vy,v9,...,v,}. For each vertex
v; in G, introduce a variable y; that takes value either 1 or —1, with y; =1
meaning that the vertex v; is in the set V;, while y; = —1 meaning that the
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vertex v; is in the set V. Consider the following mathematical programming
problem, where Z is the set of integers:

1
(MP¢) @ maximize 3 E (1 =y y))
[’Ui,Uj]EE

subject to y; € Z, and yiz =1, 1<i<n.

Lemma 9.6.2 Let {y; | 1 < i < n} be an optimal solution to (MPg),
and let Vi, = {v; | yf = 1} and Vg = {v; | yf = —1}. Then (V,Vg) is a
mazimum cut of the graph G whose size is equal to (1/2) Z[vi,vj]eE(l_y;“y;)'

Proor. With the condition that y; can only be either 1 or —1 for all 4,
the term (1 — y; - y;) in the objective function (1/2) Z[vi,v‘j]eE(l —y; - y;) of
(MP¢), which is for the edge e = [v;, v;] in the graph G, is either 2 or 0, and
1—y;-y; = 2 if and only if the edge e = [v;, v,] is a crossing edge. As a result,
the maximum value of the objective function (1/2) Z[vi,vj]e g(1—y;-y;) of
the instance (MP¢) gives the largest possible number of crossing edges in a
cut of the graph G. [

Thus, the problem (MPg) is equivalent to the MAX-CUT problem on the
instance G. Since the MAX-CuT problem is NP-hard, we would not expect
to solve (MP¢) in polynomial time . As we did in LP relaxation, we will try
to relax the problem (MP¢) to an easier problem.

Let R™ be the n-dimensional Euclidean space. Recall that for two vectors
V= {(z1,...,2,) and V' = (z],..., 2} ) in R", the inner product of vV and v,
denoted by v - V', is defined as v - V' = 12} + xo2h, + - - + z,,2,. Consider

the following wvecter programming problem:

1
(VPg) :  maximize 3 Z (1—-v;-Vj)
[vi,v;]€E

subject to v; € R", and |[V4||= vV - V=1, 1<i<n.

Lemma 9.6.3 Let optey:(G) be the size of a mazimum cut of the graph
G, and let opt,,(G) be the optimal value for the instance (VPg). Then

Optcut(G) S Optvp(G) .

PROOF. Let opt,,(G) be the optimal value for the instance (MP¢g). By
Lemma 9.6.2, it suffices to prove that opty,(G) < optyy(G).

For each solution {y1,...,yn} to the mathematical programming in-
stance (MPg), if we let ¥; = (y;,0,...,0) ) for each i, then {V1,Va,...,Vy}
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is obviously a solution to the vector programming instance (VPg). There-
fore, (VPg) is a relaxation of (MP¢). Since both (MPg) and (VPg) are
maximization problems , we derive immediately optp,,(G) < opt,,(G). U

Note that the vector programming instance (VPg) is looking for an
assignment to n vectors in R™, in which totally there are n? unknown real
numbers. In fact, the vector programming instance (VPs) is equivalent
to the following semidefinite programming instance that looks for an n x n
matrix M = [zi;]i1<i j<n such that:

(SDP¢g) :  minimize Z Tij
[’Ui,’l)]]EE
subject to x5 =1, 1 <i<n, and
M =W x W7 for an n x n matrix W,

where W7 is the transpose of the matrix W, and W x W7 is the regular
matrix multiplication. To see this, consider a solution {Vi,Vs,...,V,} to
the instance (VP¢g). Let x;; = v; - ¥; for all 1 < 4,5 < n, and for each
i, let the i-th row of the matrix W be the vector v;. Then it is easy to
verify that the matrix M = [z5]1<; j<n constructed this way satisfies the
conditions in (SDPg). For the other direction, let M = W x W7 be a
solution to the instance (SDP¢), and let v; be the i-th row of the matrix
W, then {V1,Va,...,V,} is a solution to the instance (VPg).

The name semidefinite program comes from the condition M = W x W7T
that requires the matrix M to be symmetric and positive semidefinite (i.e.,
for all vectors ¥ in R”, VvMv! > 0).

It is currently unknown whether semidefinite program problems can be
solved in polynomial time. On the other hand, it has been shown [2] that
semidefinite program problems can be approximated in polynomial time to
any constant additive errors. Since such an additive error can be absorbed
into the approximation ratio in our approximation algorithms, in the fol-
lowing discussion, we will assume, without loss of generality, that we can
construct an optimal solution to the instance (VP¢) in polynomial time.

Now we are ready for a randomized approximation algorithm for the
MAX-CuT problem. The algorithm is given in Figure 9.9, where c is a
constant to be determined later.

By our assumption given in the discussion above, the algorithm SDP-
Cut runs in polynomial time. The partition of the vertices of the graph G is
based on the partition of the vectors {v},V3,..., v} constructed in step 1
of the algorithm. Geometrically, we use the randome hyperplane defined by
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Algorithm. SDP-Cut(G)
INPUT: a graph G = (V, E) whose vertex set is V = {v1,v2,...,vn}
OutruT: a cut (Vp,VRg) of the graph G

1. solve the vector program (VPg), let the optimal solution be (¥, ¥V3....,V%);
2. loop c¢ times
2.1 randomly pick a vector ¥ in R";

2.2 make a cut (Vr,VR) of G, where Vi, = {v; | VI - ¥ > 0}, Vg = {vs | V], - ¥ < 0};
3. return the largest cut constructed in step 2.

Figure 9.9: SDP relaxation algorithm for MAX-CUT

the equation Vv - ¥ = 0, which passes through the origin and is perpendicular
to the vector T, to divide the n-dimensional space R™ into two parts that
contain the vectors that satisfy v - > 0 and vectors that satisfy \7’; T <0,
respectively. Then, by step 2.2, the partition of the vertices of the graph G
follows the partition of the corresponding vector partition.

More interesting is the analysis of the approximation ratio of the algo-
rithm. First note that by definition, for two vectors v} and \7’* we have
ViV = V7| [V cos(0F ), where 07 ;, 0 < 67, <, is the angle between
the two Vectors V; and V}. Since [V]| = [V}| = 1 the value of the objective
function of the instance (VPg) for the bOhlthIl (Vl, Vs, ..., V) is really

% Z (1_{,‘:.‘7‘;):% Z (1 —cos(6;;))-

[vs,v5]€E [vs,v5]€E

The above relation gives an intuitive explanation to the algorithm SDP-Cut
that connects the instance (VP¢) to large cuts in the graph G: maximizing

1/2 . 1 — ¥, - V;) is equivalent to minimizing e cos(04),
Esz{ic)hXi':s[géﬂ:\]fe(d by makijn)g the angles 0;;, collectively, aszlzz[t?gg]gf pOSS(ibjli,
where each 6;;, 0 < 6;; < 7, corresponds to an edge [v;,v;] in the graph G.
The larger angles then will increase the possibility for a random hyperplane
to separate more vector pairs in the objective function of (VP¢), which in
turn increases the number of crossing edges in the graph G. The follow-
ing lemma gives a quantitative analysis for this observation. Recall that
opleut(G) denotes the size of a maximum cut of the graph G.

Lemma 9.6.4 Let X, be the number of crossing edges for the cut (V,, V)
constructed by steps 2.1-2.2 of the algorithm SDP-Cut(G). Then E[X o] >
0.8785 - optcut (G),

PrOOF. Let H be the hyperplane defined by the equation v - ¥ = 0 in the
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n-dimensional Euclidean space R™, where 1 is the random vector generated
in step 2.1 of the algorithm. Consider a vector pair (V},V}) for an edge
[vi,v;] in the graph G and let 07; be the angle between the vectors v and
V. The vector pair (v, \7';‘) defines a unique 1-dimensional plane P;; in R™.
Projecting the hyperplane H onto the plane P;; gives a line [y in the plane
P;;. Since the vector ¥ in R", thus the hyperplane H, is randomly picked
in step 2.1 of the algorithm SDP-Cut, [/ is a random line in the plane Pj;

passing through the original. See Figure 9.10.

plane P

Figure 9.10: A random line /y on the plane F;; spanned by v} and v7.

It is easy to see that the probability that the random line Iz separates
the two vectors V; and \7’;, i.e., having v} and \7’; on different sides of the
line, is 92’-} /7. This is also the probability that the hyperplane H separates
the two vectors. Note that the number X, of crossing edges for the cut
(VL, Vgr) constructed by steps 2.1-2.2 of the algorithm SDP-Cut is equal to
the number of vector pairs (V;, V) such that [v;,v;] is an edge in G and the
hyperplane H separates the vectors v and \7';. Therefore, if we define a 0-1
random variable X;; that is equal to 1 if and only if the hyperplane H sepa-
rates the vectors v/ and \7}’?, then E[X};] = Hfj/w, and X = Z[vhvj]eE Xij.
Therefore,

BlXal= Y BXg=1 Y 6 (9.19)

[vi,v5]€E [vs,05]€E

By Lemma 9.6.3, opteut(G) < opt,,(G). Therefore, in order to prove the
lemma, it suffices to prove E[X,:] > 0.8785 - opt,,(G), where

1

1 % ok *
optup(G) = 5 > (=¥ V) =5 > (1= cos(8})), (9.20)
[vivj]eE [vi,v5]€E
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and (V],V3,...,V)) is the optimal solution to the instance (VP¢g) con-

structed by step 1 of the algorithm SDP-Cut. By (9.19) and (9.20), we
just need to prove

1 . 0.8785 .
- > 0 > ——— > (1= cos(85)). (9.21)
[vi,v5]€E [vi,v5]€E

Let a be the smallest positive number such that for 0 < 6 < 7, the inequality
0/m < (a/2)(1 — cos(f)) holds, i.e.,

. 20
* 7 0Si<e (1= cos(0))
Using elementary calculus, we can show that a« = 0.87856---. Since
0.8785 < «, we have 07;/m > (0.8785/2)(1 — cos(0;;)) for all 0f;, where
07; is the angle between the vectors v and ¥} and [v;,v5] is an edge in the
graph G. Taking this inequality over all edges [v;,v;] in the graph G proves
(9.21), which is the conclusion of the lemma. L[]

To complete the analysis for the algorithm SDP-Cut in Figure 9.9 for
the MAX-CUT problem, we apply a technique that has been used in the
proof for Markov Inequality (Theorem 9.1.2). The difference between this
and Theorem 9.1.2 is that Theorem 9.1.2 gives the probability of upper
bounding the value of a random variable, while here we need to have a
probability for lower bounding the value of the random variable X;.

Let m = |E| be the total number of edges in the graph G = (V, E).
Write E[X ] = bm, where b is a positive number upper bounded by 1. We
first derive a lower bound for the value b. We have

bm = E[ Xyt > 0.8785 - opt eyt (G) > 0.8785 - m/2,

where the first inequality is by Lemma 9.6.4, while the second inequality is
because a maximum cut of a graph contains at least half of the edges in the
graph (see Theorem 9.6.1). This shows that b > 0.8785/2 > 0.439.

Let p = Pr[Xou < (1—7)E[Xcu]], where 7 is a constant to be determined
later. Then Pr[X.y > (1 — 7)E[Xcu]] = 1 — p. Also note that X.y < m
always holds. Thus, we have

bm=EXeu <p-(1—-7EXeu| + 1 —pm=p-(1—71)bm+ (1 —p)m.
From this, we get p < (1 —b)/(1 —b(1 — 7)). Thus,

1-b 1 — 0.439
< 22
Ps 1507 S 104390 - 1) (9:22)
., 0437 .

1-0439(1—1)
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where the second inequality in (9.22) is because we replaced the value b with
a smaller number 0.439. Moreover, for a fixed constant 7, 0 < 7 < 1, the
number § = 0.4397/(1 — 439(1 — 7)) in (9.22) is a constant strictly larger
than 0. Thus, for any constant ¢ > 0, if we let the constant ¢ in step 2 of
the algorithm SDP-Cut be In(1/¢)/4, then the probability that no random
pick of the vector r in step 2.1 of the algorithm would result in a cut of size
at least (1 — 7)E[ X,y is bounded by

(1 - 5)ln(1/e)/5 < 1

= om(i/e - ©

Finally, since E[X ] > 0.8785 - opt.ui(G), by selecting the constant 7 > 0
sufficiently small (note that this will also affect the constant ¢), we will
have (1 — 7)E[X¢ut] > 0.878 - opteyt(G). That is, the algorithm will have an
approximation ratio bounded by

Optcut(G) S Optcut(G) _ 1 S 1.139.
(1= 7)E[Xew] ~ 0.878 - optens(G)  0.878

We conclude the above discussion into the following theorem:

Theorem 9.6.5 For any fized constant € > 0, there is a polynomial-time
randomized approximation algorithm for the MAX-CUT problem with success
probability at least 1 — € and approrimation ratio bounded by 1.139.

The algorithm in Theorem 9.6.5 is due to Goemans and Williamson
[67]. There is a deterministic approximation algorithm for the Max-Cut
problem [102], with the same approximation ratio as that in Theorem 9.6.5,
which was obtained by derandomizing Goemans-Williamson’s algorithm. An
open problem is whether the approximation ratio of the MAX-CUT problem
can be further improved. Based on certain complexity theory hypothesis
(Unique Games Conjecture), Khot et al. [90] proved that no polynomial-
time approximation algorithms for the MAX-CUT problem can have a ratio
better than that of Goemans-Williamson’s algorithm.



