Chapter 8

Constant-Ratio
Approximations

This chapter concentrates on the study of optimization problems that
have polynomial time approximation algorithms with approximation ratio
bounded by a constant. These problems will be called approximable opti-
mizalion problems, and the class of approximable optimization problems has
been named APX.

For a given approximable optimization problem @, development of an
approximation algorithm in general involves four steps:

1. design a polynomial time approximation algorithm A for Q;

2. analyze the algorithm A and derive an upper bound c4 on the approx-
imation ratio for A;

3. study the optimility of the value c4, i.e. is there another ¢/; < c4 such
that ¢4 is also an upper bound for the approximation ratio for the
algorithm A?

4. study the optimality of the algorithm A, i.e., is there another approx-
imation algorithm A’ for the problem) such that the approximation
ratio of A’ is smaller than that of A?

Step 1 may involve a wide range of techniques in general algorithm de-
sign. Many approximation algorithms are based intuition, experience, or
deeper insight on the given problems. Popular techniques include the greedy
method, branch and bound, and other combinatorical methods. Probabilis-
tic method has also turned out to be very powerful. Step 2 is special in

207

208 PROBLEMS IN APX

particular for the study of approximation algorithms. One challenging task
in this step is the estimation of the value of an optimal solution, which is
necessary in comparison with the value of the approximation solution given
by the algorithm A to derive the ratio c4. To prove that the value c4 is the
best possible for the algorithm A in Step 3, it suffices to construct a single
instance o and show that the algorithm A on the instance « gives a solu-
tion whose value is equal to c4 - Opt(«) if @ is a minimization problem and
Opt(a)/ca is @ is a maximization problem. In some cases, the algorithm
designer through his development of the algorithm may have got some ideas
about what are the “obstacles” for his algorithm. In this case, Step 3 may
become pretty easy. However, there are also other examples of approxima-
tion algorithms, for which Step 3 have turned out to be extremely difficult.
In most cases, Step 4 is the most challenging task in the study of approx-
imation algorithms for optimization problems, which involves the study of
“precise” and “intrinsic” polynomial time approximability for optimization
problems.

Also note that if an optimization problem has polynomial time approx-
imation scheme, then the answers to the questions in Step 3 and Step 4
become trivial. Therefore, powerful techniques for identifying optimization
problems that have no polynomial time approximation scheme is also central
in the study of approximable optimization problems.

The discussion in this chapter will be centered around the above is-
sues. We first present constant-ratio approximation algorithms for a num-
ber of well-known approximable optimization problems, based on popular
combinatorical methods in approximation algorithms including the greedy
method, dynamic programming, branch and bound, local search, and combi-
natorical transformations. The problems we study include the metric trav-
eling salesman problem, the maximum satisfiability problem, the maximum
3-dimensional matching problem, and the minimum vertex cover problem.
Note that these four problems are, respectively, the optimization versions
of four of the six “basic” NP-complete problems according to Garey and
Johnson [52]: the Hamiltonian circuit problem, the satisfiability problem,
the 3-dimensional matching problem, and the vertex cover problem. For
each of the problems, we start with a simple approximation algorithm and
analyze its approximation ratio. We then discuss how to achieve improved
approximation ratio using more sophisticated techniques or more thorough
analysis, or both.

We then introduce a more recently developed probabilistic method that
turns out to be very powerful in developing approximation algorithms for
optimization problems. We will illustrate how efficient approximation algo-

METRIC TSP 209

rithms for optimization problems can be developed based on the probabilistic
methods. We start with a few basic concepts and useful principles in proba-
bility theory that are directly related to our discussion. We then describe a
general derandomization technique. Randomized approximation algorithms
for a variety of NP-hard optimization problems are then presented. These
randomized algorithms can be derandomized based on the derandomization
techniques.

8.1 Metric TSP

In the previous chapter, we have discussed in detail the TRAVELING SALES-
MAN problem in Euclidean space, and shown that the problem has a poly-
nomial time approximation scheme. Euclidean spaces are special cases of a
metric space, in which a non-negative function w (the metric) is defined on
pairs of points such that for any points p1, ps, ps in the space:

(1) w(p17p2) =0 if and Ol’lly if p1 = p2,
(2) w(p1,p2) = w(pa,p1), and
(3) w(p1,p2) < w(p1,p3) +w(ps, p2).

The third condition w(p1,p2) < w(p1,ps) + w(ps,p2) is called the triangle
inequality. In an Euclidean space, the metric between two points is the
distance between the two points. Many non-Euclidean spaces are also metric
spaces. An example is a traveling cost map in which points are cities while
the metric between two cities is the cost for traveling between the two cities.

In this section, we consider the TRAVELING SALESMAN problem on a
general metric space. Since the metric between two points p1 and ps in a
metric space can be represented by an edge of weight w(p1, p2) between the
two points, we can formulate the problem in terms of weighted graphs.

Definition 8.1.1 A graph G is a metric graph if G is a weighted, undirected,
and complete graph, in which edge weights are all positive and satisfy the
triangle inequality.

A salesman tour w in a metric graph G is a simple cycle in G that
contains all vertices of G. The weight wt(r) of the salesman tour 7 is the
sum of weights of the edges in the tour. The TRAVELING SALESMAN problem
on metric graphs is formally defined as follows.

MEeTRIC TSP
In: the set of all metric graphs,

210 PROBLEMS IN APX

Sg: Sq(G) is the set of all salesman tours in G,
fo: fo(G,m) is the weight of the salesman tour 7 in G,
optgp: min.

Since EUCLIDEAN TSP is NP-hard in the strong sense [50, 104], and
EucLIDEAN TSP is a subproblem of METRIC TSP, we derive that METRIC
TSP is also NP-hard in the strong sense and, by Theorem 6.4.8, METRIC
TSP has no fully polynomial time approximation scheme unless P = NP.

We will show later that METRIC TSP is actually “harder” than Eu-
CLIDEAN TSP in the sense that METRIC TSP has no polynomial-time ap-
proximation schemes unless P = NP. In this section, we present approxi-
mation algorithms with approximation ratio bounded by a constant for the
problem METRIC TSP.

8.1.1 Approximation based on a minimum spanning tree

Our first approximation algorithm for METRIC TSP is based on minimum
spanning trees. See the algorithm in Figure 8.1, here the constructed sales-
man tour is given in the array V[1..n] as a (cyclic) sequence of the vertices
in G, in the order the vertices appear in the tour.

Algorithm. MTSP-Apx-I
INPUT: a metric graph G
OUTPUT: a salesman tour 7 in G, given in an array V[1..n]

1. construct a minimum spanning tree 7" for G;
2. let r be the root of T; i =0;

3. Seq(r).
Seq(v)

1. t=1+1;
2. V] =w;

3. for (each child w of v) do Seq(w).

Figure 8.1: Approximating METRIC TSP.

The minimum spanning tree T can be constructed in time O(n?). There-
fore, step 1 of the algorithm MTSP-Apx-I takes time O(n?). Step 3 calls a
recursive subroutine Seq(r), which is essentially a depth-first-search travers-
ing on the minimum spanning tree 1" to order the vertices of 1" in terms of
their depth-first-search numbers. Since the depth-first-search process takes
time O(m+n) on a graph of n vertices and m edges, step 3 of the algorithm
MTSP-Apx-I takes time O(n). In conclusion, the time complexity of the
algorithm MTSP-Apx-I is O(n?).

METRIC TSP 211

V1 V9

v3
Vs

U4
U6

Figure 8.2: The minimum spanning tree T

The depth-first-search process Seq(r) on the tree 7' can be regarded as
a closed walk 7 in the tree (a closed walk is a cycle in T' in which vertices
may repeat). Each edge [u,v], where w is the father of v in T', is traversed
exactly twice in the walk mp: the first time when Seq(u) calls Seq(v) we
traverse the edge from u to v, and the second time when Seq(v) is finished
and returns back to Seq(u) we traverse the edge from v to u. Therefore,
the walk 7y has weight exactly twice the weight of the tree T'. It is also easy
to see that the list V[1..n] produced by the algorithm MTSP-Apx-I can
be obtained from the walk my by deleting for each vertex v all but the first
occurrence of v in the list my. Since each vertex appears exactly once in the
list V[1..n], V[1..n] corresponds to a salesman tour 7 in the metric graph G.

Example. Consider the tree T" in Figure 8.2, where r is the root of the tree
T. The depth-first-search process (i.e., the subroutine Seq) traverses the
tree 1" in the order

7T0 : r?v].?UB?v].?T)UQ)U4’U2?U57U67/057v27r’

By deleting for each vertex v all but the first vertex occurrence for v, we
obtain the list of vertices of the tree 1" ordered by their depth-first-search
numbers

m™:. T,VU1,03,02,04, U5, V6.

Deleting a vertex occurrence of v in the list {-- - uvw - - -} is equivalent to
replacing the path {u,v,w} of two edges by a single edge [u,w]. Since the
metric graph G satisfies the triangle inequality, deleting vertex occurrences
from the walk 7y does not increase the weight of the walk. Consequently, the
weight of the salesman tour 7 given in the array V[l..n] is not larger than
the weight of the closed walk 7, which is bounded by 2 times the weight of
the minimum spanning tree 7.

Since removing any edge (of non-negative weight) from a minimum
weighted salesman tour results in a spanning tree of the metric graph G,
the weight of a minimum weighted salesman tour in G is at least as large

212 PROBLEMS IN APX

as the weight of the minimum spanning tree 71". In conclusion, the salesman
tour 7 given in the array V[l..n] by the algorithm MTSP-Apx-I has its
weight bounded by 2 times the weight of a minimum weighted salesman
tour. This gives the following theorem.

Theorem 8.1.1 The approzimation ratio of the algorithm MTSP-Apx-1
18 bounded by 2.

Two natural questions follow from Theorem 8.1.1. First, we have shown
that the ratio of the weight wt(m) of the salesman tour 7 constructed by the
algorithm MTSP-Apx-I and the weight wt(m,) of a minimum weighted
salesman tour m, is bounded by 2. Is it possible, by more careful anal-
ysis, to show that wt(w)/wt(m,) < ¢ for a smaller constant ¢ < 27 Sec-
ond, is there a polynomial-time approximation algorithm for METRIC TSP
whose approximation ratio is better than that of the approximation algo-
rithm MTSP-Apx-17

These two questions constitute two important and in general highly non-
trivial topics in the study of approximation algorithms. Essentially, the first
question asks whether our analysis is the best possible for the algorithm,
while the second question asks whether our algorithm is the best possible
for the problem.

The answer to the first question some times is easy if we can find an
instance for the given problem on which the solution constructed by the
algorithm reaches the specified approximation ratio. In some cases, such in-
stances can be realized during our analysis on the algorithm: these instances
are the obstacles preventing us from further lowering down the approxima-
tion ratio in our analysis. However, there are also situations in which finding
such instances is highly non-trivial.

The algorithm MTSP-Apx-1 for the METRIC TSP problem belongs to
the first category. We give below simple instances for METRIC TSP to show
that the ratio 2 is tight for the algorithm in the sense that there are instances
for METRIC TSP for which the algorithm MTSP-A px-I produces solutions
with approximation ratio arbitrarily close to 2.

Consider the figures in Figure 8.3, where our metric space is the Eu-
clidean plane and the metric between two points is the Euclidean distance
between the two points.

Suppose we are given 2n points on the Euclidean plane with polar co-
ordinates zp = (b,360k/n) and y, = (b+ d,360k/n), k = 1,...,n, where d
is much smaller than b. See Figure 8.3(a). It is not hard (for example, by
Kruskal’s algorithm for minimum spanning trees [30]) to see that the edges

METRIC TSP 213

. . . a
. .
2
1
o-(io——b—— T1e yo d 1 1
T,
.
.
. .
Yn

(a) (b) (c) (d)
Figure 8.3: METRIC TSP instances for MTSP-Apx-I.

[k, 1], E=1,...,n—1and [z;,y;], j =1,...,n form a minimum span-
ning tree T' for the set of points. See Figure 8.3(b). Now if we perform a
depth first search on T starting from the vertex x; and construct a salesman
tour, we will get a salesman tour 7, that is shown in Figure 8.3(c), while an
optimal salesman tour 74 is shown in Figure 8.3(d).

The weight of the salesman tour 7. is about 2a(n — 1) + 2d, where a is
the distance between two adjacent points xy and xpiq (note that when d is
sufficiently small compared with a, the distance between two adjacent points
yi and yx41 is roughly equal to the distance between the two corresponding
points xy, and x4 1), while the optimal salesman tour 74 has weight roughly
nd + na. When d is sufficiently small compared with a and when n is
sufficiently large, the ratio of the weight of the tour m. and the weight of the
tour 74 can be arbitrarily close to 2.

8.1.2 Christofides’ algorithm

Now we turn our attention to the section question. Is the approximation
algorithm MTSP-Apx-1 the best possible for the problem METRIC TSP?
In other words, are there approximation algorithms for METRIC T'SP that
have a better approximation ratio?

Let us look at the algorithm MTSP-Apx-I in Figure 8.1 in detail. After
the minimum spanning tree T is constructed, we traverse the tree T by a
depth first search process (the subroutine Seq) in which each edge of T is
traversed exactly twice. This process can be re-interpreted as follows:

1. construct a minimum spanning tree;

2. double each edge of T into two edges, each of which has the same
weight as the original edge. Let the resulting graph be D;

3. make a closed walk W in the graph D such that each edge of D is
traversed exactly once in W;

214 PROBLEMS IN APX

4. use “shortcuts”, i.e., delete all but the first occurrence for each vertex
in the walk W to make a salesman tour .

There are three crucial facts that make the above algorithm correctly
produce a salesman tour with approximation ratio 2: (1) the graph D gives
a closed walk W in the graph G that contains all vertices of G; (2) the total
weight of the closed walk W is bounded by 2 times the weight of an optimal
salesman tour; and (3) the shortcuts do not increase the weight of the closed
walk W so that we can derive a salesman tour 7w from W without increasing
the weight of the walk.

If we can construct a graph D’ that gives a closed walk W’ with weight
smaller than that of W constructed by the algorithm MTSP-Apx-I such
that D’ contains all vertices of G, then using the shortcuts on W’ should
derive a better approximation to the optimal salesman tour.

Graphs whose edges constitute a single closed walk have been studied
based on the following concept.

Definition 8.1.2 An Fulerian tour in a graph G is a closed walk in G that
traverses each edge of G exactly once. An undirected connected graph G is
an Fulerian graph if it contains an Eulerian tour.

Note that the above definition and the results described below apply
to graphs that have multi-edges (i.e., two vertices in the graphs may be
connected by more than one edge). Eulerian graphs have been extensively
studied in graph theory literature (see for example, [62]). More recent re-
search has shown that Eulerian graphs play an important role in designing
efficient parallel graph algorithms [83]. A proof of the following theorem can
be found in Appendix A (see Theorems A.1 and A.2).

Theorem 8.1.2 An undirected connected graph G is an Eulerian graph if
and only if every vertex of G has an even degree. Moreover, an Fulerian
tour in an Eulerian graph can be constructed in linear time.

Thus, the graph D described above for the algorithm MTSP-Apx-I is
actually an Eulerian graph and the closed walk W is an Eulerian tour in D.

Now we consider how a better Eulerian graph D’ can be constructed
based on the minimum spanning tree T', which leads to a better approxima-
tion to the minimum salesman tour.

Let G be a metric graph, that is an instance of the METRIC TSP prob-
lem. Let T be a minimum spanning tree in G. We have

METRIC TSP 215

Lemma 8.1.3 The number of vertices of the tree T' that has an odd degree
m T is even.

PROOF. Let vy, ..., v, be the vertices of the tree 1. Since each edge
e = [v;,v;] of T' contributes one degree to v; and one degree to vj, and T
has exactly n — 1 edges, we must have

Zn:degir’(vz’) =2(n—1)

i=1

where degr(v;) is the degree of the vertex v; in the tree T'. We partition the
set of vertices of T' into odd-degree vertices and even-degree vertices. Then

Z degr(vi) + Z degr(vj) = 2(n — 1)

v;: even-degree v;: odd-degree

Since both 37, cven-degree @97 (vi) and 2(n — 1) are even numbers, the value
Zvj: odd-degree 49T (V) is also an even number. Consequently, the number
of vertices that have odd degree in T" must be even. []

By Lemma 8.1.3, we can assume, without loss of generality, that vy,
vo, ..., Ugp are the odd-degree vertices in the tree T. The vertices vy,
Vo, ..., U induce a complete subgraph H in the original metric graph G
(recall that a metric graph is a complete graph). Now construct a minimum
weighted perfect matching M}, in H (a perfect matching in a complete graph
of 2h vertices is a matching of h edges. See Section 2.4.2 for more detailed
discussions). Since each of the vertices vy, va, ..., vgn has degree 1 in
the graph Mp, adding the edges in My to the tree T results in a graph
D’ =T + Mj, in which all vertices have an even degree. By Theorem 8.1.2,
the graph D’ is an Eulerian graph. Moreover, the graph D’ contains all
vertices of the original metric graph G. We are now able to derive a salesman
tour 7’ from D’ by using shortcuts.

We formally present this in the algorithm given in Figure 8.4. The
algorithm is due to Christofides [26].

According to Theorem 2.4.5, the minimum weighted perfect matching
My, in the complete graph H induced by the vertices vy, ..., v can be con-
structed in time O(h3) = O(n?).! By Theorem 8.1.2, step 4 of the algorithm

1n fact, because the weighted graph H induced by the vertices v1, . . ., vap is a complete
graph, a minimum weighted perfect matching M} in H can be constructed in a simpler
way without using Theorem 2.4.5. The following algorithm was suggested by Mr. Mykyta

216 PROBLEMS IN APX

Algorithm. Christofides
INPUT: a metric graph G
OUTPUT: a salesman tour 7’ in G

1. construct a minimum spanning tree T" for G;

2. let vy, ..., vop, be the odd degree vertices in T', construct the completed graph H
induced by the vertices v, ..., vap;

3. construct a minimum weighted perfect matching My in H;

4. construct an Eulerian tour W’ in the Eulerian graph D’ = T + Mpy;

5. use shortcuts to derive a salesman tour 7/ from W/;

6. return 7.

Figure 8.4: Christofides’ Algorithm for METRIC TSP.

Christofides takes linear time. Thus, the algorithm Christofides runs in
time O(n?).
Now we study the approximation ratio for the algorithm Christofides.

Lemma 8.1.4 The weight of the minimum weighted perfect matching My,
in the complete graph H induced by the vertices v1, ..., Van, Decn, wt(e),
is at most 1/2 of the weight of a minimum salesman tour in the graph G.

PROOF. Let m, be an optimal salesman tour in the metric graph G. By using
shortcuts, i.e., by removing the vertices that are not in {v1, va, ..., v} from
the tour m,, we obtain a simple cycle 7w that contains exactly the vertices
vy, ..., Ugp. Since the metric graph G satisfies the triangle inequality, the
weight of 7 is not larger than the weight of 7.

The simple cycle w can be decomposed into two disjoint perfect match-
ings in the complete graph H induced by the vertices vi, ..., voy: one
matching is obtained by taking every other edge in the cycle 7, and the

Makovenko when he was taking my course Computational Optimization in Fall 2021. On
the complete graph H, construct another complete graph H, in which the edge weight
wtr(e) for each edge in H, is defined as wt,(e) = wmax — wt(e), where wt(e) is the weight
of the edge e in the graph H and wmax is equal to 1 plus the largest edge weight in H.
Thus, H, is a complete graph in which all edges have positive weights. It is easy to see
that a maximum weighted matching M in the graph H, must be a perfect matching in H,:
otherwise we would be able to add an edge (of positive weight) to M to make a matching
of larger weight in H, (note that H, is a complete graph and has an even number of
vertices). Moreover, since wmax is a constant and a perfect matching in the graph H
consists of exactly h edges, a maximum weighted (thus perfect) matching in the graph H,
must correspond to a minimum weighted perfect matching in the graph H, which thus can
be constructed in time O(h® + h?logh) = O(n?) using the maximum weighted matching
algorithm given in Theorem 2.4.3.

VERTEX COVER 217

other matching is formed by the rest of the edges. Of course, both of these
two perfect matchings in H have weight at least as large as the minimum
weighted perfect matching Mj, in H. This gives

wt(me) > wi(m) > 2 - wt(Mp,)
This completes the proof. []
Now the analysis is clear. We have D' = T + Mj,. Thus
wt(D') = wt(T) + wt(Mp,)

As we discussed in the analysis for the algorithm MTSP-Apr-I, the weight
of the minimum spanning tree T' of the metric graph G is not larger than
that of a minimum salesman tour for G. Combining this with Lemma 8.1.4,
we conclude that the weight of the Eulerian graph D’ is bounded by 1.5
times that of a minimum salesman tour in G. Thus, the Eulerian tour W’
constructed in step 3 of the algorithm Christofides has weight bounded by
1.5 times that of a minimum salesman tour in G. Finally, the salesman tour
7' constructed by the algorithm Christofides is obtained by using short-
cuts on the Eulerian tour W’ and the metric graph G satisfies the triangle
inequality. Thus, the weight of the salesman tour 7’ constructed by the al-
gorithm Christofides is bounded by 1.5 times that of a minimum salesman
tour in G. We summarize these discussions in the following theorem.

Theorem 8.1.5 The algorithm Christofides for the METRIC TSP prob-
lem runs in time O(n3) and has an approzimation ratio 1.5.

As for the algorithm MTSP-Apx-1I, one can show that the ratio 1.5 is
tight for the algorithm Christofides, in the sense that there are instances
of METRIC TSP for which the algorithm Christofides produces salesman
tours whose weights are arbitrarily close to 1.5 times the weight of a mini-
mum salesman tour. The readers are encouraged to construct these instances
for a deeper understanding of the algorithm.

It has been a well-known open problem whether the ratio 1.5 can be fur-
ther improved for approximation algorithms for the METRIC TSP problem.
In Chapter 11, we will show that the METRIC TSP problem has no polyno-
mial time approximation schemes unless P = NP. This implies that there is
a constant ¢ > 1 such that no polynomial time approximation algorithm for
METRIC TSP can have approximation ratio smaller than ¢ (under the as-
sumption P # NP). However, little has been known for this constant c. Very
recently, an approximation algorithm with an approximation ratio 1.5 — ¢,
where € > 10735 for the METRIC TSP problem has been announced [82],
which slightly improves the ratio of Christofides’ algorithm after 45 years.

218 PROBLEMS IN APX

8.2 Minimum vertex cover

Let G be an undirected graph. A wertex cover of GG is a set C of vertices
in G such that every edge in G has at least one end in C' (thus, the set C
“covers” the edges of G). The VERTEX COVER problem is for a given graph
G to construct a minimum vertex cover (i.e., a vertex cover of the fewest
vertices). Formally, the problem is defined as follows:

VERTEX COVER = (I, Sq, fq,optg), where

Ip: the set of all undirected graphs
Sg: Sq(G) is the set of all vertex covers of the graph G
for fo(G,C) is the size of the vertex cover C of G

optg: min

The decision version of the VERTEX COVER problem is one of the six
“basic” NP-complete problems [52]. Thus, the optimization version of the
problem, i.e., the VERTEX COVER problem, is NP-hard, which has been a
central problem in the study of approximation algorithms.

Vertex covers of a graph are related to independent sets of the graph by
the following lemma.

Lemma 8.2.1 A set C of vertices in a graph G = (V, E) is a vertex cover
of G if and only if the set V. — C is an independent set in G.

PROOF. Suppose C' is a vertex cover. Since every edge in G has at least
one end in C, no two vertices in V — C are adjacent. That is, V' — C is an
independent set.

Conversely, if V' — C' is an independent set, then every edge in G has at
least one end not in V' — C'. Therefore, every edge in G has at least one end
in C and C forms a vertex cover. []

8.2.1 Vertex cover and matching

Recall that a matching in a graph G is a set M of edges such that no two
edges in M share a common end. A vertex is matched if it is an end of an
edge in M and unmatched otherwise.

The problems GRAPH MATCHING and VERTEX COVER are closely re-
lated. We first present a simple approximation algorithm for VERTEX
COVER based on matching.

VERTEX COVER 219

Lemma 8.2.2 Let M be a matching in a graph G and let C be a vertex
cover of G, then |M| < |C|. In particular, the size of a minimum vertex
cover of G is at least as large as the size of a mazimum matching in G.

PROOF. Since the vertex cover C covers all edges in G, each edge in the
matching M has at least one end in C. Since no two edges in M share a
common end, the number |C| of vertices in the vertex cover C' is at least as
large as the number |M| of edges in the matching M. [

A matching M in a graph G is maximal if there is no edge e in G such
that e ¢ M and M U{e} still forms a matching. An approximation algorithm
for VERTEX COVER based on maximal matchings is given in Figure 8.5.

Algorithm. VC-Apx-I
INPUT: a graph G
OUTPUT: a vertex cover C of G
1. C =10
2. for (each edge e in G) do
if (no end of e is in C) add both ends of e to C;
3. return C.

Figure 8.5: Approximating vertex cover I.

Theorem 8.2.3 The algorithm VC-Apx-1 is a linear time approximation
algorithm with approzimation ratio 2 for the VERTEX COVER problem.

ProOOF. The algorithm obviously runs in linear time.

Because of the for loop in step 2 of the algorithm, every edge in G has
at least one end in the set C. Therefore, C is a vertex cover of G.

Actually, step 2 of the algorithm implicitly constructs a maximal match-
ing M in G, as follows. Suppose we initialize M = () in step 1, and in step
2 whenever we encounter an edge e with no end in C, we, in addition to
adding both ends of e to C, also add the edge e to M. It is straightforward
to see that the set M constructed this way is a maximal matching and C' is
the set of ends of the edges in M. Thus, 2|M| = |C|. By Lemma 8.2.2, we
have (where Opt(QG) is the size of a minimum vertex cover of G)

L 2| _2-0pt(C)
Opt(G) Opt(G) = Opt(G)

Thus, the approximation ratio of the algorithm is bounded by 2. []

220 PROBLEMS IN APX

GRAPH MATCHING and VERTEX COVER are actually dual problems in
their formulations by integer linear programming. To see this, let G be a
graph of n vertices v1, vo, ..., v, and m edges eq, €9, ..., én. Introduce n
integral variables x1, xo, ..., &, to record the membership of the vertices of
a vertex cover in G such that z; > 0 if and only if the vertex v; is in the
vertex cover. Then the instance G of VERTEX COVER can be formulated as
an instance Q¢ of the INTEGER LP problem as follows:

Primal Instance Qg

minimize x1+ -+ xp,
subject to =z, + x4, > 1, fori=1,2,....,m,
{suppose the two endpoints of the edge e; are v;, and vy, }
xj are integers and x; > 0, for j =1,2,...,n.
The formal dual problem of the instance Q¢ for INTEGER LP is (the reader
is referred to Section 4.3 of the current book or to Chapter 3 of [106] for

more detailed and formal discussions on primal-dual instances and their
relationships in linear programming):

Dual Instance Q;

maximize Y1 + -+ Ym,
subject to y;, + Y, +---+yjhj <1, forj=1,2,...,n,
{suppose vertex v; is incident to edges e;,, €j,, ..., ejhj}

y; are integers and y; >0, fori=1,2,...,m.

If we define a set M of edges in G based on the dual instance Q; such that
y; > 0 if and only if the edge e; in the graph G is in M, then the condition
Y+ Yy, < 1 for j = 1,...,n requires that each vertex v; in G be
incident to at most one edge in M, or equivalently, that the set M forms
a matching. Therefore, the dual instance Qi in the INTEGER LP problem
exactly characterizes the instance G for the GRAPH MATCHING problem.

8.2.2 Vertex cover in bipartite graphs

Lemma 8.2.2 indicates that the size of a maximum matching of a graph G
is not larger than the size of a minimum vertex cover of the graph. This
provides an effective lower bound for the minimum vertex cover of a graph.
Since GRAPH MATCHING can be solved in polynomial time while VERTEX
COVER is NP-hard, one should not expect that in general these two val-
ues are equal. However, for certain important graph classes, the equality

VERTEX COVER 221

does hold, which induces polynomial time (precise) algorithms for VERTEX
COVER on the graph classes. In this subsection, we use this idea to develop a
polynomial time (precise) algorithm for VERTEX COVER on bipartite graphs.
The algorithm will turn out to be very useful in the study of approximation
algorithms for VERTEX COVER on general graphs.

Let M be a matching in a graph G. Recall that an alternating path
w.r.t. M is a path that traverses alternatively between edges in M and
edges not in M. In particular, if an alternating path starts and ends at
unmatched vertices, then it is an augmenting path. By Theorem 2.1.2; the
matching M is maximum if and only if there is no augmenting path w.r.t. M.

We say a vertex w is M -reachable from a vertex v if there is an alternating
path starting at v and ending at w. For a set U vertices, we say that a vertex
w is M-reachable from U if w is M-reachable from a vertex in U.

Let G = (V1 UV4, E) be a bipartite graph, where every edge in G has one
end in Vj and the other end in V5. Let M be a maximum matching in G.
Consider the algorithm given in Figure 8.6. The algorithm VC-BGraph
produces a set of vertices for the bipartite graph G, which we will prove is
a minimum vertex cover of the graph G.

Algorithm. VC-BGraph(G, M)
INPUT: bipartite graph G = (V1 U V,, E) and maximum matching M in G
OUTPUT: a minimum vertex cover C of G

1. let U; be the set of unmatched vertices in Vi;

2. let N1 be the set of vertices in V; that are not M-reachable from Uy;
3. let R2 be the set of vertices in V2 that are M-reachable from Uy;

4. output C = N1 U Rs.

Figure 8.6: Constructing a minimum vertex cover in bipartite graphs.

Lemma 8.2.4 The algorithm VC-BGraph runs in linear time and con-
structs a minimum vertex cover C for the bipartite graph G. In particular,
we have |C| = |M].

PrROOF. The set R of all vertices in G that are M-reachable from the set
Uy can be constructed in linear time using the algorithm Bip- Augment
given in Figure 2.3. Basically, we perform a searching process similar to
breadth first search, starting from the vertices in the set U;. Note that in
this situation, the algorithm Bip-Augment never stops at step 4.1.2 and
step 4.2.2 since according to Theorem 2.1.2, there is no augmenting path
with respect to the maximum matching M. Once the set R is constructed,
the set C'= Ny U R» is easily obtained.

222 PROBLEMS IN APX

Consider the set N7 of vertices in V; that are not M-reachable from Uj.
Every vertex in N7 is matched because every unmatched vertex in Vi is in
the set Uy, which is obviously M-reachable from Uj.

Now consider the set Ry of vertices in V5 that are M-reachable from Uj.
We claim that all vertices in Ro are also matched. In fact, if vo € Ry is
unmatched, then let P be an alternating path starting from an unmatched
vertex v1 in Uy and ending at v. Then, the path P would be an augmenting
path w.r.t. the maximum matching M, contradicting Theorem 2.1.2.

Let v1 € N and let [v1,v2] be the edge in the matching M. We claim
vy & Rs. In fact, if vg is in Rs then the alternating path from a vertex w1 in
U1 to vy plus the edge [va, v1] in M would form an alternating path from uq
to v1. This would imply that vy is M-reachable from U;, contradicting the
assumption that v; € Ni. As a result, each edge in the matching M has at
most one end in the set C' = N U Ry. Moreover, by the above analysis, all
vertices in C' are matched. Thus, |C| < |M]|.

Now we prove that C is a vertex cover of G. According to the above
discussion, the vertex set V) can be partitioned into three disjoint parts:
the set Uy of unmatched vertices, the set Ry of matched vertices that are
M-reachable from U7, and the set N7 of matched vertices that are not M-
reachable from U;. Let e = [v1,v2] be any edge in G, where v; € V; and
vo € Vs,

If v1 &€ Ny, then v; € Uy or v; € Ry. In case v1 € Uy then the edge e is
not in M. Thus, [v1,v2] is an alternating path and vy € Rp. On the other
hand, suppose v; € R;. Let P = {ug,...,v1} be an alternating path from
ug € Uy to vy. Since vy is in the set V7, by the bipartiteness of the graph G,
P is of even length. Therefore, either the vertex vo is contained in the path
P, or the path P plus the edge [v1,v2] forms an alternating path from wug
to ve (note that if vy is not in the path P, then [v1,v2] cannot be an edge
in M because v; has matched with the vertex before it on the path P). In
either case, vy € Ry. This proves that for any edge e = [v1, v9] in G, either
v1 € N7 or vg € Ry, i.e., C = N7 U Ry is a vertex cover of G.

Combining the fact that C is a vertex cover of G with the inequality |C] <
|M| and Lemma 8.2.2, we conclude that |C| = |M| and C is a minimum
vertex cover of G. [

Theorem 8.2.5 The VERTEX COVER problem on bipartite graphs can be
solved in time O(my/n).

PROOF. By Theorem 2.3.6, a maximum matching of a (general) graph G
can be constructed in time O(m+/n). Combining this with Lemma 8.2.4, we

VERTEX COVER 223
complete the proof of the theorem. [l

8.2.3 Local approximation and local optimization

We now get back to the VERTEX COVER problem on general graphs, which
is NP-hard. By Theorem 8.2.3, the simple approximation algorithm VC-
Apx-I given in Figure 8.5 for VERTEX COVER on general graphs has an
approximation ratio 2. One may expect that the ratio can be further im-
proved using more sophisticated techniques. However, despite long time
efforts, no significant progress has been made and asymptotically, the ratio
2 still stands as the best approximation ratio for polynomial time approxi-
mation algorithms for the problem. In this subsection, we introduce several
techniques that lead to slight improvements on the approximation ratio for
VERTEX COVER. The techniques can also be extended to approximation
algorithms with the same ratio for the weighted version of VERTEX COVER,
in which each vertex has an assigned weight and we are looking for a vertex
cover of the minimum weight.

The first technique has been called the “local optimization” in the lit-
erature, developed by Nemhauser and Trotter [103], which turns out to be
very useful in the study of approximation algorithms for VERTEX COVER,
for both weighted and unweighted versions.

For a subset V' of vertices in a graph G, denote by G(V’) the subgraph
of G induced by the vertex set V', that is, G(V’) has V' as its vertex set
and contains all edges in G that have their both ends in V”.

Theorem 8.2.6 There is an O(m+/n)-time algorithm that, given a graph
G, constructs two disjoint subsets Cy and Vy of the vertices in G such that

(1) the set Cy plus any vertex cover of G(Vy) forms a vertex cover of G;
(2) there is a minimum vertex cover Cp. of G such that Cy C Cl;.:
3) Opti(G(Vo)) = |Vol/2.

PROOF. Let {v1,va,...,v,} be the set of vertices in the graph G. Construct
a bipartite graph B of 2n vertices: v{: , v{?‘, v% , vf, e vﬁ , vf such that
L R

there is an edge [v;",v;'] in B if and only if [v;, v;] is an edge in G.

Let Cp be a minimum vertex cover of the bipartite graph B. Define two
disjoint subsets of vertices in the graph G:

Co = {v; | both v} and vt are in Cp}

Vo = {v; | exactly one of vf and ’U]R isin Cp}

224 PROBLEMS IN APX

According to Theorem 8.2.5, the minimum vertex cover Cp of the bipartite
graph B can be constructed in time O(m+/n). Therefore, in order to prove
the theorem, it suffices to prove that the constructed subsets Cy and V)
satisfy the conclusions in the theorem.

Let Iy = {v1,...,vn}—(CoUVp), then I is the set of vertices v; in G such
that both UZL and UZR are not in Cp. For each edge [v;,v;] in G, by the def-

inition, [vF, vﬁ] and [vF, vf] are edges in the bipartite graph B. Therefore,

g
we have the following facts that will be used heavily in the discussion:

If [v5,v;] is an edge in G, then

Fact 1. v; € Iy implies v; € Cp, and
Fact 2. v; € Vp implies v; &€ I.

Proof for (1). Let Cy, be a vertex cover of the induced subgraph G(Vp).
For any edge [v;,v;] in G, if [v;,v;] is not covered by Cy, i.e., if neither of
v; and v; is in Cy;, then one of v; and v; must be in Cy U Iy — otherwise,
[vi,v;] is an edge in G(V})) that should be covered by Cy;. Without loss of
generality, let v; € Cy U Iy. Thus, if v; € Cy, then v; € Iy, which, by Fact
1 above, will imply v; € Cy. Therefore, if the edge [v;,v;] is not covered
by Cy,, then it must be covered by Cpy. This proves statement (1) of the
theorem that for any vertex cover of the induced subgraph G(V;), the set
Cp U Oy, is a vertex cover of the graph G.

Proof for (2). Let Cpin be a minimum vertex cover of the graph G. We
show that the vertex set C/ ., = CoU (Cmin N Vp) is also a minimum vertex
cover of the graph G.

For any edge [v;,v;] in the graph G, if v; € C} ., then v; € Iy or v; €
Vo— Chuin. If v; € I, then by Fact 1 above v; € Cy C Cr ;... If v; € Vo —Chin,
then by Fact 2 above v; & Iy, i.e., either v; € Cy or v; € Vh. Moreover,
Vj & Crin implies v; € Cpin. Thus, v; must be in the set Co U (Vo N Cruin)-
Combining all these, we conclude that the set C/; = CoU(CminNVp) covers
the edge [v;, v;]. Since [vs, v;] is an arbitrary edge in G, this proves that C} ;,
is a vertex cover of the graph G.

Now we prove |C! . | = |Cpin|. For this we first construct a vertex cover
for the bipartite graph B. Let

T=ChuWwu (Cmin N Io) and W = Chin N Ch.
Define two subsets of vertices in the bipartite graph B:
Ly ={vF|v;eT} and RW:{’U]R|U]'EW}.

We prove that C'; = Ly U Ry is a vertex cover of the bipartite grpah B.

VERTEX COVER 225

Let [vF, UJR] be an edge in B. By the definition, [v;,v;] is an edge in G.
If v/ & Ly, then v; € T = Co U Vo U (Ciin N Ip), 50 v; € I — Ciin, that
is, v; € Ip and v; € Cpin. Since Cpin must cover the edge [vs,v;], we have
v; € Cpin. From v; € Iy, by Fact 1 we have v; € Cp. Therefore, in case
viL & Lr, we have v; € Crpin N Cop = W, which implies vf € Ry . Thus,
C'3 = Ly U Ry is a vertex cover of the bipartite graph B. By the definition
of the minimum vertex cover Cg for the bipartite graph B, and that of the
vertex sets Cj and Vj in G (see the second paragraph of this proof), we have
|CB| = ‘VQ| + 2|Coy. Thus,

Vol +2|Col = |CB| < |CBl=I|Lr|+ |Rw]|
= |Co| + |Vo| + |Cmin N Io| 4+ |Crmin N Co.

The inequality above is because C'y; is a vertex cover while Cp is a minimum
vertex cover of the bipartite graph B. From this we get immediately

’C()l < ’Cmin N IO| + ‘Cmin N C(J| = ‘Cmin N (IO U Co)l (81)
Therefore,

|Cr,nin| = |CO U (Cmin N VO)|
= |CO| +|Cminﬁvb|
< |Cmin N (IO U CO)| + |Cmin N ‘/0|

= |Omin N (IO U OO U VO)l = ’Cmin’7

where the inequality is from (8.1). Since C7;, is a vertex cover and Chp is

a minimum vertex cover of the graph G, we must have |C/,,| = |Cin| and

! in 18 a also a minimum vertex cover of the graph G. Since Cy C CJ;,

the statement (2) of the theorem is proved.

Prooffor (3). Let C be a minimum vertex cover of the induced subgraph

G (V). Then by statement (1) of the theorem, Cy = CyUC is a vertex cover

of the graph G. Now if we let Ly = {vF|v; € Co} and Ry = {vF|v; € Oy},
then clearly Lo U Ry is a vertex cover of the bipartite graph B. Therefore

Vol +2[Co| = |CB| < [La U Re| = 2|Cs| = 2|Co| + 2|4

The inequality is because Cpg is a minimum vertex cover while Lo U Ry is
a vertex cover of the bipartite graph B. This derivation gives immediately,
[Vo| < 2|Ci| =2-Opt(G(Vy)). The statement (3) of the theorem follows. [J

226 PROBLEMS IN APX

Corollary 8.2.7 Let G be a graph, and let Cy and Vy be the subsets given
in Theorem 8.2.6. For any vertex cover Cy of the induced subgraph G(Vp),
CoUCy is a vertex cover of G and

|Co U Cy| < ICv|
Opt(G) — Opt(G(V))

PrOOF. The claim that Cy U Cy is a vertex cover of the graph G is given
by the statement (1) in Theorem 8.2.6.

By the statement (2) of Theorem 8.2.6, there is a minimum vertex cover
Cnin of G such that Cy C Chjn. Let C . = Cpin — Cy. Then C'. covers

min min

all edges in the induced subgraph G (V). In fact, C;, is a minimum vertex

cover of the induced graph G(Vp). This can be seen as follows. First, C'_

min
a subset of Vg: if C . is not a subset of [y, then the smaller set C'_. NVj isa

min min

vertex cover of G(V)). By the statement (1) of Theorem 8.2.6, (C_. NVj)UCy

min
is a vertex cover of G. Now [(C_., N Vo) UCy| < |C;, UCo| = |Crin

contradicts the definition of C;,. This shows that C . is a subset of 1}

min

thus C|;, is a vertex cover of G(Vp). Cp;, is also a minimum vertex cover of
G(Vp) since any smaller vertex cover of G(Vp) plus Cy would form a vertex
cover of G smaller than the minimum vertex cover Chin = C;, U Cy of the

graph G. Therefore

[CoVCv| _ |Gl +|Cv| _ Gl +[Cv] _ |Cv| Cv

Opt(G) |Cmin| ’COl + ’len’ B | m1n| Opt(G(Vb))
The inequality has used the fact that C_; is a minimum vertex cover of
G(Vo) so [Crin| < Cv].

Corollary 8.2.7 indicates that in order to improve the approximation
ratio for the VERTEX COVER problem on the graph G, we only need to
concentrate on the induced subgraph G(V). Note that an approximation
ratio 2 is trivial for the induced subgraph G(Vp): by the statement (3)
in Theorem 8.2.6, |Vp|/Opt(G(Vy)) < 2. Therefore, simply including all
vertices in the graph G(Vp) gives a vertex cover of size at most twice of
OpH{(G(V)).

By Lemma 8.2.1, the complement of a vertex cover is an independent set,
the above observation suggests that in order to improve the approximation
ratio for VERTEX COVER, we can try to identify a large independent set in
G (V). Our first improvement is given in Figure 8.7.

VERTEX COVER 227

Algorithm. VC-Apx-II
INPUT: a graph G
OuTPUT: a vertex cover C of G

1. apply Theorem 8.2.6 to construct the subsets Cy and Vp;
2. Gl = G(VQ) I= @;
3. while GG; is not empty do
pick any vertex v in Gy;
I=T1U{v};
delete v and all its neighbors from the graph G1;
4. return C = (Vo — I) U Cp.

Figure 8.7: Approximating vertex cover II.

Theorem 8.2.8 The algorithm VC-Apx-II for VERTEX COVER runs in
time O(m+/n) and has an approzimation ratio bounded by 2 — 2/(A + 1),
where A is the largest vertex degree in the given graph.

PrROOF. The running time of the algorithm VC-Apx-1II is dominated by
step 1, which by Theorem 8.2.6 takes time O(m+/n).

Consider the loop in step 3. The constructed set I is obviously an inde-
pendent set in the graph G(Vj). According to the algorithm, for each group
of at most A 4 1 vertices in G(Vp), we conclude a new vertex in I. Thus,
the number of vertices in I is at least |Vp|/(A + 1). Therefore, Vy — I is a
vertex cover of G(Vp) and [Vo —I| < (A - |Vo|)/(A +1). Now

Vo1 _ (A-[W)/(A+1) 2

Opt(G(Vo)) ~ Vol /2 A+

where we have used the fact Opt(G(Vp)) > |Vo|/2 proved in Theorem 8.2.6.
Now the theorem follows directly from Corollary 8.2.7. [J

For graphs of low degrees, the approximation ratio of the algorithm VC-
Apx-II is significantly better than 2. However, the value A can be as large
as n — 1. Therefore, in the worst case, what we can conclude is only that
the algorithm VC-Apx-II has an approximation ratio bounded by 2 —2/n.

We seek further improvement by looking for larger independent sets.
We first show that for graphs with no short odd cycles, finding a larger
independent set is possible. Consider the algorithm given in Figure 8.8.

Lemma 8.2.9 For a graph G of n wvertices with no odd cycles of length
less than or equal to 2k — 1, where k is an integer satisfying (2k — 1)¥ >
n, the algorithm Large-IS(G,k) runs in time O(nm) and constructs an
independent set I of size at least n/(2k).

228 PROBLEMS IN APX

Algorithm. Large-IS(G, k)

INPUT: a graph G of n vertices that hsa no odd cycles of length < 2k — 1, where k
is an integer satisfying (2k — 1) > n

OUTPUT: an independent set I in G

1. I=0;

2. while (G is not empty) do
pick any vertex v in G and apply BF'S starting from v;
let Lo, L1, ..., L be the first k + 1 levels of vertices in the BFS tree;
let Doy = UZIO Lo; and Dao¢y1 = Uj:() Lojy1, fort=0,1,..
let s be the smallest index satisfying |Ds| < (2k — 1)|Ds—_1];
I=IUDgs_q;
remove all vertices in Ds U Dgs_; from the graph G;

3. return I.

Figure 8.8: Finding an independent set in graphs without short odd cycles.

PRrOOF. First we show that it is always possible to fnd the index s such
that |Ds| < (2k — 1)|Ds_1]. Suppose such an index does not exist. Then we
have |D;| > (2k —1)|D;_4| for all i = 1,..., k. Therefore (note |Dg| = 1 and
(2k — 1)k > n),

Dyl > (2k — 1)|Djy| > (2k = 1)2|Dys| > -+ > (2k — 1)¥|Dg| = .

This is impossible, since Dy, is a subset of vertices in the graph G while G
has n vertices. Therefore, the index s always exists.

Since |Ds| < (2k — 1)|Ds—1|, we have |Ds_1| > (|Ds| + |Ds-1])/(2k).
Therefore, each time when we remove |Dg| + |Ds—1]| vertices from the graph
G, we include |Dg_1| > (|Ds| + |Ds—1])/(2k) vertices in the set I. As a
result, the set I constructed by the algorithm Large-IS(G, k) has at least
n/(2k) vertices.

What remains is to show that the set I is an independent set in G. For
a BF'S tree, every edge in G either connects two vertices at the same level,
or connects two vertices in the adjacent levels [30]. Therefore, no edge is
between two vertices that belong to different levels in the set Ds_; (note
that Ds_1 contains either only odd levels or only even levels in the BFS
tree). Moreover, any edge connecting two vertices at the same level in Dy_4
would form an odd cycle of length < 2k —1 (recall s < k), which contradicts
the assumption that the graph G has no odd cycles of length < 2k — 1. In
conclusion, no two vertices in the set D,;_; are adjacent and the set Ds_; is
an independent set. Since in each execution of the body of the while-loop in
step 2, we also remove vertices in the set Dy, there is also no edge between

VERTEX COVER 229

the two sets Dg,_; and D,,_1 constructed by two different executions of
the body of the while-loop. Thus, the set I returned by the algorithm
Large-IS(G, k) is an independent set in the graph G.

For the algorithm complexity, each execution of the while loop body is
a BFS on the graph G, which takes time O(m), and removes at least one
vertex from the graph G. Therefore, the algorithm runs in time O(nm). [J

The conditions in Lemma 8.2.9 are bit too strong. We need to take
care of the situation where graphs contain short odd cycles. Suppose that
the vertices v1, v2, and v3 form a triangle in a graph G. Then we observe
that every minimum vertex cover of G must contain at least two of these
three vertices. Therefore, if our objective is an approximation ratio larger
than 1.5, then intuitively it will not hurt if we include all three vertices in
our vertex cover since the “local” approximation ratio for this inclusion is
1.5. In general, for a subgraph H of h vertices in G, if we know the ratio
h/Opt(H) is not larger than our objective ratio, where Opt(H) is the size
of a minimum vertex cover for the subgraph H, then it seems reasonable to
simply include all vertices in the subgraph H and remove H from G. This
intuition is confirmed by the following lemma.

Lemma 8.2.10 Let G be a graph and H be a subgraph induced by h vertices
i G. Let G- = G— H. Suppose that C~ is a vertex cover of the graph G™.
Then C~ U H 1is a vertex cover of the graph G and

|C~ UH| <max{ |C—| h }
Opt(G) — Opt(G=) Opt(H) |

PROOF. Let [u,v] be an edge in the graph G. If one of u and v is in the
graph H, then certainly [u,v] is covered by C~ U H. If none of u and v is
in H, then [u,v] is an edge in G~ and must be covered by C~. Therefore,
C~ U H is a vertex cover of the graph G.

Let Cinin be a minimum vertex cover of the graph G. Let C;, be the
set of vertices in Cpyy, that are in the graph G, and let CIL be the set of
vertices in Chyin that are in H. Then C_, is a vertex cover of the graph G
and Cgin is a vertex cover of the graph H. Therefore, we have

IC"UH| |[CTUH| |C7|+h
Opt(G) ~ [Cun| [Copal + I

min

IC—| +h lexd h
Opt(G—) + Opt(H) = "™\ Opt(G—) Opt(H) [~

230 PROBLEMS IN APX

here we have used the obvious inequalities that |C . | > Opt(G™), that

|CH | > Opt(H), and that (a +b)/(c +d) < max{a/c,b/d} for any positive
numbers a, b, ¢, and d. [

If the subgraph H is a cycle of length h = 2k — 1, obviously we have
h/Opt(H) = (2k — 1)/k = 2 — 1/k. According to Lemma 8.2.10, if our
objective approximation ratio is not smaller than 2 — 1/k, then we can
remove the cycle H from the graph by simply including all vertices in H in
the vertex cover. Repeating this procedure, we will result in a graph G’ with
no short odd cycles. Now applying the algorithm Large-IS on G’ gives a
larger independent set I, from which a better vertex cover is obtained. These
ideas are implemented in the algorithm given in Figure 8.9.

Algorithm. VC-Apx-III
INPUT: a graph G of n vertices
OuTPUT: a vertex cover C of G

1. C1=0;
2. let k be the smallest integer such that (2k — 1)¥ > n;
3. while (G contains an odd cycle of length < 2k — 1) do
find an odd cycle X of length < 2k — 1;
add all vertices of X to C7;
delete all vertices of X from the graph Gj
apply Theorem 8.2.6 to G to construct the vertex sets Cp and Vp in G;
call Large-IS(G(V5), k) to construct an independent set I in G(Vp);
Co=CoU (Vo —1I);
return C = C7 U Cs.

N O

Figure 8.9: Approximating vertex cover III.

Theorem 8.2.11 The algorithm VC-Apx-III for VERTEX COVER runs
in time O(nm), and has an approximation ratio 2 — loglogn/(2logn).

PrOOF. The time complexity of all steps, except step 3, of the algorithm
has been discussed and is bounded by O(nm). To find an odd cycle of length
bounded by 2k — 1 in step 3, we pick any vertex v and apply BSF starting
from v for at most k£ + 1 levels. Either we will find an edge connecting two
vertices at the same level, which gives an odd cycle of length bounded by
2k — 1, or we do not find such an odd cycle. In the former case, the cycle
will be removed from the graph G, while in the latter case, the vertex v is
not contained in any odd cycle of length bounded by 2k — 1. Therefore, the
vertex v can be removed from the graph in the latter search for odd cycles.

MAXIMUM SATISFIABILITY 231

In any case, each BFS removes at least one vertex from the graph. Thus,
at most n BFS’s are performed in step 3. Since each BFS takes time O(m),
the time complexity of step 3 is O(nm). Summarizing all these, we conclude
that the time complexity of the algorithm VC-Apx-III is O(nm).

We prove that the approximation ratio of the algorithm VC-Apx-III is
bounded by 2 — 1/k, where k is defined in step 2 of the algorithm.

Let H be the subgraph of G consisting of all the odd cycles removed in
step 3. Since each cycle X in H has length 25 — 1, where j < k, we have
(2j—1)/Opt(X)=(2j—1)/j=2—-1/j <2—1/k. Since all cycles in H are
disjoint, we have h/Opt(H) < 2 — 1/k, where h is the number of vertices in
the subgraph H. Note that at step 4, the graph G is the original graph G
with all vertices in H removed. To avoid confusion, rename the graph G at
step 4 by G4. By Lemma 8.2.10, to prove that the algorithm VC-Apx-111
has an approximation ratio bounded by 2 — 1/k, it suffices to proved that
the set Cs constructed in step 6 is a vertex cover of the graph G4 satisfying
|Ca|/Opt(Ga) <2 —1/k.

By Lemma 8.2.9, the independent set I in the graph G(V;)) constructed
in step 5 has at least |Vp|/(2k) vertices. Therefore, Vp— I is a vertex cover of
G (V) with at most |Vo| — |Vo|/(2k) = |Vb|(1 — 1/(2k)) vertices. Therefore,

Vo1l _ Wel(l—1/(2K) _ Vol(1—1/(2k) _, 1
Op(G%) = OpiGe)) — [Vol/? a3

From this and Corollary 8.2.7, the set Cy = Cy U (Vp — I) is a vertex cover
of the graph G4 satisfying
Gl Vo1 1

Opt(Ga) ~ Opt(G() = > &

Now the inequality |C|/Opt(G) < 2—1/k follows from Lemma 8.2.10. Thus,
the approximation ratio of the algorithm VC-Apx-III is bounded by 2 —
1/k. Since k is the smallest integer satisfying (2k — 1)*¥ > n, we can derive
using elementary mathematics that k < (2logn)/(loglogn). This completes
the proof of the theorem. [l

The ratio in Theorem 8.2.11 is the best known result for polynomial-
time approximation algorithms for the VERTEX COVER problem. We point
out that the above techniques can be extended to design approximation
algorithms with the same ratio for the weighted version of the VERTEX
COVER problem. Interested readers are referred to [11].

232 PROBLEMS IN APX

8.3 Maximum satisfiability

Let X = {z1,...,2,} be a set of boolean variables. A literal in X is either
a boolean variable x; or its negation T;, for some 1 < ¢ <n. A clause on X
is a disjunction, i.e., an OR, of a set of literals in X. We say that a truth
assignment to {x1,...,x,} satisfies a clause if the assignment makes at least
one literal in the clause TRUE, and we say that a set of clauses is satisfiable
if there is an assignment that satisfies all clauses in the set.

SATISFIABILITY (SAT)
INpUT: aset F={Cy,Cy,...,Cp} of clauses on {z1,...,x,}
QUESTION: is F' satisfiable?
The SAT problem is the first NP-complete problem, according to the
famous Cook’s Theorem (see Theorem 1.4.2 in Chapter 1).

If we have further restrictions on the number of literals in each clause,
we obtain an interesting subproblem for SAT.

k-SATISFIABILITY (k-SAT)

INPUT: aset F = {Cy,Cy,...,Cp} of clauses on {z1,...,x,}
such that each clause has at most k literals

QUESTION: is F satisfiable?

It is well-known that the k-SAT problem remains NP-complete for k& > 3,
while the 2-SAT problem can be solved in polynomial time (in fact, in linear
time). Interested readers are referred to [30] for details.

As the SAT problem plays a fundamental role in the study of NP-

completeness theory, an optimization version of the SAT problem, the MAX-
SAT problem, plays a similar role in the study of approximation algorithms.

MAXIMUM SATISFIABILITY (MAX-SAT)
INnpuT: aset F = {Cy,Ca,...,Cp} of clauses on {z1,...,2,}

OuTPUT: a truth assignment on {z,...,x,} that satisfies the
maximum number of the clauses in F

The optimization version for the k-SAT problem is defined similarly.

MAXIMUM Kk-SATISFIABILITY (MAX-ESAT)

INnpuT: aset F={Cy,Cy,...,Cp} of clauses on {z1,...,x,}
such that each clause has at most & literals

OuTPUT: a truth assignment on {z1,...,x,} that satisfies the
maximum number of the clauses in F

MAXIMUM SATISFIABILITY 233

It is easy to see that the SAT problem can be reduced in polynomial time
to the MAX-SAT problem: a set {Ci,...,Cy} of clauses is a yes-instance
for the SAT problem if and only if when it is regarded as an instance of
the MAX-SAT problem, its optimal value is m. Therefore, the MAX-SAT
problem is NP-hard. Similarly, the k-SAT problem for £ > 3 can be reduced
in polynomial time to the MAX-KSAT problem so the MAX-kSAT problem
is NP-hard for k > 3.

Since the 2-SAT problem can be solved in linear time, one may expect
that the corresponding optimization problem MAX-2SAT is also easy. How-
ever, the following theorem gives a bit surprising result.

Theorem 8.3.1 The MAX-2SAT problem is NP-hard.

PrROOF. We show that the NP-complete problem 3-SAT can be reduced in
polynomial time to the MAX-2SAT problem.

Let F = {C1,...,Cy,} be an instance of the 3-SAT problem, where each
C; is a clause of at most three literals in {1, ...,2,}. The set F' may contain
clauses with fewer than three literals. We first show how to convert F' into
an instance of 3-SAT in which all clauses have exactly three literals.

If a clause C; in F has exactly two literals: C; = (I3 Vi2), then we replace
C; by two clauses of three literals (I; VI3 Vy;) and (I3 VIV g1), where y; is a
new boolean variable; if a clause Cj in F' has exactly one literal: C; = (I3),
then we replace C; by four clauses of three literals (I3Vy2 Vys), (I3Vy2Vys3),
(I3 V42 Vys), and (I3 V 2 V 43), where yo and y3 are new variables. The
resulting set F” of clauses is still an instance for 3-SAT in which each clause
has exactly three literals. It is straightforward to see that the instance F is
satisfiable if and only if the instance F” is satisfiable.

Thus, we can assume, without loss of generality, that each clause in the
given instance F' for the 3-SAT problem has exactly three literals.

Consider a clause C; = (a; V b; V ¢;) in F, where a;, b;, and ¢; are literals
in {x1,...,2,}. We construct a set of ten clauses:

Fio= {(a), (b)), (i), (wi), (@Vby), (a:iVe),
(bive), (aiVvag), BiVy), (V) (8.2)

where y; is a new variable. It is easy to verify the following facts:

o if all a;, b;, ¢; are set FALSE, then any assignment to y; can satisfy at
most 6 clauses in Fj;

234 PROBLEMS IN APX

e if at least one of a;, b;, ¢; is set TRUE, then there is an assignment to
y; that satisfies 7 clauses in Fj;, and no assignment to y; can satisfy
more than 7 clauses in Fj.

Let F" = F{ UFy U ---U F,, be the set of the 10m clauses constructed
from the m clauses in F' using the formula given in (8.2). The set F” is an
instance of the MAX-2SAT problem. It is easy to see that the set F” can be
constructed in polynomial time from the set F.

Suppose that F'is a yes-instance of the 3-SAT problem. Then there is
an assignment S, to {x1,...,z,} that satisfies at least one literal in each C;
of the clauses in F'. According to the analysis given above, this assignment
Sz plus a proper assignment S, to the new variable set {yi,...,ym} will
satisfy 7 clauses in the set F;, for each ¢ = 1,...,m. Thus, the assignment
Sz + Sy to the boolean variables {x1,...,Zn,Y1,...,ym} satisfies 7m clauses
in F”. Since no assignment can satisfy more than 7 clauses in each set
F;, we conclude that in this case the optimal value for the instance F” of
MAX-2SAT is 7Tm.

Now suppose that F' is a no-instance of the 3-SAT problem. Let S’
be any assignment to {x1,...,%,,y1,...,Ym}. The assignment S’ can be
decomposed into an assignment S; to {z1,...,2,} and an assignment S; to
{y1,-..,ym}. Since F is a no-instance for the 3-SAT problem, for at least one
clause C; in F, the assignment S/ makes all literals false. According to our
previous analysis, any assignment to y; plus the assignment S/, can satisfy at
most 6 clauses in the corresponding set F;. Moreover, since no assignment
to {z1,...,Zn,¥1,...,Ym} can satisfy more than 7 clauses in each set Fj,
for j = 1,...,m, we conclude that the assignment S’ can satisfy at most
7(m—1)+6 = 7m —1 clauses in F". Since S’ is arbitrary, we conclude that
in this case, no assignment to {a:l, e Ty Yl e ym} can satisfy more than
7m — 1 clauses in F”. Thus, in this case the optimal value for the instance
F" of MAX-2SAT is at most 7m — 1.

Summarizing the discussion above, we conclude that the set F' of m
clauses of three literals is a yes-instance for the 3-SAT problem if and only
if the optimal value for the instance F” of MAX-2SAT is 7m. Consequently,
the 3-SAT problem is polynomial time reducible to the MAX-2SAT problem.
We conclude that the MAX-2SAT problem is NP-hard. [l

8.3.1 Johnson’s algorithm

Now we present an approximation algorithm for the MAX-SAT problem, due
to David Johnson [74]. Consider the algorithm given in Figure 8.10, where
for a clause C, we use |C;| to denote the number of literals in C;.

MAXIMUM SATISFIABILITY 235

Algorithm. Johnson
INPUT: a set of clauses FF = {C1,...,Cn} on {z1,...,2n}
OUTPUT: a truth assignment 7 to {z1,...,zn}
1. for (each clause C;) do w(C;) = 1/2/%l;
2. L={Ci,...,Cn}
3. fort=1tondo
3.1 find all clauses Cf, . ,C:f in L that contain xy;
find all clauses Cf ,...,CF in L that contain Zy;
if Y20 w(Cl) > 370 w(Cf)
3.2 then 7(z:) = TRUE; delete CT,...,CT from L;
for i=1to s do w(CF)=2w(C});
3.3 else 7(x¢) = FALSE; delete Cf, ...,CF from L;
for i =1to g do w(CT) =2w(CT).

Figure 8.10: Johnson’s Algorithm.

The algorithm Johnson obviously runs in polynomial time. We analyze
the approximation ratio for the algorithm.

Lemma 8.3.2 If each clause in the input instance F contains at least k
literals, then the algorithm Johnson constructs an assignment that satisfies
at least m(1 — 1/2%) clauses in F, where m is the number of clauses in F.

PROOF. In the algorithm Johnson, once a literal in a clause is set to TRUE,
i.e., once the clause is satisfied, the clause is removed from the set L (see
steps 3.2 and 3.3 of the algorithm). Therefore, the number of clauses that
are not satisfied by the constructed assignment 7 is equal to the number of
clauses left in the set L at the end of the algorithm.

Each clause C; is associated with a weight value w(C;). Initially, we have
w(C;) =1 /2|Ci| for all C;. By our assumption, each clause C; contains at
least k literals. So initially we have

m

> w(Ci) = w(Ci) = i 1/2161 < fj 1/2F = m/2k.

C;€L =1 =

In step 3, we update the set L and the weight for the clauses in L. It can
be easily seen that we never increase the value 3¢ ., w(C;): each time we
update the set L, we remove a heavier set of clauses from L and double the
weight for a lighter set of clauses remaining in L. Therefore, at end of the
algorithm we should still have

Z w(C;) < m/2k, (8.3)

C;eL

236 PROBLEMS IN APX

At the end of the algorithm, all boolean variables {z1, ..., z,} have been
assigned a value. A clause Cj left in the set L has been considered by the
algorithm exactly |C;| times and each time the corresponding literal in C;
was assigned FALSE. Therefore, for each literal in Cj, the weight of the clause
C; is doubled once. Since initially the clause C; has weight 1/ 211 and its
weight is doubled exactly |C;| times in the algorithm, we conclude that at
the end of the algorithm, the clause C; left in L has weight 1. Combining
this with the inequality (8.3), we conclude that at the end of the algorithm,
the number of clauses in the set L is bounded by m/2¥. In other words,
the number of clauses satisfied by the constructed assignment 7 is at least
m —m/2% = m(1 —1/2%). The lemma is proved. []

The observation given in Lemma 8.3.2 derives the following bound on
the approximation ratio for the algorithm Johnson immediately.

Theorem 8.3.3 The algorithm Johnson for the MAX-SAT problem has its
approximation ratio bounded by 2.

PRrOOF. According to Lemma 8.3.2, on an input F' of m clauses, each con-
taining at least k literals, the algorithm Johnson constructs an assignment
that satisfies at least m(1 — 1/2¥) clauses in F. Since a clause in the input
F contains at least one literal, i.e., k > 1, we derive that for any instance F
for MAX-SAT, the assignment constructed by the algorithm Johnson sat-
isfies at least m(1 — 1/2) = m/2 clauses in F. Since the optimal value for
the instance F' is obviously bounded by m, the approximation ratio for the
algorithm must be bounded by Wmi =2. U

The algorithm Johnson has played an important role in the study of
approximation algorithms for the MAX-SAT problem. In particular, it is an
excellent illustration for the probabilistic method, which has been playing
a more and more important role in the design and analysis of approxima-
tion algorithms for NP-hard optimization problems. We will re-consider the
algorithm Johnson in the next section from a different point of view.

8.3.2 Revised analysis on Johnson’s algorithm

Theorem 8.3.3 claims that the algorithm Johnson has approximation ratio
bounded by 2. Is the bound 2 tight for the algorithm? In this subsection,
we provide a more careful analysis on the algorithm and show that the
approximation ratio of the algorithm is actually 1.5. Readers may skip this
subsection in their first reading.

MAXIMUM SATISFIABILITY 237

In order to analyze the algorithm Johnson, we may need to “flip” a
boolean variable z;, i.e., interchange x; and Ty, in an instance for MAX-
SAT. This may change the set of clauses satisfied by the assignment 7
constructed by the algorithm. In order to take care of this abnormality,
we will augment the algorithm Johnson by a Boolean array b[l1..n]. The
augmented Boolean array b[1..n] will be part of the input to the algorithm.
We call such an algorithm the augmented Johnson’s algorithm. Our first
analysis will be performed on the augmented Johnson’s algorithm with an
arbitrarily augmented Boolean array. The bound on the approximation ratio
for the augmented Johnson’s algorithm will imply the same bound for the
original algorithm Johnson.

The augmented Johnson’s algorithm is given in Figure 8.11.

Augmented Johnson’s Algorithm.

INPUT: a set F of clauses on {z1,...,2n}, and a Boolean array b[1..n]
OUTPUT: a truth assignment 7 to {z1,...,zn}

1. for (each clause Cj in F) do w(Cj) = 1/2/%l;

2. L=F;

3. fort=1tondo

3.1 find all clauses CT, ce Cg" in L that contain x;

find all clauses Cf ey C’f in L that contain Z;;

case 1. (3:1 w(CZ.T) > Z::1 w(CiF)) or

(30, w(Cl) =327 w(CF) and b[t] = TrRUE)
7(x¢) = TRUE; delete C?, .. ,C"IT from L;
for i =1 to s do w(CF) = 2w(CF);

case 2. (le w(CT) < ijl w(CZF)) or

(1 w(Cl) =370 w(Cf) and b[t] = FALSE)
7(z¢) = FALSE; delete C¥,...,CF from L;
for i =1 to ¢ do w(CT) = 2w(CT).

Figure 8.11: The augmented Johnson’s algorithm.

The only difference between the original algorithm Johnson and the
augmented Johnson’s algorithm is that in case >7_; w(CI) = Y7, w(CF),
the original algorithm Johnson assigns 7(z;) = TRUE while the augmented
Johnson’s algorithm assigns 7(z;) = b[t].

In the following, we prove a lemma for the augmented Johnson’s algo-
rithm. To do this, we need to introduce some terminologies and notations.

A literal is a positive literal if it is a Boolean variable x; for some 7, and
a negative literal if it is the negation Z; of a Boolean variable.

Fix an instance F' = {C1,...,Cp,} for MAX-SAT and let b[1..n| be any
fixed Boolean array. Let r be the maximum number of literals in a clause in

238 PROBLEMS IN APX

F. Apply the augmented Johnson’s algorithm on F' and b[1..n]. Consider a
fixed moment in the execution of the augmented Johnson’s algorithm. We
say that a literal is still active if it has not been assigned a truth value yet. A
clause C; in F' is satisfied if at least one literal in C; has been assigned value
TRUE. A clause Cj is killed if all literals in C; are assigned value FALSE. A
clause Cj is negative if it is neither satisfied nor killed, and all active literals
in U} are negative literals.

Definition 8.3.1 Fix a t, 0 <t < n, and suppose that we are at the end
of the t-th iteration of the for loop in step 3 of the augmented Johnson’s
algorithm. Let S®) be the set of satisfied clauses, K(*) be the set of killed

clauses, and Nz»(t) be the set of negative clauses with exactly ¢ active literals.

For a set S of clauses, denote by |S| the number of clauses in .S, and let

w(S) = Xo,es w(Cj).

Lemma 8.3.4 For allt, 0 <t <n, the sets S0, K1) and Ni(t) satisfy the
following condition:

t
Y|

9i—1 Ao,

1S®| > 2|K®] + 3
=1

where Ag = Y7, [NV /2i-1,

PROOF. The proof proceeds by induction on ¢. For ¢ = 0, since S =
KO =@, and 37, |]\fi(t)|/2i_1 = Ay, the lemma holds true.

Suppose t > 0. We need to introduce two more notations. At the end
of the t-th iteration for the for loop in step 3 of the augmented Johnson’s
algorithm, let P; ; be the set of clauses that contain the positive literal x4
such that each clause in P; ; contains exactly 7 active literals, of which exactly
J are positive, and let N;; be the set of clauses that contain the negative
literal @; 41 such that each clause in IV; ; contains exactly 7 active literals,
of which exactly j are positive. Note that according to the augmented
Johnson’s algorithm, if at this moment a clause C} has exactly ¢ active
literals, then the weight value w(C},) equals exactly 1/2¢.

Case 1. Suppose that the augmented Johnson’s algorithm assigns
7(x¢+1) = TRUE. Then according to the algorithm, regardless of the value
b[t] we must have

r o i—1

2> wlbig) =) > wliy).

i=1j=1 i=1j=0

MAXIMUM SATISFIABILITY 239

This is equivalent to

. N;
Z 1| WJ >Z | lJl (8.4)
i=1
Now we have
NV = (VY = Nig) U Nap,
N = (NS — Nog) U Ny,
Nﬁt_—iil) = (N7Et_)1 - Nr—l,O) U Nr,Ov
N£t+1) — (Nygt) _ NT,0)~
This gives
t+1 1T+
N4 SN e NG
1
= INO 4 SN 4 g N (8.5)
+ FlNT,O
(t)
N Nipo|
:=z;1+z"—MML
i=1
On the other hand, we have
roo1
SHY =Wy J Py and KUY =KOUN, (86)

i=1j=1

Combining relations (8.4)-(8.6), and using the inductive hypothesis, we get

ST =[SO+ 3 Py
i=1j=1
(t) r i
t |N | Z‘:l |P7«7J|
> 2|K()|+Z ST A0+Z]2T
=1
! |V; ,JI
> o+ 3 DLy 3
=1

r t)
2(] K| + [Ny]) + Z i 1|

=1

|Niol
Z 2zZ 1 — 2| N1of -

Vv

240 PROBLEMS IN APX

(t+1 B

211

Therefore, the induction goes through in this case.

Case 2. Suppose that the augmented Johnson’s algorithm assigns
T(x¢+1) = FALSE. The proof for this case is similar but slightly more com-
plicated. We will concentrate on describing the differences.

According to the augmented Johnson’s algorithm, we have

TSPl s 0 [N
Z : 2t ’ SZ ’ 2t : (8'7)

i=1 i=1

Based on the relations

Nl(t+1) = (Nl(t) — NLO) U Pzﬂl,
NSV = (NS — Nog) U Py,
N,Et_—’il) = (N£?1 - Nr—l,O) U Pr,la
NT(t-i-l) — (N,,gt) _ NT,O),
we get
1
VD 4 SN e N (88)
|N“>| Pl _ < [Nl
Z Z 2i—2 Z 9i—1 "
i=1
Moreover, we have
r oi—1
S =Wy J YNy and KUV =KODuP . (89)
i=1;j=0

Combining relations (8.8) and (8.9) and using the inductive hypothesis,

|N(t+1 ’
2 K] +ZT
=1

TN S|P Nio|
2|K(t)| + 2|P1:1| + Z 9i—1 + Z 27;7—2 Z 2@1 1
i=1 1=2

A

MAXIMUM SATISFIABILITY 241

t ‘PZ 1| ‘Nz 0|
< S()l + Z 9i— 9i—2 Z
) r i—1 |P7, 1| r |Ni,0’ r i—1
- |+ZZ|NZ':J‘+Z 9i—1 [Nijl-
i=1 ;=0 i=1 i=15=0
Now according to equation (8.9),
r o i—1
(S = 1S+ 33 [Nl
i=1j=0
Moreover, since
[Niol ol roi—1 roi—1
Z siot 20 20 INisl = INvol + [Niol + 3 3 [Nl
i=1j=0 i=2 j=0
C T Nisl _ (- b Nl | (- T P
§=01""%J1 0 i, J=11717
2 2|Nipl + Z 9i—2 Z 9i—2 Z Z 9i—2
i=2 i=1 i=1

| P

.
> > o
=1

where the third inequality above follows from relation (8.7), we conclude

N (t+1)
oty ¢ 37 L
=1

Ay < |S(t+1)|_
Thus, the induction also goes through in this case.
The lemma now follows directly from the inductive proof. []

Now we are ready to prove our main theorem. Let us come back to the
original algorithm Johnson.

Theorem 8.3.5 The approximation ratio for the algorithm Johnson given
i Figure 8.10 for the MAX-SAT problem is 1.5. This bound is tight.

PROOF. Let F' be an instance of the MAX-SAT problem. Let 7, be an
arbitrary optimal assignment to F'. We construct another instance F’ for
MAX-SAT, as follows. Starting with F, if for a Boolean variable x;, we have
To(xt) = FALSE, then we “flip” x; (i.e., interchange x; and Z;) in F. Thus,
there is a one-to-one correspondence between the set of clauses in F' and the
set of clauses in F’. It is easy to see that the sets F' and F’, as instances

242 PROBLEMS IN APX

for MAX-SAT, have the same optimal value. In particular, the assignment
70 on F’ such that 7/(z;) = TRUE for all ¢ is an optimal assignment for the
instance F”.

We let a Boolean array b[1..n] be such that b[t| = 7,(x) for all ¢.

We show that the assignment constructed by the original algorithm
Johnson on the instance F' and the assignment constructed by the aug-
mented Johnson’s algorithm on the instance F’ augmented by the Boolean
array b[1..n| satisfy exactly the same set of clauses.

Inductively, suppose that for the first (¢t — 1)-st iterations of the for loop
in step 3, both algorithms satisfy exactly the same set of clauses. Now
consider the t-th iteration of the algorithms.

If z; in F is not flipped in F’, then b[t] = TRUE. Thus, the augmented

Johnson’s algorithm assigns 7(x;) = TRUE and makes the clauses C7 , . . ., C’qT
satisfied during the ¢-th iteration if and only if S7 , w(CT) > Y5, w(Cf),
where Cf, ..., CqT are the clauses in L containing z; and C{', ..., CF

are the clauses in L containing Z;. On the other hand, if z; in F is
flipped in F’, then b[t] = FALSE, and the augmented Johnson’s algorithm
assigns 7(7;) = FALSE and makes the clauses Cf', ..., CI satisfied if and
only if 30, w(Cl) < %, w(CF). Note that if z; is not flipped, then
{cf,. .., Cg } is exactly the set of clauses containing x; in the ¢-th iteration
of the original algorithm Johmnson for the instance F', while if z; is flipped,
then {CF, ... ,CF} is exactly the set of clauses containing z; in the ¢-th
iteration of the original algorithm Johnson for the instance F. Therefore,
in the ¢-th iteration, the set of the clauses satisfied by the augmented John-
son’s algorithm on F’ and b[1..n] corresponds exactly to the set of clauses
satisfied by the original algorithm Johnson on F. In conclusion, the as-
signment constructed by the original algorithm Johnson on the instance F'
and the assignment constructed by the augmented Johnson’s algorithm on
the instance F’ and the Boolean array b[1..n| satisfy exactly the same set of
clauses.

Therefore, we only need to analyze the approximation ratio of the aug-
mented Johnson’s algorithm on the instance F’ and the Boolean array b[1..n].

Let K® §® and Ni(t) be the sets defined before for the augmented
Johnson’s algorithm on the instance F’ and the Boolean array b[1..n]. Ac-
cording to Lemma 8.3.4, we have

N

St — Ao, (8.10)

1S®| > 2|k + 37
=1

for all 0 <t <mn, where Ag =>7_; |Ni(0)|/2i_1.

MAXIMUM SATISFIABILITY 243

At the end of the augmented Johnson’s algorithm, i.e., t = n, S is
exactly the set of clauses satisfied by the assignment constructed by the
algorithm, and K™ is exactly the set of clauses not satisfied by the assign-
ment. Moreover, N;" ") — ¢ for all 4 > 1.

By (8.10), we have

S| > 2] K™ - A, (8.11)

Also notice that
: 0)
=y 0 <3N (8.12)
i=1

Combining relations (8.11) and (8.12), we get
3™ = 28] + K™ = 37 N, (8.13)

Since S™ U K™ is the whole set {C1,...,Cy,} of clauses in F’, we
have |S™| 4 |[K™| = m. Moreover, the assignment 7/(z;) = TRUE for
all 1 <t < n is an optimal assignment to the instance F’, which satisfies
all clauses in F’ except those in Ni(o) , for 1 < i < r. Thus, the optimal
value of the instance F’, i.e., the number of clauses satisfied by an optimal
assignment to F’ is equal to

Opt(F') =m — Z|N(O)| (8.14)

Now combining the relations (8.14) and (8.13), we get
31S™| > m + Opt(F') > 2 - Opt(F").

The set S is the set of clauses satisfied by the assignment constructed
by the augmented Johnson’s algorithm. Since the original algorithm John-
son and the augmented Johnson’s algorithm satisfy the same set of clauses
and since Opt(F) = Opt(F"), we conclude that the approximation ratio of
the algorithm Johnson for the MAX-SAT problem is Opt(F”')/|S™| < 1.5.

To see that the bound 1.5 is tight for the algorithm Johnson, consider
the following instance Fj, of 3h clauses for MAX-SAT, where h is any integer
larger than 0.

Fr, = {(z3k41 V 23k42)s (T341 V T3843), (Takg1) |0 <k < h — 1},

244 PROBLEMS IN APX

It is easy to verify that the algorithm Johnson assigns x; = TRUE for all
1 <t < 3h, and this assignment satisfies exactly 2h clauses in Fj,. On the
other hand, the assignment xsyy11 = FALSE, T3p12 = T3r13 = TRUE for all
0 < k < h — 1 obviously satisfies all 3h clauses in Fj,. [I

Theorem 8.3.5 gives an example in which the precise approximation ratio
for a simple algorithm is difficult to derive. The next question is whether the
approximation ratio 1.5 on the MAX-SAT problem can be further improved
by a “better” algorithm for the problem. This has been a very active research
topic in the past decade. In the next chapter, we will develop new techniques
that give better approximation algorithms for the MAX-SAT problem.

