Chapter 7

Polynomial Time
Approximation Schemes

A fully polynomial time approximation scheme for an NP-hard optimization
problem @ seems the best we can hope in approximation of optimal solu-
tions to the problem): we can approximate an optimal solution to) with
an approximation ratio 1 + € arbitrarily close to 1 in time polynomial in the
input length and in the reciprocal of the error bound e. Unfortunately, The-
orem 6.4.1 immediately excludes the possibility of having fully polynomial
time approximation schemes for many NP-hard optimization problems. In
particular, a large class of NP-hard optimization problems is of the type of
“subset problem”, which ask to select a largest or smallest subset satisfying
certain properties from a given set of objects. Most optimization problems
related to graphs, such as the INDEPENDENT SET problem and the VERTEX
COVER problem, belong to this class. Note that any such an NP-hard subset
problem automatically satisfies the conditions of Theorem 6.4.1, thus has no
fully polynomial time approximation scheme unless P = NP.

With the understanding that a given optimization problem @ is unlikely
to have a fully-polynomial time approximation scheme, we are still interested
in whether we can approximate in polynomial time optimal solutions to @
with approximation ratio arbitrarily close to 1. More precisely, for each fixed
constant €, we are interested in knowing whether there is an approximation
algorithm for) with approximation ratio bounded by 1 4+ € whose running
time is bounded by a polynomial (of the input length but not necessarily of
1/€). Note that neither Theorem 6.4.1 nor Theorem 6.4.8 excludes the pos-
sibility of having this kind of approximation algorithms for an optimization
problem @ even if () satisfies the conditions in the corresponding theorem.

175

176 PTAS

Definition 7.0.1 An optimization problem () has a polynomial-time ap-
prozimation scheme (PTAS), if for any fixed constant € > 0, there is a
polynomial-time approximation algorithm for () with approximation ratio
bounded by 1 + €.

In particular, an optimization problem with a fully polynomial-time ap-
proximation scheme has polynomial-time approximation schemes.

In this chapter, we present polynomial-time approximation schemes for a
number of well-known optimization problems, including the PLANAR GRAPH
INDEP-SET problem, and the EUCLIDEAN TRAVELING SALESMAN problem.
These problems, according to Theorem 6.4.1 and Theorem 6.4.8, have no
fully-polynomial time approximation schemes unless P = NP (A proof for
the strong NP-hardness of EUCLIDEAN TRAVELING SALESMAN can be found
in [52]). Therefore, polynomial-time approximation schemes seem the best
approximation we can expect for these problems.

Polynomial-time approximation schemes for PLANAR GRAPH INDEP-
SET and for KUCLIDEAN TRAVELING SALESMAN are based on a polular
technique that takes advantage of balanced separability of planar graphs
and geometric problems and uses “separate-approximation”.

We should point out that though most (non-fully) polynomial-time ap-
proximation schemes for optimization problems are of great theoretical im-
portance, they are not very practical for small error bound e. Typically, the
running time of this kind of algorithms is proportional to at least 21/¢ or
even to n'/¢, which is an enormous number when ¢ is small. For this, we
include a brief discussion at the end of this chapter to discuss the efficiency
of polynomial-time approximation schemes. In particular, we introduced
the concept of “efficient polynomial-time approximation schemes” (EPTAS),
which has drawn significant interests in recent research in approximation al-
gorithms.

7.1 Optimization on planar graphs

A graph is planarif it can be embedded into the plane without edge crossing.
There is a well-known linear-time algorithm by Hopcroft and Tarjan [71]
that, given a graph, either constructs a planar embedding of the graph or
reports that the graph is not planar. Planar graphs are of great practical
interest (e.g, in designing integrated circuits or printed-circuit boards).

In this section, we consider optimization problems on planar graphs.
Some NP-hard optimization problems on general graphs become tractable
when they are restricted to planar graphs. For example, the CLIQUE problem

PLANAR GRAPHS 177

(given a graph G, find a largest clique, i.e., a largest subset S of vertices
in G such that every pair of vertices in S are adjacent), which in general
is NP-hard, can be solved in polynomial time on planar graphs, as follows.
According to Kuratowski Theorem [61], a planar graph contains no clique
of size larger than 4. Therefore, we can simply check every set of at most
four vertices in a planar graph and find the largest clique. Since for a planar
graph of n vertices, there are

(37 (5)+ () o

different sets of at most 4 vertices, the largest clique in the planar graph can
be found in time O(n?).

On the other hand, some NP-hard optimization problems on general
graphs remain NP-hard even when they are restricted on planar graphs.
Examples include the PLANAR GRAPH INDEP-SET problem and the PLA-
NAR GRAPH VERTEX-COVER problem. Therefore, finding optimal solutions
for these problems on planar graphs seems as hard as finding optimal so-
lutions for the problems on general graphs. However, graph planarity does
seem to make some of these problems easier in the sense that for a class of
optimization problems on planar graphs, we can derive polynomial-time ap-
proximation schemes, while the corresponding problems on general graphs
have no polynomial-time approximation schemes unless P = NP. A gen-
eral technique has been developed to obtain polynomial-time approximation
schemes for a class of NP-hard optimization problems on planar graphs. For
purposes of discussion, we will focus on the following problem to illustrate
the technique, where by an independent set D in a graph G, we mean a
subset of vertices in G in which no two vertices are adjacent:

PLANAR GRAPH INDEP-SET
Io: the set of planar graphs G = (V, E)
Sq: Sq(G) is the collection of all independent sets in G

fo: fo(G, D) is equal to the number of vertices in the
independent set D in GG

optg: max

The decision version PLANAR GRAPH INDEP-SET (D) of the PLANAR
GRAPH INDEP-SET problem is NP-complete (see Section 1.4). Thus, it is
straightforward to derive that the PLANAR GRAPH INDEP-SET problem is
NP-hard. Moreover, it is easy to check that the PLANAR GRAPH INDEP-SET

178 PTAS

problem satisfies the conditions of Theorem 6.4.1. Therefore, the PLANAR
GRAPH INDEP-SET problem has no fully polynomial-time approximation
scheme unless P = NP.

A (non-fully) polynomial-time approximation scheme is obtained for the
PLANAR GRAPH INDEP-SET problem, and for many other optimization
problems on planar graphs, using the popular divide-and-conquer method
based on the following Planar Separator Theorem by Lipton and Tarjan [95].
Interested readers are referred to the original article [95] for a formal proof
for this theorem.

Theorem 7.1.1 (Planar Separator Theorem) There is a linear time algo-
rithm that, on a planar graph G of n vertices, partitions the vertexr set of G
into three disjoint subsets, A, B, and S, such that

1. |A],|B| < 2n/3;
2. S| < V/8n; and
3. S separates A and B, i.e. there is no edge between A and B.

Let G = (V, E) be a planar graph and let (A, B,.S) be a triple satisfying
the conditions of Theorem 7.1.1. We will say that the graph G s split
into two smaller pieces A and B (using the separator S). Let G4 be the
subgraph of G induced by the vertex set A, that is, G4 is the subgraph of
G that consists of all vertices in the set A and all edges whose both ends
are in A. Similarly, let Gp be the subgraph of G induced by the vertex
set B. Based on the fact that there is no edge in G that connects a vertex
in A and a vertex in B, a simple observation is that if D4 and Dp are
independent sets of the subgraphs G 4 and G, respectively, then the union
D4 U Dp of the sets D4 and Dp is an independent set of the graph G.
Moreover, since the size of a maximum independent set of the planar graph
G is of order Q(n) (this will be formally proved later) while the size of the
separator S is of order O(y/n), ignoring the vertices in the separator S does
not seem to lose too much precision. Based on this observation, our divide-
and-conquer method first recursively finds a large independent set D 4 for
the subgraph G 4 and a large independent set Dp for the subgraph G (note
that the subgraphs G4 and G p are also planar graphs), then uses the union
D4 U Dp as an approximation to the maximum independent set for the
graph GG. This algorithm is given in Figure 7.1, where K is a constant to be
determined later.

By the discussion above, the algorithm PlanarIndSet correctly returns
an independent set for the planar graph G. Thus, it is an approximation

PLANAR GRAPHS 179

Algorithm. PlanarIndSet(K)

INPUT: a planar graph G = (V, E)

OuTPUT: an independent Set D in G

1. If (JV] < K) then
find a maximum indepenent set D in G by exhaustive search; Return(D);

2. else \\ At this point V| > K.

2.1 split V into (A, B, S) as in Theorem 7.1.1;

2.2 recursively find an independent set D4 for the subgraph G4 and an
independent set Dp for the subgraph Gp;

2.3 Return(D4 U Dpg).

Figure 7.1: The algorithm PlanarIndSet

algorithm for the PLANAR GRAPH INDEP-SET problem. We first study some
properties of this algorithm.

The algorithm PlanarIndSet splits the graph G into small pieces. If the
size of a piece is larger than K, then the algorithm further splits, recursively,
the piece into two smaller pieces in linear time according to Theorem 7.1.1.
Otherwise, the algorithm finds a maximum independent set for the piece
using brute force method. Let us consider the number of pieces whose size
is within a certain region.

A piece is at level 0 if its size is not larger than K. For a general i > 0, a
piece is at level i if its size (i.e., the number of vertices in the piece) is in the
region ((3/2) 71K, (3/2)!K], i.c., if its size is strictly larger than (3/2) "1 K
but not larger than (3/2)*K. Since the graph has n vertices, the largest level
number is bounded by log(n/K)/log(3/2) = O(log(n/K)).

Lemma 7.1.2 For any fized ¢, each vertex of the graph G belongs to at most
one piece at level 1.

PrOOF. Fix a vertex v of the graph G and let P be a piece containing the
vertex v. Note that if P is not the whole graph G, then P must be obtained
from splitting a larger piece.

Assume the contrary that the vertex v is contained in two different pieces
P and Q at level i. Then both P and @ have size larger than (3/2)" 'K
but not larger than (3/2)°K. Consider the “splitting chains” for P and Q:

PlaPQa--tha and leQ?v"'aQS

180 PTAS

where P = P, Q1 = Q, P, = Qs = G, the piece P; is obtained from splitting
the piece Pjy1 for j = 1,...,t — 1, the piece @, is obtained from splitting
the piece Qp1q for h =1,...,s — 1, and all pieces Py, ..., P, Q1, ..., Qs
contain the vertex v. Note that the piece () is not in the sequence P;, Ps,
..., P since by Theorem 7.1.1, the piece @ is split into two smaller pieces of
size at most (2/3)(3/2)'K = (3/2)"~'K while all pieces in the sequence P},
Py, ..., P, have size at least as large as | P|, which is larger than (3/2)"'K.
Similarly, the piece P is not in the sequence @)1, Q2, ..., Qs. Let j be the
smallest index such that P; = @y, for some h (such an index j must exist
since P, = G = Q). Then P; # P and P; # @, and by the assumption
on the index j, we have P;_1 # @Qp—1. Therefore, the piece P; is split into
two different pieces Pj_1 and Qp—1. Now the fact that both pieces P;_; and
Q1—1 contain the vertex v contradicts Theorem 7.1.1. [

Therefore, for each fixed i, all pieces at level i are disjoint. Since each
piece at level i consists of more than (3/2)°"1K vertices, there are no more
than (2/3)""(n/K) pieces at level 4, for all i. We summarize these discus-
sions into the following facts.

Fact 1. There are at most n pieces at level 0, each is of size at most K;

Fact 2. For cach i > 0, there are at most (2/3)""!(n/K) picces at level 4,
each is of size bounded by (3/2)'K; and

Fact 3. There are at most O(logn) levels.

Now we are ready to analyze the algorithm.

Lemma 7.1.3 Algorithm PlanarIndSet runs in time O(nlogn + 25n).

PrOOF. For each piece at level ¢ > 0, we apply Theorem 7.1.1 to split it
into two smaller pieces in time linear to the size of the piece. Since the total
number of vertices belonging to pieces at level i is bounded by n, we conclude
that the total time spent by the algorithm PlanarIndSet on pieces at level
i is bounded by O(n) for each i > 0. Since there are only O(logn) levels,
the algorithm PlanarIndSet takes time O(nlogn) on piece splitting.

For each piece P at level 0, which has size bounded by K, the algorithm
finds a maximum independent set by checking all subsets of vertices of the
piece P. There are at most 2/ such subsets in P, and each such a subset can
be checked in time linear to the size of the piece. Therefore, finding a maxi-
mum independent set in the piece P takes time O(2%|P|). By Lemma 7.1.2,
all pieces at level 0 are disjoint. We conclude that the algorithm PlanarInd-
Set spends time O(2%n) on pieces at level 0. In summary, the running time
of the algorithm PlanarIndSet is bounded by O(nlogn + 2Kn). O

PLANAR GRAPHS 181

Now let us consider the approximation ratio for the algorithm Pla-
narIndSet.

Fix an ¢ > 0. Suppose that we have [pieces P;, Ps, ..., P}, of size ny, ns,
..., ny, respectively, at level i. By Lemma 7.1.2, all these pieces are disjoint.
Thus, ny +ng + - -+ +ny =n' < n. For each piece P, of size n,, a separator
S, of size bounded by /8n, < 3,/Mq is constructed to split the piece P into
two smaller pieces. The vertices in the separator S, will be ignored in the
further consideration. Thus, the total number of vertices in the separators
for the pieces Py, P, ..., P at level ¢, which will be ignored in the further
consideration, is bounded by

3vni +3y/ne + -+ 3/ny.

It is well-known that under the condition nq + ns + --- +n; = n’ the above

summation will be maximized when all nq, ns, ..., n; are equal. That is,
when n; = ng = ---n; = n'/l. Hence, the above summation is bounded by
3y L+ 3y L4 -+ 3y /1 = 31y /1 = 3/l < 3V/nl.
[terms

Now, since the number [of pieces at level i is bounded by (2/3)""*(n/K)
(see Fact 2), the total number of vertices belonging to separators for pieces
at level 7 is bounded by

ol o (2)2'—1 n 3n \/? !
n = —=— - .
3 K VK 3
Let F denote the set of all vertices that belong to a separator at some

level. Let h be the largest level number. Then h = O(logn) (see Fact 3)
and we derive

nsf () W) - o

=1

where we have used the fact 35°,(1/2/3)"1 = 1/(1 — /2/3) < 6.
Therefore, when the number K is large enough, the total number of
vertices contained in the separators is small compared with the total number
n of vertices in the graph G.
Now we derive an upper bound and a lower bound for the size of an
optimal solution, i.e., a maximum independent set, to the planar graph G.

182 PTAS

Lemma 7.1.4 Suppose that the planar graph G has n vertices. Let D be
the independent set constructed by the algorithm PlanarIndSet on input
G and let F' be the set of all vertices that are contained in any separators
constructed by the algorithm PlanarIndSet. Then

n/4 < Opi(G) < D] + | Fl,
where Opt(G) is the size of a maximum independent set in the graph G.

PRrROOF. Since the graph G is planar, by the famous Four-Color Theorem
[3, 4], G can be colored with at most 4 colors such that no two adjacent
vertices in GG are of the same color. Since all vertices colored with the same
color in such coloring form an independent set for G, and there are at least
n/4 vertices in G colored with the same color, the size Opt(G) of a maximum
independent set in the graph G is at least n/4.

Now we consider the upper bound for Opt(G). Let Dpax be a maximum
independent set of the graph G and let P be a piece at level 0. It is easy
to see that Dy, N P is an independent set in the piece P, which cannot
be larger than the maximum independent set D of P constructed by the
algorithm PlanarIndSet. Note that the independent set D constructed by
the algorithm PlanarIndSet is the union of DX over all pieces at level 0.

max

Let T'g be the collection of all level 0 pieces. Note that

(Y P)UF

PeTly

is the set of all vertices in the graph G, where the sets Uper, P and F' are
disjoint. Therefore,

Dmax — U (Dmax N P) U (Dmax N F)
PEFO

This gives (note that all level 0 pieces in I'y are disjoint)

Opt(G) = |Dmax| < Y (|Dmax N P|) + | Dinax N F]|
Pely

Y |Diaxl + P

Pel’y

— |D|+|F|.

IA

The lemma is proved. [

PLANAR GRAPHS 183
Now we are ready to derive the approximation ratio for the algorithm
PlanarIndSet. From Lemma 7.1.4, Opt(G) < |D| + |F|. Thus,

Opt(G)
D]

<1+ﬂ<1+¢.
= TDI =T opt@) — 1P

Combining this with the inequalities Opt(G) > n/4 (see Lemma 7.1.4) and
|F| < 18n/vVK (see Inequality (7.1)), we obtain

Opt(G) |F| |F|
< I+ — =<1+ ———
D Opt(G) — |F| (n/4) — |F|
18n/VK . 72

< 1+ =14 —
(n/4) — 18n/VK VK — 72
Now for any fixed constant e, if we let
K > (72(1+1/€))? = 5184(1 + 1/¢)?,

then the algorithm PlanarIndSet(K) produces an independent set D for
the planar graph G with the approximation ratio

Opt(Q) 72 72

— 2 <1+ 1+ <
Dl = VK-712 T2(1+1/e)—-T72 "

1+e

in time O(nlogn +n251840+1/9%) (see Lemma 7.1.3). For a fixed € > 0, this
is a polynomial-time algorithm. We conclude with the following theorem.

Theorem 7.1.5 The PLANAR GRAPH INDEP-SET problem has a polyno-
mial time approximation scheme.

Note that the algorithm PlanarIndSet is not a fully polynomial-time
approximation scheme for the PLANAR GRAPH INDEP-SET problem since
its time complexity is not bounded by a polynomial of n and 1/e.

Other optimization problems on planar graphs that have polynomial-
time approximation schemes but have no fully polynomial-time approx-
imation schemes include the PLANAR GRAPH VERTEX-COVER prob-
lem, the PLANAR GRAPH H-MATCHING problem, the PLANAR GRAPH
DOMINATING-SET problem, and some others (see [52] for precise defini-
tions). Most of these polynomial-time approximation scheme algorithms
use the similar technique as the one we described for the PLANAR GRAPH
INDEP-SET problem, i.e., using the divide-and-conquer method and the Pla-
nar Separator Theorem (Theorem 7.1.1) to separate a planar graph into

184 PTAS

small pieces by separators of small size, using brute force method to solve
the problem for the small pieces, and combining the solutions to the small
pieces into an approximation solution to the original planar graph.

The algorithm PlanarIndSet of time O(nlogn + n25184(+1/9%) g
hardly practical, even for a moderate value e. Research on improving the
time complexity of polynomial-time approximation schemes for optimization
problems on planar graphs has performed. For example, a difference sepa-
rating technique has been proposed by Baker [10]. We briefly describe the
idea below based on the PLANAR GRAPH INDEP-SET problem. Let G be a
planar graph. Embed G into the plane. Now the vertices on the unbounded
face of the embedding give the first layer of the graph G. By peeling the
first layer, i.e., deleting the vertices in the first layer, we obtain (maybe
more than one) several separated pieces, each of which is a planar graph
embedded in the plane. Now the first layers of these pieces form the second
layer for the graph G. By peeling the second layer of GG, we obtain the third
layer, and so on. Define the depth of the planar graph G to be the maximum
number of layers of the graph. Baker observed that for a graph of constant
depth, a maximum independent set can be constructed in polynomial time
by dynamic programming techniques. Moreover, for any planar graph G of
arbitrary depth, if we remove one layer out of every K consecutive layers,
where K is a constant, we obtain a set of separated planar graphs of con-
stant depth. Now for each such graph of constant depth, we construct a
maximum independent set. The union of these maximum independent sets
forms an independent set for the original graph G. For sufficiently large K,
the number of vertices belonging to the removed layers is very small and thus
gives only a small error in the approximation. Baker [10] shows that this
method produces a polynomial-time approximation scheme for the PLANAR
GRAPH INDEP-SET problem with running time bounded by O(8'/n /e).

7.2 Optimization for geometric problems

The techniques described in the previous section for approximation of opti-
mization problems on planar graphs are based on the well-known divide and
conquer method that has been extensively applied in computer algorithm
design. Based on this classical technique, systematic methods have been
recently developed in designing polynomial time approximation schemes for
a set of famous optimization problems on Euclidean space £%. Roughly
speaking, the new methods work in a dynamic programming manner, which
partition the Euclidean space into smaller areas, construct and store good

GEOMETRIC PROBLEMS 185

approximations for all possible situations for each smaller area, and recur-
sively construct a good approximation for each situation for a larger area
based on the approximations for the smaller areas. The techniques are gen-
eral for any Fuclidean space of a fixed dimension d. We will discuss in
detail the construction of a polynomial time approximation scheme for the
TRAVELING SALESMAN problem on Euclidean plane £2. Explanation will
be briefly provided on how the techniques are extended to other geometric
problems and to general Euclidean space £ for any constant d.

Each point p in the Euclidean plane £2 is given by two real numbers that
are the z- and y-coordinates of the point. The Euclidean distance between
two points p; = (z1,y1) and pa = (x2,y2) is given by the formula

dist(p1,p2) = \/(331 — x2)% 4 (Y1 — y2)?

Let S be a set of n points in £2, a traveling salesman tour on S (or simply a
salesman tour) is a closed walk that visits all points in S. The EUCLIDEAN
TRAVELING SALESMAN problem (abbr. EUCLIDEAN TSP) is to construct a
salesman tour of minimum length for a given set of points in £2.

It is known that EUCLIDEAN TSP is NP-hard in the strong sense [50,
104]. Therefore by Theorem 6.4.8, EUCLIDEAN T'SP has no fully polynomial
time approximation scheme unless P = NP.

A salesman tour is polygonal if it consists of a finite number of line seg-
ments. Since the Euclidean distance satisfies the triangle inequality rule that
the length of the straight line segment connecting two points is not larger
than the length of any other path connecting the two points, it is clear that
any minimum salesman tour on a set S of n points can be given by a cycli-
cally ordered sequence of the n points that specifies the polygonal salesman
tour of n segments on the n points. We will concentrate on polygonal sales-
man tours. Sometimes in the discussion we may prefer to have the tours
“bent” at points that are not in the original set S in order to make the tours
satisfy certain special properties. These bends can be easily removed at the
end of our approximation: once such a bent polygonal salesman tour 7 is
constructed and suppose that it is a good approximation to the minimum
salesman tour, we can simply delete points in 7 that do not belong to S to
obtain a tour 7. that contains only points in S. Note that deleting a point p
in the tour m = - p1pps - - - is equivalent to replacing the path [p1,p, p2] of
two line segments by a straight line segment [p1, p2|, which, by the triangle
inequality rule, does not increase the length of the tour. Therefore, after
deleting the points not in S from the tour 7, we get a polygonal salesman
tour 7., which only bends at points in the set S and has performance at

186 PTAS

least as good as that of the original tour .

7.2.1 Well-disciplined instances

We first show that when we study approximation algorithms for EUCLIDEAN
TSP, we can perform a preprocessing to simplify the instance format and
concentrate on only very well-behaved instances of EUCLIDEAN TSP.

Definition 7.2.1 Fixed a constant € > 0. An instance S = {p1,p2,...,pn}
of EUCLIDEAN TSP is e-disciplined if for each point p; = (z;,¥;) in S, the
coordinates x; and y; can be written as x; = a; +0.5 and y; = b; + 0.5, where
a; and b; are integers, and 0 < x;,y; < n/e.

A direct consequence from the above definition is that the distance be-
tween any two different points in an e-disciplined instance of EUCLIDEAN
TSP is at least 1. More importantly, the following lemma shows that it will
suffice to concentrate on approximation schemes for e-disciplined instances.
For a salesman tour 7 of an instance S of EUCLIDEAN TSP, we let || be the
length of the tour 7, and let Opt(S) be the length of a minimum salesman
tour in S.

Lemma 7.2.1 Given any instance S of EUCLIDEAN TSP, and any constant
0 < e < 1, there is an e-disciplined instance S constructible from S in linear
time, such that from any salesman tour me for S satisfying |m¢|/Opt(Se) <
14 €, we can construct in linear time a salesman tour w for S satisfying
|| /Opt(S) <1+ Te.

PROOF. Let Qg be the smallest axis-aligned square that contains all the n
points in S. Since a translation of the Euclidean plane £2 (i.e., fix a and b
and map each point (x,) in £2 to the point (z-+a,y+b)) and a proportional
expanding or shrinking of £2 (i.e., fix a ¢ and map each point (z,y) to the
point (cz, cy)) do not change the difficulty of approximation solutions to an
instance of EUCLIDEAN TSP, we can assume without loss of generality that
the lower-left corner of the square Qg is at the origin point (0,0) and that
the side length of the square Qg is [n/€].

Place an |n/e| x |n/e| grid on the square @)y so that each cell in the
grid is a 1 x 1 square whose four corners are of integral coordinates. We
construct a new instance S, as follows: for each point p; in S, we create a
new point p) that is at the center of the 1 x 1 cell containing p; (if p; is on the
boundary of more than one cell, then pick the center of any of these cells as
p;). Note that the z- and y-coordinates of each point p, = (z,y}) are of the

GEOMETRIC PROBLEMS 187

form z;, = a; + 0.5 and y; = b; + 0.5, where a; and b; are integers. Moreover,
the distance between the point p; and the corresponding point p; in S is
bounded by v/2/2. Let S, = {p},ph,...,p,}. It is clear that the set S, is
an e-disciplined instance of EUCLIDEAN T'SP. Note that the n points in the
set Se may not be all different: a point may have more than one copy in the
set S.. Finally, we observe that the set S¢ can be constructed from the set
S in linear time. In fact, it is not necessary to construct the [n/e] x [n/e]
grid: the point p} in Se can be easily determined from the coordinates of the
corresponding point p; in S.

Since Qg is the smallest square containing .S, either both horizontal sides
or both vertical sides of Qg contain points in S. In particular, there are two
points in S whose distance is at least [n/e] > n/e — 1. Therefore, the
length of any salesman tour for S is larger than 2n/e — 2. Similarly, by the
construction of the instance S, there are two points in S, whose distance is
larger than n/e — 2, so the length of any salesman tour for S, is larger than
2n/e — 4.

Now let 7. be a salesman tour for the e-disciplined instance S.. We
construct a salesman tour 7 for the instance S as follows. We trace the
salesman tour 7, and at each point p, we make a straight line round-trip
from p) to the corresponding point p; in S. Note that such a straight line
round-trip from pj to a corresponding point in S increases the tour length
by at most /2. Therefore, this process results in a salesman tour 7= for S
whose length is bounded by |m| +n+v/2 (of course, we can further apply the
triangle inequality rule on 7 that may result in a further shorter salesman
tour for S). In particular, we have shown

Il V2
|7Te| |7

<1l+e, (7.2)

here we have used the fact || > 2n/e — 4, e < 1, and assumed n > 8.

The above method can also be used to estimate the value Opt(Se) in
terms of Opt(S): starting with an optimal salesman tour of S and adding a
straight line round-trip from each point p; in S to the corresponding point
p; in S, result in a salesman tour of S, whose length is bounded by Opt(S) +
ny/2. Thus, the value Opt(S.) is bounded by Opt(S) + nv/2. Combining
this with the the lower bound Opt(S) > 2n/e — 2 gives

Opt(Se)
Opi(5) <l+e. (7.3)

188 PTAS

Now if the salesman tour 7, satisfies |mc|/Opt(Se) < 1+ ¢, then we have

ml_Axl . dmd Opt(Se)
Opt(S) || Opt(Se) Opt(S)

< (14€)? <1+ 7
here we have used inequalities (7.2) and (7.3) and the assumption € < 1. []

7.2.2 A PTAS for EucLIDEAN TSP

The polynomial-time approximation scheme for EUCLIDEAN TSP is based
on an important Structure Theorem. In this subsection, we first state the
Structure Theorem, assuming its correctness, and present our algorithm. A
proof for the Structure Theorem will be given in the next subsection.

According to Lemma 7.2.1, we only need to concentrate on e-disciplined
instances for EUCLIDEAN TSP. Fix 0 < € < 1. Let S = {p1,...,pn} be an
e-disciplined instance for EUCLIDEAN TSP. Let Qg be the bounding square
of S, where the lower-left corner of Qg is at the origin (0,0), and cach side
of Qg is of length 270, where hg = [log(n/€)] = O(logn).

The bounding square Qg can be partitioned into four equal size smaller
squares by a horizontal segment and a vertical segment. Recursively, suppose
Q@ is a d x d square that contains more than one point in S, then we partition
Q into four (d/2) x (d/2) squares using a horizontal segment and a vertical
segment. The partition stops when a square contains no more than one
point in S. The resulting structure will be called a (regular) dissection of
the bounding square () (see Figure 7.2(A) for illustration). The squares
constructed in the dissection, including those that are further partitioned
into smaller squares, will all be called squares of the dissection. The sides of
the squares will be called square edges. Since the instance S is e-disciplined,
the edge length of each square in the dissection of () is a positive integer.
Moreover, no point in S is on the boundary of any square.

The dissection of Qo will be represented by a quad-tree (i.e., a 4-ary tree)
Ty whose root corresponds to the bounding square QJg. In general, each node
v in Ty corresponds to a square (), and the four children of v correspond
to the four smaller squares resulted from the partition of @Q,. Figure 7.3(A)
shows the quad-tree for the dissection in Figure 7.2(A), where the children
of a node are ordered from left to right in terms of the clockwise ordering
of the four smaller squares, starting from the lower-left one.

The root of the quad-tree Ty will be called the level-0 node in Ty. In
general, a node in Ty is a level-i node if its parent is at level i — 1. A square
corresponding to a level-¢ node in Ty is called a level-i square.

GEOMETRIC PROBLEMS 189

. = bF J
(A) " (B)

Figure 7.2: (A) a regular dissection; (B) a (a, b)-shifted dissection

(B)
Figure 7.3: The quadtrees for the dissections (A) and (B) in Figure 7.2

Note that the depth of the quad-tree Ty is bounded by hy = [log(n/e)] =
O(logn). Moreover, since each node in Tj either contains points in S or has
a sibling containing points in S, and two squares at the same level contain
no common points in S, the number of nodes at each level of Tj is bounded
by O(n) (independent of €). In consequence, the total number of nodes in
the quad-tree Ty is bounded by O(hgn).

Given a square) and the set Sg of points in S contained in @, it is
rather simple to go through the set Sg and distribute the points into the
four smaller squares resulted from the partition of). Therefore, each level
of the quad-tree Ty can be constructed in time O(n). In consequence, the
quad-tree Tp can be constructed from S in time O(hgn).

An important concept is the shifted dissection structure. Let a and b
be two integers, 0 < a,b < 2", We first identify, i.e., “paste”, the two
vertical edges of the bounding square Qg then cut ()¢ along the vertical line
x = a (see Figure 7.4(A) and (B), which use the same point set S as in
Figure 7.2(A)). This is equivalent to cyclically rotating the square Qo to
the left by a units. Then similarly, we identify the two horizontal edges
of the resulting square then cut the square along the horizontal line y = b
(see Figures 7.4(C)). This is equivalent to cyclically rotating the square
downwards by b units. Now we put a regular dissection structure on the

190 PTAS

.................

..........................

(A) (B) (©) (D)

Figure 7.4: A shifted dissection structure

resulting square (see Figure 7.4(D)). This dissection is call the (a,b)-shifted
dissection of the bounding square Q. The (a,b)-shifted dissection again
partitions the bounding square @y into “squares”, with cuts along lines
x = a and y = b, and the two vertical edges and the two horizontal edges of
Qo identified.

The (a, b)-shifted dissection can also be constructed directly on the orig-
inal bounding square Qg with the x-coordinate shifted cyclically to the right
by @ units and the y-coordinate shifted cyclically upwards by b units. Regard
Qo as the “square” by identifying the opposite edges of)y and cutting Qq
along the vertical line x = a and the horizontal line y = b. Now the partition
of Qo into four smaller squares is by the vertical line z = (a-+2"0~1) mod 2"°
and the horizontal line y = (b + 2"°~1) mod 2"0. In general, if a square
@ is bounded by four lines = = zg, ¥y = yo, * = (xg + 2*) mod 270 and
y = (yo + 2¥) mod 20, then the partition of the square @ into four smaller
squares is by the vertical line = (zg 4 2°~') mod 2" and the horizontal
line y = (yo + 2°~1) mod 2. This is illustrated in Figure 7.2(B), where
the (a, b)-shifted dissection is given on the same bounding square @ for the
same set S of points as in Figure 7.2(A). Note that the points in the set S are
not shifted with the dissection. Readers are advised to convince themselves
that the figures in Figure 7.2(B) and Figure 7.4(D) give the same dissection
structure.

As for regular dissections, the (a,b)-shifted dissection can also be rep-
resented by a quad-tree of depth O(hg) and O(hon) nodes, with all related
terminologies transferred. Figure 7.3(B) gives the quad-tree for the (a,b)-
shifted dissection in Figure 7.2(B) (again the children of each node are or-
dered from left to right in terms of the clockwise order of the four smaller
squares starting from the lower-left one).

Let Dqy be the (a,b)-shifted dissection of the bounding square Qy. Let
e be a square edge in the dissection D, ;. The m + 1 points on e that divide
the edge e into m equal length segments will be called the (1/m)-portals of

GEOMETRIC PROBLEMS 191

the square edge e.

Definition 7.2.2 A salesman tour 7 is (r, m)-light with respect to the (a, b)-
shifted dissection D, if for every square edge e of D, , the tour 7 crosses
e at most r times, and each crossing of 7 on e is at a (1/m)-portal of e.

The polynomial-time approximation scheme algorithm for the Eu-
CLIDEAN TSP is heavily based on the following Structure Theorem. We
will first assume the correctness of the theorem and use it directly in our
development of the algorithm. A proof for the Structure Theorem will be
given in the next subsection.

Theorem 7.2.2 (The Structure Theorem) Let S be an e-disciplined in-
stance for EUCLIDEAN TSP and let Qo be the 2" x 2P0 bounding square
of S, with lower-left corner at the origin (0,0) and hy = [log(n/€)]. Then
there is a constant ¢y such that for at least half of the pairs (a,b) of integers,
0<a,b< 2, there exists a (co, coho)-light salesman tour may with respect
to the (a,b)-shifted dissection of Qo satisfying |map| < (1 + €)Opt(S).

We remark that the constant ¢y in Theorem 7.2.2 is independent of the
number n of points in the set S, but dependent of the given constant e.

Based on Theorem 7.2.2, our algorithm proceeds as follows. For each pair
(a,b) of integers, 0 < a,b < 2", we apply a dynamic programming algorithm
to construct an optimal (cg, cohg)-light salesman tour 7, with respect to
the (a, b)-shifted dissection of QQy. According to Theorem 7.2.2, the shortest
salesman tour 7, among all the (cg, cohg)-light salesman tours we construct
over all (a,b)-shifted dissections of Qp, 0 < a,b < 2", will satisfies the
condition |7,| < (1 + €)Opt(S). Note that there are only 270 x 270 = O(n?)
such pairs (a,b) satisfying 0 < a,b < 2/0.

For notational simplicity, we let mg = cohyp.

Consider an (a, b)-shifted dissection Dgp of Q. Let 7 be a (g, mg)-light
salesman tour with respect to Dgp. For cach square @ in Dgy, the salesman
tour 7 passes through all points in S contained in), and the crossings of 7
over the boundaries of @) form a sequence of (1/mg)-portals on the square
edges of @ (note that a (1/mg)-portal may appear more than once in the
sequence). We will call this sequence a crossing sequence of the square Q.
The line segments of the salesman tour 7 that are contained in the square @
(and pass through all points of S contained in the square @) will be called
the partial salesman tour (of 7) in the square @). Note that each sequence of
even number of (1/myg)-portals on the square edges of () can be interpreted

192 PTAS

as a crossing sequence of () for some salesman tour. We say that a partial
salesman tour in a square) is consistent with a crossing sequence o if the
partial salesman tour crosses the (1/mg)-portals of the square edges of @ in
exactly the same order given in the crossing sequence o. Note that there may
be more than one partial salesman tour consistent with the same crossing
sequence.

Our algorithm works as follows. For each square @ in the dissection Dy, p,
we construct for each possible crossing sequence o of @@ the shortest partial
salesman tour in () consistent with o. The algorithm runs in a dynamic
programming manner, starting from the leaves of the 4-ary tree T, ; for the
dissection D, . The algorithm is given in Figure 7.5.

Algorithm. ETSP(S,a,b)
INPUT: an e-disciplined instance S and integers a and b
OUTPUT: an optimal (cg, mg)-light salesman tour on the (a,b)-shifted dissection
1. construct the quad-tree Ty, for the (a,b)-shifted dissection D, p;
2. for (each node v in the tree T, ;) do
\\ starting from the leaves of T, ; and going bottom-up
for (each crossing sequence o of the square @, for node v)
if (v is a leaf) then \\ Q, contains at most one point in S
construct a shortest partial salesman tour in @, consistent with o;
else \\ the children of v are 4 smaller squares
construct the shortest partial salesman tour in @, consistent with o,

based on the tours constructed for the four smaller squares in Q..

Figure 7.5: Constructing the (cy, mo)-light salesman tour for D, .

We give a more detailed explanation for the algorithm ETSP(S,a,b).
Suppose the crossing sequence o of the square @), corresponding to the node
v in the quad-tree T, is given:

g = [117017127027 cee)IrvOT]v

where I; and O; are the (1/my)-portals for the salesman tour to enter and
leave the square @Q,, respectively, and r < 4¢g. In case v is a leaf in the
quad-tree T, 3, the corresponding square (), contains at most one point in
the set S. Therefore, the shortest partial salesman tour in @, consistent
with the crossing sequence o can be constructed easily: if @), contains no
point in S, then the shortest partial salesman tour in @, consistent with

GEOMETRIC PROBLEMS 193

o should consist of the r line segments [I1,0], ..., [I,O,]; while if @,
contains a single point p in S, then the shortest partial salesman tour in @,
should consist of one “bent” line segment [I;, p, O;] plus r — 1 straight line
segments [I;, O;], j # i. Since ¢y is a constant, the shortest salesman tour in
@, consistent with the crossing sequence o can be constructed in constant
time O(1).

Now consider the case where the node v is not a leaf. Then the square
@, is partitioned into four smaller squares @}, Q%, @5, and Q. Note that
there are four edges of the smaller squares that are not on the edges of @,
but are shared by the smaller squares. We will call these edges the “inner
edges” of the smaller squares.

Let m be a (cp, mo)-light salesman tour with the crossing sequence ¢ on
the square @),. If we trace m on its crossings on the edges of the smaller
squares ()}, @, Qf, and @), we obtain a sequence og of (1/myg)-portals on
the edges of the smaller squares. It is easy to see that this sequence o
can be obtained by merging the crossing sequence o and a sequence oy, of
(1/mo)-portals on the inner edges of the smaller squares, with the restriction
that at most ¢y portal appearances from each inner edge may appear in the
sequence o(, (note that a portal on an inner edge may appear more than once
in the sequence o()). The four corresponding crossing sequences o}, o5, o5,
and oy for the four smaller squares @, Q5, @5, and @, respectively, can be
uniquely determined from the sequence oy. Moreover, if the partial salesman
tour of 7 in the square @, is the shortest over all partial salesman tours in
@), consistent with the crossing sequence o, then the partial salesman tour
of m in each @)} of the smaller squares, 1 < ¢ < 4, must be the shortest over
all partial salesman tours in @)} consistent with the crossing sequence o.

Therefore, to construct the shortest partial salesman tour in (), con-
sistent with the crossing sequence o, we examine all sequences oy that are
obtained by merging the crossing sequence o and a sequence oy, of portals on
the inner edges of the smaller squares, with the restriction that at most ¢
portal appearances from each inner edge may appear in the sequence o(,. We
consider the complexity of systematically enumerating all these sequences.

A sequence oy can be obtained as follows. Pick at most ¢y portal ap-
pearances from each inner edge of the smaller squares and let Py be the
set of all these selected portal appearances. Now we properly insert each of
the portals in Py into the crossing sequence o. Of course, many sequences
constructed this way do not give valid crossing sequences on the smaller
squares. But this can be checked easily from the sequences themselves.

Each inner edge e of the smaller squares has mg + 1 (1/mg)-portals.

194 PTAS

Therefore, there are
(mo +1)% + (mo +1)07 4 4 (mo +1) + 1 < 2(mg + 1)

ways to pick at most ¢y portal appearances from e. Therefore, totally there
are at most 24(mg + 1) ways to construct a set Py of portal appearances,
in which each inner edge has at most ¢y portal appearances. Once the set
Py is decided, the number of ways to insert the portal appearances in P
into the crossing sequence o is bounded by (note that both the set Py and
the crossing sequence o have at most 4¢g portal appearances):

(860)!
(4eo)!
Therefore, the number of sequences 7y that may represent valid crossing

sequences for the four smaller squares consistent with the crossing sequence
o of @, is bounded by

(4deo + 1)(4co + 2) - - - (4eo + 4cp) =

2% (mg + 1)* . %‘;;i = O((logn)°M),

and these sequences can be enumerated systematically in time O((logn)?M)
(note that each sequence is of length O(cp) = O(1) so operations on each
sequence can always be done in constant time).

By our algorithm, the shortest partial salesman tour consistent with each
crossing sequence for each smaller square has been constructed and stored.
Therefore, for each valid set {0}, 0%,0%,0)} of crossing sequences for the
smaller squares @}, @, %5, and @, consistent with the crossing sequence
o of Q,, we can easily construct the corresponding partial salesman tour
consistent with ¢ in the square @),. Examining all valid sets of crossing
sequences for the smaller squares will result in the shortest partial salesman
tour consistent with the crossing sequence ¢ in the square Q.

Summarizing the above discussion, we conclude that for each node v in
the quad-tree Tg, and for cach crossing sequence o of the square @, for v,
the shortest partial salesman tour in), consistent with ¢ can be constructed
in time O((logn)°W).

Now we count the number of different crossing sequences for a given
square (,. For each edge e of (), a crossing sequence may cross the portals
of e at most ¢ times. There are at most 2(mg + 1) ways to pick no more
than ¢y portal appearances on the edge e, and there are totally at most
24(mg + 1)%“ ways to pick no more than ¢y portal appearances from each
of the four edges of Q,. For each such selection of portal appearances, a

GEOMETRIC PROBLEMS 195

permutation of these selected portal appearances gives a crossing sequence
of),. Since each such selection contains at most 4¢y portal appearances,
the total number of possible crossing sequences of @), is bounded by

24 (mg + 1) (4¢o)! = O((logn)°W).
Therefore, the algorithm ETSP(S, a,b) spends at most time
O((logn)?M) - O((log n) ™) = O((log n)?)

on each node in the quad-tree T, ;. Since the number of nodes in the
quad-tree Tgp is bounded by O(nlogn), we conclude that to construct
an optimal (cp, mg)-light salesman tour for the dissection D, takes time
O(n(logn)°M).

Remark. There are also some “obvious” restrictions we should keep in
mind when we construct crossing sequences for the squares in a dissection.
For example, suppose that a square edge e is on the boundary of the original
bounding square (g, then no portals of e should be picked in any crossing
sequence of the square since an optimal (cg, mg)-light salesman tour will
definitely not cross the edge e. Moreover, in the crossing sequences of the
level-0 square @ for the (a, b)-shifted dissection, if a portal in an “out-portal”
on a edge of), then the same position on the opposite edge of @ should
be an “in-portal” since the opposite edges of () are actually the same line
in the original bounding square Q)g. These obvious restrictions can all be
easily checked.

Theorem 7.2.3 For any fized ¢ > 0, there is an O(n*(logn)°M)-time ap-
prozimation algorithm for the EUCLIDEAN TSP problem that for any in-
stance S constructs a salesman tour 7 satisfying |w|/Opt(S) < 1+ .

PROOF. Let § = €¢/7. According to Lemma 7.2.1, we can construct a o-
disciplined instance Sy in linear time such that for any salesman tour s
for Ss satisfying |ms|/Opt(Ss) < 1+ 0, we can construct in lincar time a
salesman tour 7 for S satisfying |7|/Opt(S) <1+ 76 =1+e.

The theorem is concluded since according to the above analysis: for
each (a, b)-shifted dissection D, ;, we can construct in time O(n(logn)?(1))
the optimal (cg, cohg)-light salesman tour with respect to D,;. By The-
orem 7.2.2, the salesman tour s that is the shortest over all (co, cohg)-
light salesman tours constructed for all shifted dissections must satisfy
|7s|/Opt(Ss) < 1+ 6. Moreover, the total number of shifted dissections
is bounded by O(n?). O

196 PTAS

We remark that in the time complexity O(n?(logn)°™M) of the algorithm
in Theorem 7.2.3, both the constant coefficient and the constant exponent of
the logorithmic function depend on the given €. In particular, the algorithm
is not a fully polynomial-time approximation scheme.

The time complexity of the algorithm in Theorem 7.2.3 can be improved
if we are allowed to use randomization in our computation. According to
Theorem 7.2.2, for at least half of the pairs (a,b), the optimal (cq, cohg)-
light salesman tour m,; with respect to the (a,b)-shifted dissection D,
satisfies |7, 5| < (1 + €)Opt(S). Therefore, if we randomly pick, say, 10
pairs of (a,b) and construct the optimal (cg, coho)-light salesman tour for
each of the corresponding shifted dissections, then the probability that the
shortest 7, 5 of these ten (cg, cohg)-light salesman tours satisfies the condition
|Tap| < (1 +€)Opt(S) is as large as 1 — 1/219 > 0.999. Therefore, using
randomization, the time-consuming enumeration of all the O(n?) pairs of
(a,b) can be avoided. This gives the following theorem.

Theorem 7.2.4 For any fivred ¢ > 0 and any fired 6 > 0, there is
an O(n(logn)°M)-time randomized approzimation algorithm for the Eu-
CLIDEAN TSP problem that for any instance S constructs a salesman tour
7 satisfying |w|/Opt(S) < 1+ € with probability at least 1 — 4.

7.2.3 Proof for the Structure Theorem

For completeness, we present a detailed proof for the Structure Theorem
(Theorem 7.2.2) in this subsection. Readers may skip this subsection on
their first reading. This will not affect continuous understanding of the rest
of the book.

Let S = {p1,...,pn} be an e-disciplined instance for EUCLIDEAN TSP.
Let Qg be the bounding square of S, where the lower-left corner of (g is at
the origin (0, 0), and each side of Qg is of length 27, where hg = [log(n/¢)] =
O(logn). For each pair (a,b) of integers, 0 < a,b < 20, denote by D, the
(a, b)-shifted dissection of Q.

The Structure Theorem claims that for at least half of the pairs (a, b) of
integers, 0 < a,b < 2" there is a (co, coho)-light salesman tour 7, with
respect to D, satisfying |mq | < (14 €)Opt(S), where ¢ is a constant.

To prove the Structure Theorem, we start with a shortest salesman tour
7, for the instance S and show how the salesman tour 7, can be modified into
a (co, coho)-light salesman tour m,; without much increase in tour length.
For this, we need to show that how the shortest salesman tour m, is modified
so that the number of crossings at each square edge of D, is bounded by

GEOMETRIC PROBLEMS 197

T e — I:B E7
<= <= e
(A) ®) ©

Figure 7.6: Reducing the number of crossings by patching

the constant ¢y and that all crossings occur only at the (1/(cohg))-portals
of the square edge.

Intuitively, the total number of crossings of the shortest salesman tour
T, over the square edges in D, should not be very large since a large
number of crossings over a line segment should be very costful. However, it
is still possible that the number of crossings of m, over some square edges
exceeds the constant c¢y. Therefore, we first need to discuss how to reduce
the number of crossings of a salesman tour over a particular square edge.
The second requirement, that crossings only occur at portals of the square
edges, is relatively easier to achieve since moving a crossing to its nearest
portal is not very expensive. In the following, we formally implement these
ideas.

First we consider the number of crossings over a particular square edge.
Note by a “crossing” we mean the salesman tour hits the square edge from
one side of the edge then, maybe after some “zigzag” moves along the edge,
leaves the edge to the other side. In particular, it will not count as a cross-
ing if the tour hits the edge then leaves the edge back to the same side.
The reduction of the number of crossings on a square edge is based on the
following “Patching Lemma”.

Lemma 7.2.5 (Patching Lemma) Let s be a line segment and 7 be a sales-
man tour for an instance S of EUCLIDEAN TSP. Then there is a salesman
tour 7 for S such that |7'| < |7|+ 3|s| and 7’ crosses s at most twice.

Proor. Without loss of generality, assume that s is a vertical line.

Let p1, po, ..., pr be the points on s at which 7 crosses, sorted by their
y-coordinates in nonincreasing order (see Figure 7.6(A)), with ¢ > 3. Here
we do not exclude the possibility that some of these points are identical.
Duplicate each point p; into two copies p} and p; and imagine that the points

198 PTAS

Py, ..., p; are connected to the “right part” of the tour 7w while the points
Py, ..., p/ are connected to the “left part” of the tour 7 (see Figure 7.6(B)).
Now add edges

(pllvp,2)7 (pévpg’))7 o (p;—l)p;)7 (p,1/7p/2,)7 (pg,pg), tr (pg—l’pg)' (74)

The total length of the added edges in (7.4) is bounded by 2|s| (the length of
an edge is defined to be the Euclidean distance between its two endpoints).
In the resulting graph, the vertices p!, pf, p;, and p} have degree 2, and all
other vertices have degree 3. Based on the parity of ¢, we add another set
of multiple edges to the graph.

In case t is even, we consider the two graphs that are obtained, respec-
tively, by adding the following two sets of (multiple) edges, and pick among
the two graphs the one that has smaller total edge length

(0%, 13), (s 05), - - - (D4, Ph_3), (P, %), (04, 18)s - -+, (P4, 1Y 3),
and (p:i—27 p:ﬁ/—Q)’ (Pé_ppél_l)?
and (7.5)

(pé,pﬁl), (pg,p%), ceey (p;_37p{£—2)7 (pgva)v (pgapg)v vy (pél—37p{5/—2)7
and (p3,p5), (Pj—1,Pi—1)-

In case t is odd, we consider the two graphs that are obtained, respectively,
by adding the following two sets of (multiple) edges, and pick among the
two graphs the one that has smaller total edge length:

(pIQ)pg)v (pibpg)v) (pg—?)?p:f—Q)’ (p'g',pé,'), (pillvpg)v) (pg—?ﬁpg—Q)v
and (pg—l)pg—l)7
and (7.6)

(péypil)a (p,5’p/6)7 Tty (p;—Q,pft—l)a (pgapZ)v (pgvpg)v Tty (pft/—%pg—l)a
and (py, p),

(see Figure 7.6(C) for illustration, where the thinner edges are the added
edges). The idea here is that the total length of the added multiple edges
in (7.5) or (7.6) is bounded by |s| (note that the length of the edges (p}, p!)
is 0). Moreover, the salesman tour 7 and all the added edges form a graph
G in which every vertex has an even degree. The sum of the edge lengths of
the resulting graph G is bounded by |7| + 3]s|.

It is well-known in graph theory (see Appendix A, Theorems A.1 and
A.2) that in a graph whose all vertices have even degrees, there is a Eulerian
tour (i.e., a tour that passes each edge in the graph exactly once). Therefore,

GEOMETRIC PROBLEMS 199

the Eulerian tour 7’ in the graph G forms a salesman tour for the instance
S, which crosses the line segment s at most twice and has length bounded
by |7| +3]s|. [

Now we are ready to prove the Structure Theorem. Let ¢g = [64/¢ + 3].

Put a 20 x 270 uniform grid structure on the bounding square Qg by 2/
equally spaced vertical lines and 2" equally spaced horizontal lines (note
we identify the opposite sides of the square (Qp). These lines will be called
grid lines. Note that every square edge in the dissection D, is on a grid
line. Recall that a square is a level-i square if its corresponding node is
at level ¢ in the quad-tree T, for the dissection D, 3. A level-i square is
a 20— x 2h—i gquare, and the maximum level number is hg. The square
edges of a level-i square will be called level-i square edges. We say that a
grid line £ is at level-i if 7 is the smallest integer such that a level-i square
edge is on £. Note that a level-i grid line may also contain square edges of
level number larger than 4.

Let 7, be a polygonal salesman tour for the instance S and |m,| = Opt(S5).
Let ¢ be a level-i grid line (either vertical or horizontal). We discuss how to
reduce the number of crossings of 7, on the square edges of D, on ¢, using
the Patching Lemma. The simplest way is to apply the Patching Lemma
to cach level-i square edge on ¢ so that the number of crossings on cach of
these edges is bounded by 2. Note that this also automatically ensures that
the number of crossings on each square edge of level larger than ¢ on /¢ is
also bounded by 2, since each level-j square edge on ¢, where j > i, must be
entirely contained in a level-i square edge on ¢. Unfortunately, this simple
method may be expensive due to the following observation: suppose that
more than ¢y crossings occur on a level-j square edge e; on ¢, where j > i,
then, to replace these crossings by at most 2 crossings, applying the Patching
Lemma directly to the level-i square edge e; containing e; would possibly
increase the tour length by 3|e;|, while applying the Patching Lemma to the
square edge e; has tour length increase bounded by 3|e;|. The edge length
le;| can be much larger than the edge length |e;|.

Based on this observation, we apply the Patching Lemma in a “bottom
up” manner starting from the shortest square edges, i.e., the square edges of
the highest level number, on the grid line £. The patching procedure, which
is called Modify(¢), is given in Figure 7.7.

To analyze the algorithm, we introduce two new notations. Let w(m,, £)
be the total number of crossings of the shortest salesman tour m, on the
grid line ¢, and let p(¢, j) be the number of times the algorithm Modify(¢)
applies the Patching Lemma to a level-j square edge on the grid line £.

200 PTAS

Algorithm. Modify(¢) \\ £ is a level-i grid line
1. for (j = ho downto i) do
for (each level-j square edge e on ¢) do

if (7 crosses e more than ¢g times) then apply Patching Lemma to 7 and e.

Figure 7.7: Reducing the number of crossings on a grid line.

Here we have to be a bit more careful about the square edges in the
shifted dissection Dgp. Recall that a “square” in D,; may be formed by
several non-connected pieces in the original bounding square Qo (see Fig-
ure 7.2(B)). If a square edge e crosses a boundary side of Qp, then the
square edge is actually formed by two non-connected segments €’ and €’ in
Qo. Therefore, in case there are more than ¢y crossings of m, over e, the
Patching Lemma should be applied to the two segments ¢’ and e” separately
since formally applying the Patching Lemma to the square edge e would in-
troduce a partial tour that crosses a boundary side of (g and continues on
the opposite side of QQg. The two separated applications of the Patching
Lemma on €’ and e” may leave up to 4 crossings (instead of 2) on the square
edge e in D, ;. Therefore, we can ensure that each application of the Patch-
ing Lemma to a square edge in D, replaces a set of more than ¢y crossings
by a set of at most 4 crossings, thus reducing the number of crossings by
at least ¢y — 3. This observation gives the following relation for the values
p(¢,7) and w(m,, £):

ho ho w(mo, £)
oot g) =Y plt,§) < —=2. (7.7)
=i j=0 C 3

The first equality in (7.7) is because this relation is independent of the level
number of the grid line /4.

Since the length of a level-j square edge is 2707, each application of the
Patching Lemma to a level-j square edge increases the tour length by at

most 3 - 2707, Therefore, the total increase in tour length by the algorithm
Modify(¢) is bounded by

ho hO i
Yo 3-2Mp(e,5) =3 2" p(l,). (7.8)
j=i j=i

The algorithm Modify(¢) modifies the salesman tour and ensures that
the number of crossings over each square edge on £ is bounded by ¢y. How-

GEOMETRIC PROBLEMS 201

ever, here is a potential problem we need to take care of. Without loss of
generality, suppose that £ is a vertical grid line. Patching on £ may introduce
many “zigzag” moves along the line £, which may cause new crossings over
horizontal grid lines. Let ¢ be such a horizontal grid line and let w’ be the
set of new crossings over ¢ caused by patching the grid line . Note that all
these new crossings over ¢ are along the line £ so the segment s’ on ¢’ holding
these crossings has length 0. Therefore, applying the Patching Lemma to s’
and w’ will reduce the number of crossings to at most 2 without increasing
the tour length! In order to avoid introducing new crossings on the grid line
¢ by the patching on s’ and w’, we can actually apply the Patching Lemma
twice, first to the segment s’ and the crossings in w’ that occur on the left
side of ¢, then to the segment s’ and the crossings in w’ that occur on the
right side of £. This will reduce the number of crossings on the segment s’ to
at most 4, without increasing the tour length and the number of crossings
over the grid line /.

After the application of the algorithm Modify(¢), each square edge on
the grid line ¢ contains at most ¢y crossings. Now we move each crossing
point p to its nearest (1/(cohg))-portal on the level-i square edge e; on ¢ in
an obvious way: instead of crossing at p, we let the salesman tour first go
along the grid line ¢ (without crossing £) to the nearest (1/(coho))-portal p/
of e;, then cross e; at the portal p’ and go along ¢ (now on the other side of
?) to come back to the old crossing point p and continue the tour. Note that
this will also move the crossing to a (1/(cohg))-portal on the square edge
containing p’ at any level on ¢ since a (1/(cohg))-portal on a level-i square
edge e; is also a (1/(coho))-portal on any level-j square edge contained in
ei, where j > i. Since the distance between two neighbor (1/(cohg))-portals
on a level-i square edge is 2”0~ /(cohyg), the above modification on the tour
increases the tour length by at most 270~ /(cohg). Since there are no more
than w(m,, ¢) crossings over the grid line ¢, the total increase in tour length to
move the crossings to portals is bounded by 2" ~iw(7,, ¢)/(cohg). Combining
this with (7.8), we conclude that we can modify the salesman tour 7, so that
the number of crossings on each square edge on the grid line £ is bounded
by ¢p and all crossings are only at (1/(coho))-portals of the square edges,
with the tour length increase 7(¢,7) bounded by

ho ho—i
_ . o 20T w(T,, 0)
0,i)) =3 2,)+ 22 7.9
(4,) j}ﬂ p(L, j) ol (7.9)

Now instead of computing directly the tour length increase due to the
above modification, we use a probabilistic argument. Look at a given (a, b)-

202 PTAS

shifted dissection D,p. With respect to the dissection Dy, for each ¢ > 0,
there are 2¢ vertical grid lines and 2° horizontal grid lines of level i (note
that we identify the opposite sides of the level-0 bounding square Qg of the
(a, b)-shifted dissection D,y). Therefore, if the integers a and b are picked
randomly (with a uniform distribution) from the set {0, 1,---,2" —1}, then
for a fixed grid line ¢ (either vertical or horizontal), the probability that ¢ is
a level-i grid line is 2¢/2"0. Therefore, the expected value of the tour length
increase on the grid line ¢ is bounded by

ho
ZT(E, i) - Prob[¢ is a level-i grid line]
i=0
ho 21
< Z%T(&Z)
1=
ho i ho ho—1i
2 _ 2070 (10, £)
_ .9ho—j >
Z(:)Qho (3; p(&])"’ COhO)
ho ho ho
i w(me, £)
= 3 2" p(l,)+
;)JZ:: p(L, j) Z o
ho] 0
1 w(7e, £)
3:07:02 coho
ho
2w(7y, £
< 6> p(t,4)+ (7o,)
=0 co
< 6w (7o, £) n 2w(my, 0)
- cop— 3 Cco
< 8w(w0,€)~
B co—3

Here we have used the inequality (7.7).

Thus, if the integers a and b are picked randomly, then the expected
value of the total tour length increase to modify the shortest salesman tour
T, into a (cg, cohp)-light salesman tour with respect to D, is bounded by
(recall ¢o = [(64/¢€) + 3]):

8w (7o, £) 8 €
= w(me, l) < = w(mo,). (7.10)
gri§e 4 € — 3 co — 3 grid;le 4 ° 8 grid%xe 4 °

GEOMETRIC PROBLEMS 203

To complete the proof, we show

Z w(7e,) < 4|mo| =4 - Opt(S5)

grid line £

Recall that 7, is a polygonal salesman tour consisting of n segments con-
necting the points in S. For each segment s in 7, with length [s| > 0, let
|zs| and |ys| be the length of the horizontal and vertical projections of s.
Then the segment s can cross at most |xs| + 1 vertical grid lines and at most
lys| + 1 horizontal grid lines. We have

5|+ [ys| +2 < /2(|2s]2 + [ys[?) + 2 = |s|V2 + 2,

where we have used the facts that the length |s| of the segment s satisfies
Is|?> = |zs|? +|ys|? and |zs]? +|ys|? > 2|ws| - |ys|. Therefore, the total number
of crossings of the salesman tour 7, over all grid lines can be bounded by

Z w(mo, £) < Z (Jzs] + lys| +2) < Z (’Sl\/§+2)
grid line € segment s segment s
< N (IsIV2+2ls)) <4 D |s| < 4fm| =4 Opt(S).

segment s segment s

Note here we have used the fact |s| > 1, which is true because the instance
S is e-disciplined. Combining this with (7.10), we conclude that for ran-
dom integers a and b, 0 < a,b < 2", the expected value of the total tour
length increase to modify the shortest salesman tour 7, into a (cg, cohg)-light
salesman tour, with respect to D, is bounded by € - Opt(S)/2. This, by
Markov’s inequality [102], implies that for at least half of the pairs (a,b),
the total tour length increase to modify the shortest salesman tour 7, into
a (co, coho)-light salesman tour m, 5, with respect to the (a, b)-shifted dissec-
tion D, p, is bounded by € - Opt(S). That is, the (co, coho)-light salesman
tour 7, with respect to Dgp satisfies |m,5| < (1 + €)Opt(S).

This completes the proof for the Structure Theorem.

Remark. The probabilistic argument used above is not necessary. In fact,
direct counting, using the idea adopted in the probabilistic argment, would
also derive the same result. For this, we first count the number of level-i
grid lines with respect to each dissection Dy, then compute the tour length
increase on this particular dissection D, . Finally, we add the tour length
increases over all dissections D, and will find out that the “average” tour
length increase on each dissection is bounded by €-Opt(S)/2. Now the same
conclusion should be derived.

204 PTAS

7.2.4 Generalization to other geometric problems

A number of important techniques have been described in the discussion
of our polynomial time approximation scheme for the EUCLIDEAN TSP.
The concepts of e-disciplined instances and (cg, mg)-light salesman tours en-
able us to concentrate on very well-behaved instances and solutions. The
Patching Lemma introduces an effective method to convert a solution to
a well-behaved solution, and the Structure Theorem makes it possible to
apply dynamic programming to search for an optimal well-behaved solution
efficiently. This systematic echnique turns out to be very effective and pow-
erful in development of approximation algorithms for geometric problems.
In the following, we briefly describe the extensions of this technique to solve
other geometric problems.

The extension of Theorem 7.2.3 to EUCLIDEAN TSP in higher dimen-
sional Euclidean space £ is natural, when d is a fixed constant. As be-
fore, we first make an instance S e-disciplined by rescaling and perturba-
tion, as we did in Lemma 7.2.1. Now the Patching Lemma is applied to a
(d — 1)-dimensional hypercube (instead of to a line segment as we did in
Lemma 7.2.5) to reduce the number of crossings to the (d — 1)-dimensional
hypercube to at most 2. A similar Structure Theorem can be proved based
on these modifications for EUCLIDEAN TSP in £ which again makes the
dynamic programming possible to search for a well-behaved salesman tour
for S efficiently. We omit all details and refer the readers to Arora’s original
paper [5]. Here we only state the final result for this extension.

Theorem 7.2.6 For any fived ¢ > 0 and any fixed integer d, there is a
polynomial time approximation algorithm for the EUCLIDEAN TSP problem
in the d-dimensional Euclidean space £ that for any instance S constructs
a salesman tour 7 satisfying |w|/Opt(S) < 1 +e.

The technique can also be applied to develop polynomial time approxi-
mation schemes for the geometric problems listed below, where d is a fixed
integer. For each of these problems, we need to modify our concepts of the e-
disciplined instances, the well-behaved solutions, the Patching Lemma, and
the Structure Theorem accordingly. We also refer our readers to the original
paper [5] for details.

EUCLIDEAN STEINER TREE:

Given a set S of n points in the Euclidean space £¢, find a
minimum cost tree connecting all points in S (the tree does not
have to use only the given points in S as its nodes).

PROBLEMS WITH NO PTAS 205

ParTIAL TSP

Given a set S of n points in the Euclidean space £ and an
integer k£ > 1, find the shortest tour that visits at least k£ points
in S.

ParTIAL MST

Given a set S of n points in the Euclidean space £% and an integer
k > 2, find k points in S such that the minimum spanning tree
on the k points is the shortest (over minimum spanning trees on
all subsets of k points in S).

Theorem 7.2.7 Each of the following geometric problems has a polynomial
time approximation scheme: EUCLIDEAN STEINER TREE, PARTIAL TSP,
and PARTIAL MST.

7.3 Which problems have no PTAS?

Polynomial time approximation schemes offer an efficient method to con-
struct solutions very close to the optimal solutions for optimization problems
whose optimal solutions otherwise would be hard to construct. Therefore,
it is desirable to know whether a given NP-hard optimization problem has
a polynomial time approximation scheme. In Section 6.4, we have devel-
oped effective and powerful methods (Theorem 6.4.1 and Theorem 6.4.8) to
identify NP-hard optimization problems that have no fully polynomial time
approximation scheme. One would expect that a similar approach could offer
equally effective and powerful methods for identifying NP-hard optimization
problems with no (non-fully) polynomial time approximation scheme. How-
ever, the solution to this task turns out to require deeper understanding of
the complexity of NP-hard optimization problems.

It is interesting and enlightening to have a brief historical review on the
development of polynomial time approximation schemes for certain NP-hard
optimization problems.

Consider the MAKESPAN problem (see Section 5.2 for a precise definition
for the problem). Graham initialized the study of approximation algorithms
for this important optimization problem in 1966 [59] and showed that there
is a polynomial time approximation algorithm for the problem with approx-
imation ratio 2 (see Algorithm Graham-Schedule and Theorem 5.2.1).
The algorithm is based on a very simple greedy method that assigns each

206 PTAS

job to the earliest available processor. Three years later he further showed
that if a preprocessing is performed that sorts the jobs by their process-
ing times in non-increasing order before the algorithm Graham-Schedule
is applied, then the approximation ratio of the algorithm can be improved
to 4/3 (see Theorem 5.2.3). The approximation ratio for the MAKESPAN
problem then was continuously improved. In 1978, it was improved to 1.22,
then to 1.20 and then to 72/61 = 1.18--- (see the introduction section in
[66] for more detailed review and references of this line of research). This
line of research was eventually closed by Hochbaum and Shmoys’ polyno-
mial time approximation scheme for the problem [66], which concludes that
for any € > 0, there is a polynomial time approximation algorithm for the
MAKESPAN problem with approximation ratio bounded by 1 + e.

Another similar story has happened for the EUCLIDEAN TSP problem.
A very neat approximation algorithm based on minimum spanning trees for
the problem has an approximation ratio 2. Christofides’ remarkable work,
based on the approach of minimum spanning trees incorporated with obser-
vations in minimum weight complete matchings and Euler tours, improved
this ratio to 1.5. Christofides’ ratio for EUCLIDEAN TSP stood as the best
result for two decades (see the introduction section in [5] for more detailed
review and references for this line of research). In fact, the difficulty for
improving Christofides’ ratio had made people attempt to believe that Ku-
CLIDEAN TSP has no polynomial time approximation scheme. A surprising
breakthrough by Arora [5] was made 20 years after Christofides’s algorithm,
which presented a polynomial time approximation scheme for EUCLIDEAN
TSP, as we described in Section 7.2. It is also interesting to point out that
Arora’s result was initiated from his attempt at proving the nonexistence of
polynomial time approximation schemes for EUCLIDEAN TSP.

The efforts are not always as successful as this for some other NP-hard
optimization problems. We give an example below. A Boolean variable x is
a variable that can take values TRUE or FALSE. A literal is either a Boolean
variable or a negation of a Boolean variable. A clause is a disjunction (i.e.,
OR) of literals. We say that an assignment makes a clause satisfied if the as-
signment makes at least one literal in the clause have value TRUE. Consider
the following problem:

Max-2SAT

Given a set F of clauses, each containing at most 2 literals, find
an assignment of the boolean variables in F' that maximizes the
number of satisfied clauses.

In 1974, Johnson presented an approximation algorithm of ratio 2 for the

PROBLEMS WITH NO PTAS 207

MAX-2SAT problem. This ratio was then improved to 1.34 in 1991, then
to 1.14 in 1994 and to 1.075 in 1995 (see [40] for detailed review and refer-
ences for this line of research). One might expect that this line of research
would eventually lead to a polynomial time approximation scheme for the
MAX-2SAT problem. This, actually, is not possible as more recent research
has shown that unless P = NP, there is no polynomial time approximation
algorithm of ratio 1.0476 for the MAX-2SAT problem [64].

Characterization of optimization problems that have no polynomial time
approximation schemes has been a very active research area in the last three
decades. More recent advances, which are deep and exciting, have been
made in this direction that provide effective and powerful methods for iden-
tification of optimization problems with no polynomial time approximation
schemes. We will describe these results systematically later in this book.
In the following, we mention some simple techniques, which can be used
to prove the nonexistence of polynomial time approximation schemes for
certain optimization problems.

If an optimization problem remains NP-hard even when the optimal value
for its objective function is very small, then we can derive immediately
that the problem has no polynomial time approximation scheme (based on
the assumption P # NP). For example, observing for the BIN PACKING
problem that deciding whether the minimum number of bins for a given set
of items is 2 is NP-hard, we derive immediately that there is no polynomial
time approximation algorithm of ratio less than 3/2 for the BIN PACKING
problem. Based on the fact that deciding whether the edges of a graph
can be colored with at most 3 colors is NP-hard, we derive that the GRAPH
EDGE COLORING problem has no polynomial time approximation algorithm
for ratio less than 4/3. These, of course, exclude immediately the possibility
of existence of polynomial time approximation schemes for the problems.

For certain optimization problems, trivial modifications in input in-
stances can change the approximation ratio dramatically. For this kind
of problems, one may prove the nonexistence of polynomial time approxi-
mation schemes. Consider the general TRAVELING SALESMAN problem:

TRAVELING SALESMAN

Given a weighted complete graph G, construct a traveling sales-
man tour in G with the minimum weight.

Theorem 7.3.1 If P # NP, then for any function f(n) = O(c"), where c
1s a constant, the TRAVELING SALESMAN problem has no polynomial time
approzimation algorithm of ratio bounded by f(n).

208 PTAS

PrROOF. We first reduce the NP-hard problem HAMILTONIAN CIRCUIT to
the TRAVELING SALESMAN problem. Recall that the HAMILTONIAN CIR-
CUIT problem is, for each given graph G, decides if there is a simple cycle
in G containing all the vertices in G (such a cycle is called a Hamiltonian
circuit). For an instance G of n vertices for the HAMILTONIAN CIRCUIT
problem, we construct an instance G’ for the TRAVELING SALESMAN prob-
lem, which is a weighted complete graph, as follows. The graph G’ has the
same set of vertices as G. For each pair of vertices u and v, if [u, v] is an edge
in G, then the edge [u, v] in G’ has weight 1, and if there is no edge between
uw and v in G, then the edge [u,v] in G’ has weight nf(n). It is easy to see
that if the graph G has a Hamiltonian circuit then the minimum traveling
salesman tour in G’ has weight n, while if the graph G has no Hamiltonian
circuit then the minimum traveling salesman tour in G’ has weight at least
nf(n)+n — 1. Also note that the condition f(n) = O(c") ensures that the
transformation from the (unweighted) graph G to the weighted complete G’
can be done in polynomial time.

If the TRAVELING SALESMAN problem had a polynomial time approx-
imation algorithm A of ratio bounded by f(n), then we would be able to
use this algorithm A to solve the HAMILTONIAN CIRCUIT problem, as fol-
lows. Applying the approximation algorithm A to the instance G’. Since
the approximation ratio of A is bounded by f(n), in case the graph G has a
Hamiltonian circuit (i.e., the minimum salesman tour in G’ has weight n),
the algorithm A returns a salesman tour of weight at most nf(n), while in
case the graph G has no Hamiltonian circuit (so the minimum salesman tour
in G’ has weight at least nf(n) +n —1 > nf(n)), the algorithm A returns
a salesman tour of weight larger than nf(n) (we assume n > 1). There-
fore, based on the weight of the salesman tour returned by the algorithm
A, we can directly decide if the graph G has a Hamiltonian circuit. This
would solve the NP-hard problem HAMILTONIAN CIRCUIT in polynomial
time, which in consequence would imply that P = NP. [

Note that Theorem 7.3.1 is actually much stronger than saying that
the TRAVELING SALESMAN problem has no polynomial time approximation
schemes.

