Chapter 6

Fully Polynomial Time
Approximation Schemes

Recall that the approximation ratio for an approximation algorithm is a
measure to evaluate the approximation performance of the algorithm. The
closer the ratio to 1 the better the approximation performance of the algo-
rithm. It is notable that there is a class of NP-hard optimization problems,
most originating from scheduling problems, for which there are polynomial
time approximation algorithms whose approximation ratio 1 + € can be as
close to 1 as desired. Of course, because of the NP-hardness of the problems,
the running time of such an algorithm increases when the error bound € de-
creases, but in a very reasonable way: it is bounded by a polynomial of 1/e.
Such an approximation algorithm is called a fully polynomial time approxi-
mation scheme (or shortly FPTAS) for the NP-hard optimization problem.
A fully polynomial time approximation scheme seems the best possible we
can expect for approximating an NP-hard optimization problem.

In this chapter, we introduce the main techniques for constructing fully
polynomial time approximation schemes for NP-hard optimization problems.
These techniques include pseudo-polynomial time algorithms and approxi-
mation by scaling. Two NP-hard optimization problems, the KNAPSACK
problem and the c-MAKESPAN problem, are used as examples to illustrate
the techniques. In the last section of this chapter, we also give a detailed
discussion on what NP-hard optimization problems may not have a fully
polynomial time approximation scheme. An important concept, the strong
NP-hardness, is introduced, and we prove that in most cases, a strongly
NP-hard optimization problem has no fully polynomial time approximation
scheme unless our working conjecture P # NP fails.

143

144 FPTAS

6.1 Pseudo-polynomial time algorithms

We first consider algorithms that solve certain NP-hard optimization prob-
lems precisely. Of course, we cannot expect that these algorithms run in
polynomial time. However, these algorithms run in pseudo-polynomial time
in the sense that the running time of these algorithms is bounded by a two-
variable polynomial whose variables are the length of the input instance
and the largest number appearing in the input instance. These pseudo-
polynomial time algorithms will play a crucial role in our later development
of approximation algorithms for the NP-hard optimization problems.
We start with the KNAPSACK problem, which is defined as follows.

KNAPSACK = (Ig, Sq, fg,optg)

Ig ={(s1,...,8p;01,...,0n; B) | s4,vj, B : positive integers}
So({s1,.- -y sniv1, ..., B)) ={S C{1,...,n} | Yicqgsi < B}
fo((s1,... 8n501, ..., 0n; B),S) =350

optg = max

It is an easy exercise to prove, via a polynomial-time reduction from the
NP-hard problem PARTITION, that the KNAPSACK problem is NP-hard.

The KNAPSACK problem is to take the maximum value with a knapsack
of size B, given n items of size s; and value v;, ¢ = 1,...,n. To simplify our
description, for a subset S of {1,...,n}, we will call > ;cqs; the size of S
and) ;g v; the value of S. Let Vj be a value not smaller than the value of
optimal solutions to the instance (si,...,Sp;v1,...,0y; B). For each index
7, 1 <i <n and for each value v < Vj, we consider the following question

Question K (i,v)

Is there a subset S of {1,...,i} such that the size of S is not
larger than B and the value of S is equal to v?

The answer to Question K (i,v) is “yes” if and only if at least one of the
following two cases is true: (1) there is a subset S’ of {1,...,7—1} such that
the size of S’ is not larger than B and the value of S’ is equal to v (in this
case, simply let S be S’), and (2) there is a subset S” of {1,...,7 — 1} such
that the size of S” is not larger than B — s; and the value of S” is equal to
v — v; (in this case, let S = S8” U {i}). Therefore, the solution to Question
K(i,v) is implied by solutions to the questions of the form K (i — 1, %).

For small values of i and v, the solution to Question K (i,v) can be
decided directly. In particular, the answer to K(0,v) is always “no” for
v > 0; and the answer to K(0,0) is “yes”.

PSEUDO-POLYNOMIAL TIME 145

The above discussion motivates the following dynamic programming al-
gorithm for solving the KNAPSACK problem. We first compute K (0,v) for
all v, 0 < v < V. Then, inductively we compute each K(i,v) based on
the solutions to K (i — 1,v') for all 0 < v < Vj. For each item K(i,v), we
associate it with a subset S in {1,...,4} such that the size of S is not larger
than B and the value of S is equal to v, if such a subset exists at all.

Now a potential problem arises. How do we handle two different wit-
nesses for a “yes” answer to the Question K (i,v)? More specifically, suppose
that we find two subsets S; and Sy of {1,...,i} such that both of S; and
S9 have size bounded by B and value equal to v, should we keep both of
them with K(i,v), or ignore one of them? Keeping both can make K(i,v)
exponentially grow as ¢ increases, which will significantly slow down our al-
gorithm. Thus, we intend to ignore one of S; and S2. Which one do we want
to ignore? Intuitively, the one with larger size should be ignored (recall that
S1 and Ss have the same value). However, we must make sure that ignoring
the set of larger size will not cause a loss of the track of optimal solutions
to the original instance of the KNAPSACK problem. This is ensured by the
following lemma.

Lemma 6.1.1 Let Sy and S be two subsets of {1,...,i} such that S; and
So have the same value, and the size of S1 is at least as large as the size
of So. If S1 leads to an optimal solution S = S1 U S3 for the KNAPSACK
problem, where S3 C {i + 1,...,n}, then S’ = Sy U Ss is also an optimal
solution for the KNAPSACK problem.

PROOF. Let size(S) and value(S) denote the size and value of a subset S
of {1,...,n}, respectively. We have

size(S') = size(Sy) + size(S3) and size(S) = size(S) + size(Ss3)

By the assumption that size(S1) > size(S2), we have size(S) > size(S’).
Since S is an optimal solution, we have size(S) < B, which implies
size(S") < B. Thus S’ is also a solution to the KNAPSACK problem. More-
over, since value(Sy) = value(S2), we have

value(S") = walue(S2) + value(Ss)
value(St) 4+ value(S3)
= value(95)

Thus, S’ is also an optimal solution. []

146 FPTAS

By Lemma 6.1.1, for two subsets S; and Sy of {1,...,4} that both witness
the “yes” answer to Question K (i,v), if the one of larger size leads to an
optimal solution, then the one with smaller size also leads to an optimal
solution. Therefore, ignoring the set of larger size will not lead to a loss of
the track of optimal solutions. That is, if we can derive an optimal solution
based on the set of larger size, then we can also derive an optimal solution
based on the set of smaller size using exactly the same procedure.

Now a dynamic programming algorithm based on the above discussion
can be described as in Figure 6.1. Here the order of computation is slightly
different from the one described above: instead of computing K (i,v) based
on K(i—1,v) and K(i — 1,v — v;), we start from each K(i — 1,v") and try
to “extend” it to K(i,v") and K(i,v" + v;).

Subroutine. Put(So, K¢, v])
1. if (K[i,v] = x) Kli,v] = So
2. else if (size(So) < size(K[i,v])) Kli,v] = So.

Algorithm. Knapsack-Dyn(n, Vy)
INPUT: (S1,...,8n;1,...,0n; B), all positive integers
OuTPUT: a subset S C {1,...,n} of size < B and value maximized
1. for (all0 <i<mand 0 <v < Vy) K[i,v] =%
2. K[0,0] = ¢; \\ ¢ is the empty set
3. for (all0<i<n—1and 0 <v < V)
3.1 if (K[i,v] # *)
3.1.1 Put(K[i,v], K[i + 1, v]);
3.1.2 if (size(K[i,v]) + si+1 < B)
Put(K[i,v]U{i+ 1}, K[t + 1,v 4+ vit1]);

4. return the item Kn,v] # % with v maximized.

Figure 6.1: Dynamic programming for KNAPSACK

The subroutine Put(Sy, K[i,v]) is used to solve the multiple witness
problem, where Sy is a subset of {1,...,i} such that Sy has value v.

Step 4 of the algorithm Knapsack-Dyn(n, ;) finds the largest value
v < Vp such that K[n,v] # *. Obviously, if Vj is not smaller than the value
of optimal solutions to the input instance, then step 4 of the algorithm will
find the subset S of {1,2,...,n} with the largest value under the constraint
that S has size bounded by B.

According to our discussion, it should be clear that the algorithm
Knapsack-Dyn(n, Vj) solves the KNAPSACK problem for any value Vj not
smaller than the value of optimal solutions to the input instance.

PSEUDO-POLYNOMIAL TIME 147

Lemma 6.1.2 The algorithm Knapsack-Dyn(n, V) runs in time O(nVp).

PrROOF. We show data structures on which the if statement in Step 3.1
can be executed in constant time. The theorem follows directly from this
discussion.

For each item KTi,v], which is for a subset S, of {1,...,i}, we attach
three parameters: (1) the size of S;,, (2) a marker m;, indicating whether
i is contained in S;,, and (3) a pointer p;, to an item K[i — 1,7'] in the
previous row such that the set S, is derived from the set K[i — 1,v']. Note
that the actual set S;, is not stored in K[i,v].

With these parameters, the size of the set S;, can be directly read from
K[i,v] in constant time. Moreover, it is also easy to verify that the subrou-
tine calls Put(K[i, v], K[i+1,v]) and Put(K[i,v]U{i+1}, K[i+1,v+vit1])
can be performed in constant time by updating the parameters in K[i+ 1, v]
and K[i 4+ 1,v + viy1].

Thus, steps 1-3 of algorithm Knapsack-Dyn(n, Vj) take time O(nVp).

We show how the actual optimal solution K[n,v] is returned in step 4.
After deciding the item K[n,v] in step 4, which corresponds to an optimal
solution Sy, that is a subset of {1,...,n}, we first check the marker m,,, to
see if Sy, contains n, then follow the point py, to an item K[n—1,], where
we can check whether the set S,,, contains n — 1 and a pointer to an item in
the (n — 2)nd row, and so on. In time O(n), we will be able to “backtrack
and collect” all elements in S, and return the actual set S,,. [

A direct implementation of the algorithm Knapsack-Dyn(n, V) uses
a 2-dimensional array K[0..n,0..Vy], which takes O(nVy) space (i.e., the
amount of computer memory). We may reduce the space complexity of the
algorithm from O(nVh) to O(Vp), as follows. Observe that at any moment,
only two rows K|[i,*] and K[i + 1,%] of the array K[0..n,0..Vp] need to
be kept: when the values of the i-th row become available, all values for
rows before the i-th row will not be used further so they can be ignored.
Therefore, in the algorithm Knapsack-Dyn(n, V), we can use two arrays of
size Vj to keep the current two rows, which take only O(Vy) space. However,
we should remark that this implementation will only give you the value of
the optimal solution. In order to construct the actual subset for the optimal
solution, as we explained above for step 4, we still need to keep the entire
2-dimensional array K[0..n,0..Vp].

In general, we can conveniently let the bound Vj be >~1 ; v;, which is an
obvious upper bound for the optimal solution value. With this bound V),
the algorithm Knapsack-Dyn(n, V) runs in time polynomial in both n and

148 FPTAS

Vo, and solves the KNAPSACK problem precisely. Unfortunately, since the
value V| can be larger than any polynomial of n, the algorithm Knapsack-
Dyn(n, Vp) is not a polynomial time algorithm in terms of the input length
n. On the other hand, the algorithm Knapsack-Dyn(n, Vj) does provide
very important information about the KNAPSACK problem, in particular
from the following points of views:

1. If values of all items in the input instance are not very large, i.e.,
bounded by a polynomial of n, then the value Vj is also bounded by
a polynomial of n. In this case, the algorithm Knapsack-Dyn(n, Vj)
runs in time polynomial in n and constructs an optimal solution for
the given input instance; and

2. The algorithm has laid an important foundation for approximation
algorithms for the KNAPSACK problem. This will be discussed in detail
in the next section.

The algorithm Knapsack-Dyn(n, 1)) is a typical method for solving a
class of optimization problems, in particular many scheduling problems. To
study this method in general setting, we start with some terminologies.

Definition 6.1.1 Suppose Q = (Ig, S, fg,optg) is an optimization prob-
lem. For each input instance x € I we define:

e length(z) = the length of a binary representation of z; and
e max(x) = the largest number that appears in the input x.

If no number appears in the input instance =, we define max(z) = 1.

The definitions of length(x) and max(z) can vary by some degree with-
out loss of the generality of our discussion. For example, length(x) can also
denote the length of the representation of the input x based on any fixed
alphabet, and max(x) can be defined to be the sum of all numbers appearing
in the input z. Our discussion below will be valid for any of these variations.
The point is that for two different definition systems (length(x), max(x))
and (length’(z), max’(z)), we require that length(z) and length’(x) are poly-
nomially related and that max(z) and max’(z) are polynomially related for
all input instances x.

Definition 6.1.2 Let () be an optimization problem. A algorithm A solv-
ing @ runs in pseudo-polynomial time if there is a two-variable polynomial

PSEUDO-POLYNOMIAL TIME 149

p such that on any input instance x of @), the running time of the algorithm
A is bounded by p(length(x), max(z)). In this case, we also say that the
problem @ is solvable in pseudo-polynomial time.

As an example, consider the KNAPSACK problem. For any instance of the
problem o = (s1,...,8,;01,...,0,; B), if we let Vo = > v; < n - max(«),
where max(«) = max}_;{v;}, then the algorithm Knapsack-Dyn(n, V)
constructs an optimal solution for the instance « in time O(nVp), which is
bounded by a polynomial of length(«) and max(«). Thus,

Theorem 6.1.3 KNAPSACK is solvable in pseudo-polynomial time.

KNAPSACK is a maximization problem. As another example, we
present a pseudo-polynomial time algorithm for the minimization problem
c-MAKESPAN, where c is a fixed integer. Recall the defiition of the problem:

c-MAKESPAN = (IQ, Saq. fo, Oth)
Ig: the set of tuples T' = (t1,...,t,), where each ¢; is an

integer denoting the processing time for the ith job
Sg: Sq(T) is the set of partitions P = (S1,...,5.) of the

numbers (t1,...,t,) into ¢ parts (P is called a schedule
of <t17 s 7tn>)

for fo(T,P) = maxica<c{d4es, 5}

optg: min

Again, a simple polynomial-time reduction from the NP-hard problem PAR-
TITION shows that for any integer ¢ > 1, the c-MAKESPAN problem is NP-
hard. Thus, there is no polynomial-time algorithm for the c-MAKESPAN
problem for any integer ¢ > 1 unless P = NP.

Let T be a value not smaller than the value of optimal solutions to the
instance (t1,...,t,). Note that every schedule (Si,...,S.) of the n jobs
(t1,...,tn), where Sy is the subset of {1,...,n} that corresponds to the jobs
assigned to the d-th processor, can be written as a c-tuple (77, ..., T;) with
0<Ty <Tpforall l<d<c, where Ty = > g, tn is the total execution
time assigned to the d-th processor. The c-tuple (71, ...,T,) will be called
the time configuration for the schedule (Si,...,S.).

Now as for the KNAPSACK problem, for each 7, 0 < i < n, and for each
time configuration (71, ...,7;), 1 <T; < Ty, 1 < d < ¢, we ask the question

Is there a schedule of the first i jobs {t1,...,t¢;} that gives the
time configuration (T1,...,7¢)?

150 FPTAS

This question is equivalent to the following question

Is there an index d, where 1 < d < ¢, such that the first ¢ — 1
jobs {t1,...,t;—1} can be scheduled with the time configuration
(T, ...\ Tqg1,Tqg — ti, Tayr, - -, Te)?

This observation suggests the dynamic programming algorithm given in Fig-
ure 6.2. A ¢+ 1 dimensional array H|[0..n,0..Tp,...,0..Tp] is used such that

the item H[i,T1,...,T¢] records the existence of a schedule on the first i
jobs with the time configuration (71,...,7.). Again, instead of recording
the whole schedule corresponding to H[i,T1,...,T.], we can simply record

the processor index to which the i-th job is assigned. A pointer is used in
H[i,T1,...,T.] that points to an item of form H[i — 1, %, ..., %] so that the
machine assignment of each of the first ¢ — 1 jobs can be found following the
pointers.

Algorithm. c¢-Makespan-Dyn(n,Tp)
INPUT: n jobs with processing times t1,...,ty,
OUTPUT: an optimal schedule of the jobs on ¢ processors
1. for each 4, 0 < ¢ <n, and each (T1,...,7:),0< Ty <Tp,1<d<cdo

H[i,T1,...,T:] = %
2. H[0,0,...,0] =0;
3. fori=0ton—1do

for each (T1,...,7:),0< T3 <Tp,1<d<cdo

if H[i,T1,...,Tc] # = then
for d =1 to ¢ do \\recording job t;41 is assigned to processor d
Hli+1,T,....,Tg—1,Tqa + tiv1, Tat1,. .., Tc) = d;

4. return the H[n,Ti,...,T.] # * with max4{T;} minimized.

Figure 6.2: Dynamic programming for c-MAKESPAN

An obvious upper bound Tj on the value of optimal solutions is Y ;- ; t;.
The following theorem follows directly from the algorithm c-Makespan-
Dyn(n,To), with T() = Z?Zl ti.

Theorem 6.1.4 The algorithm c-Makespan-Dyn(n,Ty) solves the prob-
lem c-MAKESPAN in time O(n1y). In consequence, the c-MAKESPAN prob-
lem is solvable in pseudo-polynomial time.

In many practical applications, developing a pseudo-polynomial time al-
gorithm for an NP-hard optimization problem may have significant impact.

APPROXIMATION BY SCALING 151

First, in most practical applications, numbers appearing in an input in-
stance are in general not extremely large. For example, numbers appearing
in scheduling problems in general represent processing resource (e.g., com-
putational time and storage) requirements for tasks, which are unlikely to
be very large because we will actually process the tasks after the schedule
and we could not afford to do so if any task requires an inordinately large
amount of resource. For this kind of applications, a pseudo-polynomial time
algorithm will become a polynomial-time algorithm and solve the problem,
even if the original problem is NP-hard in its general form.

Furthermore, a pseudo-polynomial time algorithm can be useful even
when there is no natural bound on the numbers appearing in input in-
stances. In general, input instances that are of practical interests and contain
very large numbers might be very rare. If this is the case, then a pseudo-
polynomial time algorithm will work efficiently for most input instances, and
only “slow down” in very rare situations.

6.2 Approximation by scaling

In the last section, we presented an algorithm Knapsack-Dyn(n, Vj) that,
on an input instance a = (sy,...,Sp;v1, ..., Uy; B) of KNAPSACK, constructs
an optimal solution for « in time O(nVp), where Vp = > v;. If Vj is not
bounded by any polynomial function of n, then the running time of the
algorithm is not polynomial. Is there a way to lower the value of V37 Well,
an obvious way is to divide each value v; by a sufficiently large number
K so that Vj is replaced by a smaller value Vj = Vp/K. In order to let
the algorithm Knapsack-Dyn(n, V() to run in polynomial time, we must
have V] < an® for some constants a and b, or equivalently, K > Vo/(an®).
Another problem is that the value v;/K may no longer be an integer while
by our definition, all input values in an instance of the KNAPSACK problem
are integers. Thus, we will take v, = [v;/K|. This gives a new instance o/
for the KNAPSACK problem
o = (s1,...,80;0],...,0; B)

where v} = |v;/K |, fori=1,...,n, and Vj = [Vp /K] is obviously an upper
bound on the value of optimal solutions to the instance o/. For K > Vp/(an?)
for some constants a and b, the algorithm Knapsack-Dyn(n, V() finds an
optimal solution for o/ in polynomial time. Note that a solution to o is also
a solution to o and we intend to “approximate” the optimal solution to «
by an optimal solution to . Since the application of the floor function |-],

152 FPTAS

we lose precisions thus an optimal solution for o/ may not be an optimal
solution for «. How much precision have we lost? Intuitively, the larger the
value K, the more precision we would lose. Thus, we want K to be as small
as possible. On the other hand, we want K to be as large as possible so that
the running time of the algorithm Knapsack-Dyn(n,Vj) can be bounded
by a polynomial. Now a natural question is whether there is a value K that
makes the algorithm Knapsack-Dyn(n, V) run in polynomial time and
cause not much precision loss so that the optimal solution to the instance
o’ is “close” to the optimal solution to the instance a. For this, we need the
following formal analysis.

Let S C {1,...,n} be an optimal solution to the instance «, and let
S" C {1,...,n} be the optimal solution to the instance o' produced by
the algorithm Knapsack-Dyn(n, V). Note that S is also a solution to
the instance o’ and that S’ is also a solution to the instance a. Let
Opt(a) = > ,egvi and Apr(a) = Y ;ce v; be the objective function val-
ues of the solutions S and S, respectively. Therefore, Opt(a)/Apx(a) is the
approximation ratio for the algorithm we proposed. In order to bound the
approximation ratio by a given constant e, we consider

Opt(a) = > vi=K> v/K<K» (lvi/K]+1)

€8 €S €8
< Kn+K) |vi/K]=Kn+ K
€S €S

The last inequality is because the cardinality of the set .S is bounded by n.
Since S’ is an optimal solution to o’ = (s1,...,sp;v],...,v}; B), while
S is also a solution to o, we must have

i< v

= =
Thus,

Opt(a) < Kn+K)Y vi=Kn+K)> |v/K]

€S’ €S’
< Kn—i—KZvi/K:Kn—i—Apx(a) (6.1)
€S’

This gives us the approximation ratio.

Opt(a) < Kn

Apx(a) — + Apz(a)

APPROXIMATION BY SCALING 153

Without loss of generality, we can assume that s; < Bforalli=1,...,n
(otherwise, the index i can be simply deleted from the input instance since
it can never make contribution to a feasible solution to «). Thus, Opt(«)
is at least as large as maxi<;<n{vi} > Vb/n, where Vo = >°7" v;. From
inequality (6.1), we have

Apzx(a) > Opt(a) — Kn > (Vo/n) — Kn

It follows that

Opt(«) < Kn 14 Kn?
Vo — Kn?

1 _—
Apx(a) — * (Vo/n) — Kn
Thus, in order to bound the approximation ratio by 1 + €, one should have

Kn? <
Vo—Kn2 = °©

This leads to K < (eVp)/(n?(1 + ¢)).

Recall that in order to make the algorithm Knapsack-Dyn(n, V() run
in polynomial time on the input instance o/, we must have K > V;/(an®) for
some constants a and b. Combining these two relations, we get a = 1+ 1/e,
and b = 2, and the value

Vo
K =W N ————
o/lan’) = e
makes the algorithm Knapsack-Dyn(n, V{) run in time O(n3(1 + 1/¢)) =
O(n3/e€) and produces a solution S’ to the instance a with approximation
ratio bounded by 1 + €.
We summarize the above discussion in the algorithm given in Figure 6.3.

Theorem 6.2.1 For an input instance o of KNAPSACK and for any real
number € > 0, the algorithm Knapsack-Apx runs in time O(n3/¢) and
produces a solution to o with approrimation ratio bounded by 1 + €.

According to Theorem 6.2.1, the running time of the approximation
algorithm Knapsack-A px increases when the input size n increases and the
error bound € decreases. This seems reasonable and necessary. Moreover,
the running time increases “slowly” with n and 1/e¢ — which is bounded by
a polynomial of n and 1/e. This motivates the following definition.

154 FPTAS

Algorithm. Knapsack-Apx
INPUT: (S1,...,8n;V1,...,VUn;B), and € >0
OUTPUT: a subset S’ C {1,...,n}, such that Z

i€S’
—\\" . — Vo .
Vo = Zi:1 vi; K= (1+1/e)n2’
fori=1tondo v} = |vi/K];

SZSB

1
2
3. apply algorithm Knapsack-Dyn(n, [Vo/K]) on (s1,...,sn;0],...,0;B);
4. return the subset S’ C {1,...,n} obtained in step 3.

Figure 6.3: FPTAS for the KNAPSACK problem

Definition 6.2.1 An optimization problem @ has a fully polynomial time
approximation scheme (FPTAS) if it has an approximation algorithm A such
that given (x,€), where x is an instance of @) and e is a positive constant,
A finds a solution for x with approximation ratio bounded by 1 + € in time
polynomial in both n and 1/e.

By the definition, the KNAPSACK problem has a fully polynomial time
approximation scheme. In the following, we present a fully polynomial time
approximation scheme for the c-MAKESPAN problem.

The approach for developing a fully polynomial time approximation
scheme for the c-MAKESPAN problem is similar to that for the KNAP-
SACK problem. For an input instance o = (t1,...,t,) of the c-MAKESPAN
problem, we have the dynamic programming algorithm c-Makespan-
Dyn(n, Tp), which constructs an optimal solution to the instance « in time
O(nT§), where Ty = > ;" t;. We reduce the running time of the algorithm
by scaling the value Ty by dividing all #; in the input instance a by a large
number K. By properly choosing the scaling factor K, we can make the al-
gorithm c-Makespan-Dyn to run on the new instance in polynomial time
and keep the approximation ratio bounded by 1 + €. Because of the simi-
larity, some details in the algorithms and in the analysis are omitted. The
reader is advised to refer to corresponding discussion on the KNAPSACK
problem and complete the omitted parts for a better understanding.

The approximation algorithm for ¢-MAKESPAN is given in Figure 6.4.

Theorem 6.2.2 The algorithm c-Makespan-Apx on input (t1,...,tn;€)
produces a schedule (S1,...,S.) with approzimation ratio bounded by 1 + €
and runs in time O(nT!/e).

PRrROOF. The time complexity of the algorithm c-Makespan-Apx is dom-

APPROXIMATION BY SCALING 155

Algorithm. c¢c-Makespan-Apx
INPUT: (t1,...,tn;€), all t;’s are integers
OuTPUT: a schedule of the n jobs on ¢ processors

L To=) " ti K=cTo/(cn); T=[To/K]+n;

2. fori=1tondo t,=/[t;/K];

3. apply algorithm c-Makespan-Dyn(n,T{) on input (t|,...,t,);
4.

return the schedule obtained in step 3.

Figure 6.4: FPTAS for the c-MAKESPAN problem

inated by step 3. Since Ty = [Ty/K| +n = cn/e + n = O(n/e), by Theo-
rem 6.1.4, the algorithm c-Makespan-Dyn(n,T}) in step 3, thus the algo-
rithm c-Makespan-Apx, runs in time O(n(7T4)¢) = O(nt1/ec).

Let (S1,...,S:) be an optimal solution to the instance a = (t1,...,t,)
of the c-MAKESPAN problem, and let (S7,...,S.) be the optimal solution to
the instance o = (t},...,t)) obtained by the algorithm c-Makespan-Dyn.
Note that (S1,...,S.) is also a solution to the instance o/ = (t,...,t)) and
(S1,...,S.) is also a solution to the instance av = (t1,...,t,).

Foralld, 1 <d<g¢, let

Td:zth’ deztz, Tézzth, V;ilzzt;l.

h€eSy heSy hes, hes,
Without loss of generality, suppose

T, = max {T;}, Vo= 11;13%(6{1/&}, T3 = fgggc{Td}: Vi= fgcfli%(c{vd}.

1<d<c
Therefore, on instance (ti,...,t,), the schedule (Si,...,S.) has makespan
T, and the schedule (S7,...,S)) has makespan Tj; and on instance
(th,...,t)), the schedule (Si,...,S.) has makespan V5 and the schedule
(S1,...,S.) has makespan V,. The approximation ratio of the algorithm

c-Processor-Apx is T3 /T;. We have

Ti= Y th=KY (tn/K)<K) t,=KVy <KV
hesy hesy hesy

The last inequality is by the assumption V} = max;<4<.{Vj}.
Since (57, ..., S.) is an optimal schedule on instance (t},...,t,), we have
V] < Va. Thus,

Ty3<KVo=K Y t,=K) [ta/K]
heSy heSs

156 FPTAS

<KDY ((th/K)+1)<Ty+ Kn<Ti+Kn.
heSs2

The last inequality is by the assumption T7 = maxj<g<.{Tq}
This gives us immediately

Té/Tl S 1 —|—Kn/T1

It is easy to see that 77 > "7 t;/c = Ty/c, and recall that K = €¢I/ (cn),
we obtain Kn/T) < e. That is, the schedule (S7,...,S.) produced by the
algorithm c-Makespan-A px has approximation ratio bounded by 14e¢. [J]

Corollary 6.2.3 For a fized constant c, the c-MAKESPAN problem has a
fully polynomial time approrimation scheme.

Theorem 6.2.1 and Theorem 6.2.2 present fully polynomial time approx-
imation schemes for the KNAPSACK problem and the c-MAKESPAN problem,
respectively, using the pseudo-polynomial time algorithms for the problems
by properly scaling and rounding input instances. Most known fully poly-
nomial time approximation schemes for optimization problems are derived
using this method. In fact, as shown in [20], under a very general constraint,
this is essentially the only way to derive fully polynomial time approximation
schemes for optimization problems. Therefore, pseudo-polynomial time al-
gorithms are closely related to fully polynomial time approximation schemes
for optimization problems. The following theorem shows that under a very
general condition, having a pseudo-polynomial time algorithm is a necessary
condition for the existence of a fully polynomial time approximation scheme
for an optimization problem.

Theorem 6.2.4 Let Q = (I, S, f,opt) be an optimization problem such that
for all input instance x € I we have Opt(x) < p(length(x), max(zx)), where p
s a two variable polynomial. If Q has a fully polynomial time approzimation
scheme, then Q) can be solved in pseudo-polynomial time.

PROOF. Suppose that @) is a minimization problem, i.e., opt = min. Since
@ has a fully polynomial time approximation scheme, there is an approxima-
tion algorithm A for @) such that for any input instance x € I, the algorithm
A produces a solution y € S(z) in time p;(|x|,1/€) satisfying

f(z,y)
Opt(x)

< 1+e¢,

IMPROVING TIME COMPLEXITY 157

where p; is a two variable polynomial.
Let € = 1/(p(length(x), max(z)) + 1), then the solution y satisfies

Opt(x)
(length(x), max(z)) +1°

f(z,y) < Opt(z) +) < Opt(z) +1

Since both f(z,y) and Opt(x) are integers and f(x,y) > Opt(x), we get
immediately f(x,y) = Opt(z). That is, the solution produced by the algo-
rithm A is actually an optimal solution. Moreover, the running time of the
algorithm A for producing the solution y is bounded by

pi(|z], p(length(z), max(z)) + 1)

which is a polynomial of length(z) and max(x). We conclude that the opti-
mization problem @ can be solved in pseudo-polynomial time. []

6.3 Improving time complexity

We have shown that the KNAPSACK problem and the c-MAKESPAN problem
can be approximated within a ratio 1 + € in polynomial time for any given
€ > 0. On the other hand, one should observe that the running time of
the approximation algorithms is very significant. For the KNAPSACK prob-
lem, the running time of the approximation algorithm Knapsack-Apx is
O(n?/e); and for the c-MAKESPAN problem, the running time of the approx-
imation algorithm c-Makespan-Apx is O(n°t!/e?). When the input size
n is reasonably large and the required error bound € is very small, these
algorithms may become impractical.

In this section, we discuss several techniques that have been used exten-
sively in developing efficient approximation algorithms for scheduling prob-
lems. We should point out that these techniques are not only useful for
improving the algorithm running time, but also often important for achiev-
ing better approximation ratios.

Reducing the number of parameters

Consider the approximation algorithm c-Makespan-Apx for the problem
c-MAKESPAN (Figure 6.4). The running time of the algorithm is domi-
nated by step 3, which is a call to the dynamic programming algorithm
c-Makespan-Dyn(n, 7). Therefore, if we can improve the time complex-
ity of the algorithm c-Makespan-Dyn(n, T{), we improve the running time
of the approximation algorithm c-Makespan-A px.

158 FPTAS

The algorithm c-Makespan-Dyn(n,T{) (see Figure 6.2) works on a
(¢ + 1)-dimensional array H[0..n,0..73,...,0..T], where T) = O(n/e) (see
the proof of Theorem 6.2.2). The item H[i, T1,...,T.] = d records a schedule
for the first ¢ jobs that assigns the job i to the processor d with a time
configuration (71, ...,7T.). The running time of the algorithm c-Makespan-
Dyn(n, T}) is necessarily at least O(n(T})¢) = O(ntt/e).

To reduce the running time of the algorithm, we reduce the dimen-
sion of the array H[*,...,%| from ¢ + 1 to ¢, as follows. We let the item
Hl[i,Ty,...,Te.—1] record the processing time of the cth processor. More pre-
cisely, H[i, T}, ..., Te—1] = T¢ if there is a schedule for the first i jobs whose
time configuration is (7%,...,7T.—1,T.). The modification of the algorithm
c-Makespan-Dyn(n, T}}) based on this change is straightforward, for which
we present the part for step 3 in Figure 6.5. Of course, we still need to keep
another two pieces of information related to each item H[i, T1,...,Tc—1]: a
processor index d indicating that the job 7 is assigned to processor d, and a
pointer to an item H[i—1,T7y,...,T._,] for constructing the actual schedule
corresponding to the time configuration (74,...Tc—1, H[i, T, ..., Te—1]).

4. fori=0ton—1do
for each (T1,...,Tc—1),0<Ty <Tp,1<d<c—1do
if H[i,T1,...,Tc—1] # * then
Hli+1,T1,...,Toe1] = H[i,T1, ..., To—1] + tis1;
\\assign job t;11 to processor ¢
for d =1 to ¢ — 1 do \\assign job t; to processors 1,2,...,¢—1
Hli+ 1,71, ..., Ty, Ty +tis1, Tas1,- .. Tee1] = H[i, Th, ..., Te_1];

Figure 6.5: Modified algorithm c-Makespan-Dyn

The running time of the algorithm c-Makespan-Dyn(n,Ty) now is ob-
viously bounded by O(nTocfl). Therefore, if step 3 in the algorithm c-
Makespan-Apx (Figure 6.4) calls the modified algorithm c-Makespan-
Dyn(n,T}), where T) = O(n/e¢), the running time of the algorithm c-
Makespan-Apx is reduced from O(n(T)¢) = O(n°*1 /€¢) to O(n(T})™!) =
O(n¢/e“~1). We summarize the discussion in the following theorem.

Theorem 6.3.1 The algorithm c-Makespan-Apx on input (ti,...,tn;€)
produces a schedule (S1,...,S.) with approzimation ratio bounded by 1 + €
and runs in time O(n¢/e™1).

IMPROVING TIME COMPLEXITY 159

Reducing search space

Consider the dynamic programming algorithm Knapsack-Dyn(n, Vj) (Fig-
ure 6.1). For an instance o = (s1,...,8p;01,...,0,; B) of KNAPSACK, in
order to let the algorithm Knapsack-Dyn(n, Vp) construct an optimal so-
lution, Vy must be not smaller than the value of optimal solutions to the
instance. In particular, we can let V) = > v;. We used a 2-dimensional
array K[0..n,0..Vp]. The item K[i,v] records a subset of {1,...,i} whose
value is v and size is bounded by B. Note that the value of an optimal
solution to « can be as small as Vp/n. Therefore, if we can derive a closer
upper bound V* on the value of optimal solutions to a;, we may speed up our
dynamic programming algorithm by calling Knapsack-Dyn(n, V*) instead
of Knapsack-Dyn(n, Vp).

To derive a better bound on the optimal solution value, we can perform
a “pre-approximation algorithm” that provides a bound V* not much larger
than the optimal solution value, then use this value V* as an upper bound
for the optimal solution value in the dynamic programming algorithm.

Let S be a set of items whose size and value are s; and v;, respectively, for
i=1,...,n. Let B be an integer. A B-partition of S is a triple (S, 5", r),
where r € S”, such that

(1) SUS”=Sand S'NS" =0;
(2) vj/sj > v /sy > /sy for all j € S” and all k € S”; and
(3) Zjes/ Sj < B but Z]‘esl Sj+ 8 > B.

Now consider the algorithm Pre-Apx given in Figure 6.6.

Algorithm. Pre-Apx

INPUT: (S1,...,8n;v1,...,Vn; B), all positive integers
OUTPUT: a subset S of {1,...,n} of size bounded by B

1. construct a B-partition (S’,S”,r) for the set {1,2,...,n};
2. let v = maxi{vi};

3. if (v, > Zjes’ v;) then return {k} else return S’.

Figure 6.6: Finding an upper bound on optimal solution value
We first analyze the complexity of the algorithm.

Lemma 6.3.2 The algorithm Pre-Apx runs in linear time.

ProoF. Tt is sufficient to show that the B-partition (S’,S”,r) of the set
{1,2,...,n} can be constructed in linear time.

160 FPTAS

If we sort the items by the ratios v;/s;, then the B-partition can be triv-
ially constructed. However, sorting the items takes time Q(nlogn). There-
fore, we should avoid sorting.

We use the linear time algorithm that, given a set S of n numbers, returns
the median of S (i.e., the (|n/2])-th largest number in S) (the readers are
referred to [14] for more detailed discussion of this algorithm).

We perform a binary search procedure as follows. First we find, in linear
time, an item h in S such that the ratio v, /s, is the median over all ratios
v1/81, ..., Un/Sp. The item h partitions the set S into two subsets S; and
Sy of equal size, where for each item j in Si, v;/s; > vy /sy, and for each
item k in S, v /sk < vp/sp. Assume h € So. The subsets S and Ss can be
constructed in linear time. Let size(S1) =) jcg, sj. There are two possible
cases: (1) size(S1) < B. In this case we recursively construct a B’-partition
(S5, 54, r) of the set Sy, where B’ = B — size(S1). Now (S1 U S5, 54, r) is a
B-partition of the set S; and (2) size(S1) > B. In this case we construct a
B-partition (57,57, r) of the set S1. Then (S7, S7USa,7) is a B-partition of
the set S. Note that each of the subsets S; and S has at most n/2 items.
Thus, if we let ¢(n) be the running time of this recursive procedure, we
have the recurrence relation ¢(n) = O(n) +t(n/2), from which we can easily
derive t(n) = O(n). That is, the B-partition (S’,S”,r) can be constructed
in linear time. This completes the proof of the lemma. [

Note that the algorithm Pre-Apx is an approximation algorithm for
KNAPSACK, whose approximation ratio is given by the following lemma.

Lemma 6.3.3 The approzimation algorithm Pre-Apx for the KNAPSACK
problem has an approximation ratio bounded by 2.

Proor. Note that when v;, v, sj, and s are positive integers, we have

V; v . . Vs v; + v v

> (6.2)
S5 Sk S; S5+ sk Sk

Let (S,5”,r) be the B-partition of {1,2,...,n} constructed by the al-
gorithm Pre-Apx. The algorithm Pre-Apx constructs a solution Sy, C
{1,2,...,n} whose value is

max{z Vj,V1,02,...,Vp}
JjEeS!

Let S =S U{r} and let S, be an optimal solution.

IMPROVING TIME COMPLEXITY 161

Let Sop = SN Sopt- Thus, S = Sy UT; and Sopt = So U T, where
Ty N'Ty = (. Note that for any j € 71 and any k € Th, we have

(o (% v
Jis S Uk

Sj Sp Sk
By repeatedly using the relation (6.2), we have

E:jETqu
Yjern S

(Y v,
> 0TS Zk€T2 k

= = 6.3
Sr ZkETz Sk ()

Sine the size of S is larger than B while the size of S, is bounded by B,
we have 3 cr 85 > D per, Sk, Which combined with (6.3) gives

Zijka

JET1 JET2

This shows that the value of the set S is not smaller than the value of the
optimal solution S,p:. Since S = S’ U {r}, according to the algorithm Pre-
Apx, the value of S is bounded by twice of the value of the solution Sapz
constructed by the algorithm Pre- Apx. This proves that the approximation
ratio of the algorithm Pre-Apx is bounded by 2. [

Therefore, for an instance o of KNAPSACK, we can first apply the al-
gorithm Pre-Apx to construct a solution. Suppose that this solution has
value V*, then we have V* < Opt(«) < 2V*, where Opt(«a) is the optimal
solution value of a. Thus, the value 2V* can be used as an upper bound for
the optimal solution value for a.

We show how this refinement improves the running time of our fully poly-
nomial time approximation scheme for the KNAPSACK problem. For this, we
modify our scaling factor K in the algorithm Knapsack-Apx (Figure 6.3).
The modified algorithm is given in Figure 6.7.

The following theorem shows that the modified algorithm Knapsack-
Apx (Revision I) for the KNAPSACK problem has the same approximation
ratio but the running time improved by a fact n.

Theorem 6.3.4 The algorithm Knapsack-Apx (Revision I) for the
KNAPSACK problem has approzimation ratio 1+¢ and runs in time O(n?/e).

PROOF. Again the time complexity of the algorithm is dominated by step
4, which calls the dynamic programming algorithm Knapsack-Dyn(n, Vj).
By Lemma 6.1.2, step 4 of the algorithm takes time O(nV{). Since Vj =

162 FPTAS

Algorithm. Knapsack-Apx (Revision I)
INPUT: (S1,...,8n;V1,...,VUn;B), and € >0

OUTPUT: a subset S’ C {1,...,n}, such that Zies’

Sy S B

call algorithm Pre-Apx to obtain a solution of value V*;
— 1% . — .

K= I ERyRE V§ = [2V*/K;

fori=1tondo v =|v;/K];

apply algorithm Knapsack-Dyn(n, V() on (s1,...,8n;v],...,v;; B);

SRR S

return the subset S’ C {1,...,n} obtained in step 4.

Figure 6.7: Revision I for the FPTAS for KNAPSACK

|2V*/K | =2n(141/¢) = O(n/e), we conclude that the running time of the
algorithm Knapsack-Apx (Revision I) is bounded by O(n?/¢).

We must ensure that the value Vj is a large enough upper bound for the
optimal value Opt(a/) of the instance o' = (s1,...,sp;01,...,v); B). For
this, let S be an optimal solution to the instance o. Then

Opt(a’) =) vi =) |u/K| <} w)/K.

i€S €S €S

Observing that the subset S is also a solution to the original instance
a=(S1,...,50;01,...,0n; B) and by Lemma 6.3.3, Opt(a) < 2V*, we have

Opt(a') < (Z%)/K < Opt(a)/K <2V*/K.
€S

Since Opt(a’) is an integer, we get Opt(a’) < |2V*/K| = V. Therefore,
the value V{ is a valid upper bound for the value Opt(c/).

Now we analyze the approximation ratio for the algorithm Knapsack-
Apx (Revision I). Using exactly the same derivation as we did in Section
5.2, we get (see the relation in (6.1) in Section 5.2)

Opt(a) < Kn + Apz(«),

where Apz(a) is the value of the solution constructed by the algorithm
Knapsack-Apx (Revision I). Dividing both sides by Apz(a), we get

Opt(a) < Kn

Apz(a) — + Apz(a)

IMPROVING TIME COMPLEXITY 163

Moreover, since Apz(a) > Opt(a) — Kn > V* — Kn (note here we have used
a better estimation Opt(«) > V* than the one in Section 5.2, in which the
estimation Opt(«) > 71 v;/n was used), we get

Opt(a) < Kn

1+ ——=1+e
Apz(a) — + V*—Kn e

This completes the proof of the theorem. [

Separating large items and small items

Another popular technique for improving the running time (and sometimes
also the approximation ratio) is to treat large items and small items in
an instance differently. The basic idea of this technique can be described as
follows: we first set a threshold value 7T'. The items whose value is larger than
or equal to T" are large items and the items whose value is smaller than T are
small items. We use common methods, such as the dynamic programming
method and the scaling method, to construct a solution for the large items.
Then we add the small items by greedy method. This approach is based on
the following observations: (1) the number of large items is relatively small
so that the running time of the dynamic programming can be reduced; (2)
applying the floor or ceiling function on the scaled values (such as |v;/K |
for the KNAPSACK problem and [t;/K’] for the c-MAKESPAN problem) only
for large items in general loses less precision; and (3) greedy method for
adding small items in general introduces only small approximation errors.

We illustrate this technique by re-considering the c-MAKESPAN problem.

Let a = (t1,ta,...,t,) be an instance of the c-MAKESPAN problem. Let
To =Y i—i ti- A job t; is a large job if t; > €Tp/c, and a job t; is a small job
if t; < €Tp/c. Let aq be the set of all large jobs and let a4 be the set of all
small jobs. Note that the number n; of large jobs is bounded by

To c
ny < = -. 6.4
L= T e € (64)
Without loss of generality, we suppose that the first n; jobs t1, ta, ..., tp,

are large jobs and the rest of the jobs are small jobs.
Apply the algorithm c-Makespan-Apx (see Figure 6.4) to the n; large
jobs (t1,t2,...,ty,) with the following modifications:

L. let Ty = >77L, t;, and set K = €T} /c?; and

2. use T = [T}/K] + n; in the call to the dynamic programming
algorithm c-Makespan-Dyn(n;,7{) on the scaled instance o' =
(t1,th, ... ty,), where £ = [t; /KT, j =1,...,m.

» bny

164 FPTAS

The value T is a valid upper bound on the makespan for the scaled
instance o’ = (t},t5,...,t;,) because we have (we use the inequality (6.4)
here)

it’ = iu»/m < Tl =5 <y
A~ T L SR A
e

j=1

By the analysis in Theorem 6.3.1, the running time of the algorithm
c-Makespan-Apx on the large jobs o = (t1,...,ty,) is bounded by
O(ny(TY)*™Y). Replacing TY by [T}/K] + ny, ny by c/e, and K by €2T})/c?,
we conclude that the running time of the algorithm c-Makespan-Apx on
the large jobs oy = (t1,...,tp,) is bounded by O(1/e21).

To analyze the approximation ratio for the algorithm c-Makespan-A px
on the large jobs o = (t1, ..., tp,), we follow exactly the same analysis given
in the proof of Theorem 6.2.2 except that we replace n, the total number of
jobs in the input, by ny;, the total number of large jobs. This analysis gives

Apr(er) . Km
Opt(ay) — Opt(ay)’

where Apx(aq) is the makespan of the schedule constructed by the algorithm
c-Makespan-Apx for the large jobs oy, while Opt(ay) is the makespan of
an optimal schedule for the large jobs ;. By the inequalities n; < ¢/e and
Opt(ay) > T}/ ¢, we obtain

7Apx(0q) <l+e

Opt(ay)

Note that the optimal makespan for the large job set «; cannot be larger
than the optimal makespan for the original set a = (t1,...,t,) of jobs.
Therefore, if we let Opt(a) be the optimal makespan for the original job set
«, then we have

Apz(ag) < Opt(ay)(1 +€) < Opt(a)(1 + €) = Opt(a) + € - Opt(a).

Now we are ready to describe an approximation algorithm for the c-
MAKESPAN problem: given an instance o = (tq,...,t,) for c-MAKESPAN,
(1) construct, in time O(1/e?**~1), a schedule S; of makespan bounded by
Opt(a) + € - Opt(a) for the set o of large jobs; (2) assign the small jobs by
a greedy method, i.e., we assign each small job (in arbitrary order) to the
most lightly loaded processor. The assignment of the small jobs can be easily
done in time O(n) (note that the number ¢ of processors is a fixed constant
and that the number of small jobs is bounded by n). Thus, the running

6.4. WHICH PROBLEMS HAVE NO FPTAS? 165

time of this approximation algorithm is O(n + 1/e2¢~1). We claim that this
algorithm has an approximation ratio bounded by 1+ e. Let Apz(«) be the
makespan for the schedule constructed by this algorithm.

Suppose that processor d has the longest running time 7; = Apx(a).
Consider the last job t; assigned to processor d. If t; is a large job, then
the processor d is assigned no small jobs. Thus, T} is the makespan of the
scheduling &; for the large jobs a;. By the above analysis,

Apz(a) = Ty = Apz(oy) < Opt(a)(1 +¢€).

On the other hand, if ¢; is a small job, then ¢; < €Ty/c and by the greedy
method, all ¢ processors have running time at least Ty — ¢;. Therefore,
Yot > c(Ty—t;) and Opt(a) > Ty — t;. This gives (note Ty/c < Opt(«))

Apz(a) = Ty < Opt(a) +t; < Opt(a) + €Ip/c < Opt(a)(1 + €).

Therefore, in any case, the ratio Apz(«a)/Opt(«) is bounded by 1 + €.
We summarize the above discussion into the following theorem.

Theorem 6.3.5 There is a fully polynomial time approximation scheme for
c-MAKESPAN that, given an instance o and an € > 0, constructs, in time
O(n +1/e2=Y), a schedule for o of approzimation ratio bounded by 1 + €.

Note that the fully polynomial time approximation scheme for the c-
MAKESPAN problem in Theorem 6.3.5 runs in linear time when the error
bound € > 0 is a fixed constant.

The technique can also be applied to the KNAPSACK problem. With a
more complex analysis, it can be shown that there is a fully polynomial time
approximation scheme for the KNAPSACK problem that, given an instance
a of KNAPSACK and an € > 0, constructs, in time O(n/e?), a subset of «
whose size is bounded by B and value is at least Opt(«)/(1 + ¢).

Further improvements on the KNAPSACK problem are possible. For ex-
ample, with a more careful treatment of the large and small items, one can
develop a fully polynomial time approximation scheme for the KNAPSACK
problem of running time O(n/log(1/€) 4+ 1/€*). Interested readers are re-
ferred to [92] for detailed discussions.

6.4 Which problems have no FPTAS?

Fully polynomial time approximation schemes seem the best we can expect
for NP-hard optimization problems. An NP-hard optimization problem with

166 FPTAS

a fully polynomial time approximation scheme can be approximated to a
ratio 1 4+ € for any € > 0 within a reasonable computational time, which
is bounded by a polynomial of the input length and 1/e. We have seen
that several NP-hard optimization problems, such as KNAPSACK and c-
MAKESPAN, have fully polynomial time approximation schemes.

A natural question is whether every NP-hard optimization problem has
a fully polynomial time approximation scheme. If not, how do we determine
if or not a given NP-hard optimization problem has a fully polynomial time
approximation scheme. We discuss this isse in the current section.

Definition 6.4.1 Let Q = (Ig, Sq, fg,optg) be an optimization problem.
For each instance z € Ig, let Optg(x) = opto{fo(z,y)ly € So(z)}, ie.,
Optg(x) is the value of the objective function fg on instance x and an
optimal solution to x.

The following theorem provides a very convenient and sufficient condi-
tion for an NP-hard optimization problem to have no fully polynomial time
approximation schemes.

Theorem 6.4.1 Let Q = (Ig,Sq, fg,optq) be an optimization problem. If
there is a fized polynomial p such that for all instances x € Ig, Optg(x) is
bounded by p(|x|), then Q does not have a fully polynomial time approxima-
tion scheme unless Q) can be precisely solved in polynomial-time.

PROOF. Let A be an approximation algorithm that is a fully polynomial
time approximation scheme for the optimization problem). We show that
() can be precisely solved in polynomial time.

By the definition, we assume that the running time of A is bounded by
O(n¢/e?), where ¢ and d are constants. Moreover, by the condition given in
the theorem, we assume that Optg(z) < n”, where h is also a constant.

First consider the case optg = min. For an instance z € Ig, let A(x)
be the objective function value on the instance x and the solution to z
constructed by the algorithm A. Thus, we know that for any ¢ > 0, the
algorithm A constructs in time O(n°/e?) a solution with approximation ratio
A(z)/Opt(z) <1+ €. Also note that A(x)/Opt(z) > 1.

Now, let € = 1/n*1, then the algorithm A constructs a solution with
approximation ratio bounded by

A(x)
< < —_
= Opt(x) — L+ nht1l’

NoN-FPTAS 167

which gives
Opt(z) < A(z) < Opt(z) + Opt(z)/n"

Since both Opt(z) and A(z) are integers, and Opt(z) < n” implies that
Opt(z)/n"*1 is a number strictly less than 1, we conclude that

Opt(z) = A(x).

That is, the algorithm A actually constructs an optimal solution to the in-
stance z. Moreover, the running time of A is bounded by O(n¢/(1/n"*t1)4) =
O(ncthd+d) which is a polynomial of n.

The case that optg = max can be proved similarly. Note that in this
case, we should also have A(x) < n”. Thus, in time O(n¢/(1/n"*1)) =
O(ncthd+d) the algorithm A constructs a solution to 2 with the value A(x)
such that
Opt ()

A(x) — nh+1’

1<

which gives
A(z) < Opt(x) < A(x) + A(z) /a1

Now since A(x)/n"*1 < 1, we conclude Opt(z) = A(x). O

In particular, Theorem 6.4.1 says that if Optg(x) is bounded by a poly-
nomial of the input length |z| and @ is known to be NP-hard, then @ does
not have a fully polynomial time approximation scheme unless P = NP.

Theorem 6.4.1 is actually very powerful. Most NP-hard optimization
problems satisfy the condition of the theorem, thus we can derive directly
that these problems have no fully polynomial time approximation schemes.
We will give a few examples below to illustrate the power of Theorem 6.4.1.

Consider the following problem:

INDEPENDENT SET

Ig: the set of undirected graphs G = (V, E)

Sq: Sq(G) is the set of subsets S of V such that no two
vertices in S are adjacent

fo: fo(G,S) is equal to the number of vertices in S
optg: max

It is easy to apply Theorem 6.4.1 to show that INDEPENDENT SET has
no fully polynomial time approximation scheme. In fact, the value of the

168 FPTAS

objective function is bounded by the number of vertices in the input graph
G, which is certainly bounded by a polynomial of the input length |G|.

There are many other graph problems (actually, most graph problems)
like the INDEPENDENT SET problem that ask to optimize the size of a subset
of vertices or edges of the input graph satisfying certain given properties.
For all these problems, we can conclude directly from Theorem 6.4.1 that
they do not have a fully polynomial time approximation scheme unless they
can be solved precisely in polynomial time.

Let us consider another example of a problem for which no fully polyno-
mial time approximation scheme exists.

Bin PAcCKING
INPUT: (t1,t2,...,tn; B), all integers and ¢; < B for all

OUTPUT: a packing of the n objects of size t1, ..., t, into the
minimum number of bins of size B

It is pretty easy to prove that the NP-complete problem PARTITION is poly-
nomial time reducible to the BIN PACKING problem. Thus, the BIN PACK-
ING problem is NP-hard. The BIN PACKING problem can be interpreted as
a scheduling problem in which n jobs of processing time t¢1, ..., ¢, and the
makespan B (i.e., the deadline) are given, we are looking for a schedule of
the jobs so that the number of processors used in the schedule is minimized.
Since t; < B for all 7, we know that at most n bins are needed to pack the
n objects. Thus, Opt(z) < n for all input instances x of n objects. By
Theorem 6.4.1, we conclude directly that the BIN PACKING problem has no
fully polynomial time approximation scheme unless P = NP.

What if the condition of Theorem 6.4.1 does not hold? Can we still
derive a claim of nonexistence of a fully polynomial time approximation
scheme for an optimization problem? We study this question with the fa-
mous TRAVELING SALESMAN problem, and will derive general rules for this
kind of optimization problems.

TRAVELING SALESMAN

INPUT: a weighted complete graph G

OUTPUT: a simple cycle containing all vertices of G (such a
simple cycle is called a traveling salesman tour)
and the weight of the cycle is minimized

The TRAVELING SALESMAN problem obviously does not satisfy the con-
ditions of Theorem 6.4.1. For example, if all edges of the input graph G of n

NoN-FPTAS 169

vertices have weight of order ©(2"), then the weight of the minimum travel-
ing salesman tour is 2(n2") while a binary representation of the input graph
G has length bounded by O(n?) (note: the length of the binary representa-
tion of a number of order ©(2") is O(n) and G has O(n?) edges). Therefore,
Theorem 6.4.1 does not apply to the TRAVELING SALESMAN problem.

To show the non-approximability of the TRAVELING SALESMAN problem,
we consider a simpler version of the TRAVELING SALESMAN problem, which
is defined as follows.

TRAVELING SALESMAN 1-2

INPUT: a weighted complete graph G such that the weight of
each edge of G is either 1 or 2

OUTPUT: a traveling salesman tour of minimum weight
Lemma 6.4.2 The TRAVELING SALESMAN 1-2 problem is NP-hard.

Proor. We show that the well-known NP-complete problem HAMILTONIAN
CIRCUIT is polynomial time reducible to the TRAVELING SALESMAN 1-2
problem.

By the definition, for each undirected unweighted graph G of n vertices,
the HAMILTONIAN CIRCUIT problem asks if G contains a Hamiltonian cir-
cuit, i.e., a simple cycle of length n (for more discussion of the problem, the
reader is referred to [53]).

Given an instance G = (V, E) of the HAMILTONIAN CIRCUIT problem,
we add edges to G to make a weighted complete graph G’ = (V, EUE’) such
that for each edge e € E of G’ that is in the original graph G, we assign a
weight 1 and for each edge ¢’ € E’ of G’ that is not in the original graph
G, we assign a weight 2. The graph G’ is certainly an input instance of the
TRAVELING SALESMAN 1-2 problem. Now, let 7" be a minimum weighted
traveling salesman tour in G’. It is easy to verify that the weight of T is
equal to n if and only if the original graph G contains a Hamiltonian circuit.

This completes the proof. []

Theorem 6.4.1 can apply to the TRAVELING SALESMAN 1-2 problem.

Lemma 6.4.3 The TRAVELING SALESMAN 1-2 problem has no fully poly-
nomial time approximation scheme unless P = NP.

PRrROOF. Since the weight of a traveling salesman tour for an instance G of
TRAVELING SALESMAN 1-2 is at most 2n, assuming that G has n vertices,

170 FPTAS

the condition of Theorem 6.4.1 is satisfied by TRAVELING SALESMAN 1-2.
Now the theorem follows from Theorem 6.4.1 and Lemma 6.4.2. [

Now we are ready for a conclusion on the approximability of the TRAV-
ELING SALESMAN problem in its general form.

Theorem 6.4.4 The TRAVELING SALESMAN problem has no fully polyno-
mial time approximation scheme unless P = NP.

PROOF. Since each instance for the TRAVELING SALESMAN 1-2 problem is
also an instance for the TRAVELING SALESMAN problem, a fully polynomial
time approximation scheme for the TRAVELING SALESMAN problem should
also be a fully polynomial time approximation scheme for the TRAVELING
SALESMAN 1-2 problem. Now the theorem follows from Lemma 6.4.3. []

Theorem 6.4.4 illustrates a general technique for proving the nonexis-
tence of fully polynomial time approximation schemes for NP-hard opti-
mization problems when Theorem 6.4.1 is not applicable. We formulate it
as follows.

Let Q = (Ig,Sq, fq,optg) be an optimization problem. Recall that for
each instance x of @, length(x) is the length of a binary representation of
and max(x) is the largest number that appears in z.

Definition 6.4.2 Let Q = (Ig,Sg, fg,optg) be an optimization problem
and let ¢ be any function. A subproblem @' of @ is a Q4-subproblem if
Q" = (I, Sq, fq,optq) such that Ity C Ig and for all x € Ij, max(z) <
q(length(x)).

The following definition was first introduced and studied by Garey and
Johnson [53].

Definition 6.4.3 An optimization problem Q = (Ig, Sq, fg,optg) is NP-
hard in the strong sense if a QQ4-subproblem of () is NP-hard for some poly-
nomial q.

The concept of the strong NP-hardness can be naturally extended to
decision problems.

The TRAVELING SALESMAN problem is an example of problems that are
NP-hard in the strong sense, as shown by the following theorem.

NoN-FPTAS 171

Theorem 6.4.5 TRAVELING SALESMAN is NP-hard in the strong sense.

PRrROOF. If we denote by () the TRAVELING SALESMAN problem, then TRAV-
ELING SALESMAN 1-2 is a (Q2-subproblem of). By Lemma 6.4.2, TRAVEL-
ING SALESMAN 1-2 is NP-hard. Now by the above definition, TRAVELING
SALESMAN is NP-hard in the strong sense. []

If the condition max(z) < p(lengh(x)) for some fixed polynomial p is sat-
isfied for all instances x of an NP-hard optimization problem @, then @ is
NP-hard in the strong sense. Note that for many NP-hard optimization prob-
lems, in particular for many NP-hard optimization problems for which the
condition of Theorem 6.4.1 is satisfied, the condition max(z) < p(lengh(x))
is satisfied trivially. Thus, these NP-hard optimization problems are also
NP-hard in the strong sense. On the other hand, there are many other NP-
hard optimization problems that are not NP-hard in the strong sense. In
particular, we have the following theorem.

Theorem 6.4.6 If an optimization problem @) has a pseudo-polynomial
time algorithm, then Q) is not NP-hard in the strong sense unless P = NP.

PROOF. Suppose that) has a pseudo-polynomial time algorithm A
that on an instance x of @, constructs an optimal solution to x in time
O((length(x))¢(max(x))?) for some constants ¢ and d.

If @ is NP-hard in the strong sense, then there is a @Q,-subproblem Q'
of @ for some fixed polynomial p such that @’ is also NP-hard. However,
for all instances x of @', max(z) < p((length)(x)). Thus, the algorithm A
constructs an optimal solution for each instance z of Q' in time

O((length(x))(max(x))?) = O((length(z))(p(length(z)))),

which is bounded by a polynomial of length(x). Thus, the NP-hard opti-
mization problem @’ can be solved by the polynomial time algorithm A,
which implies P = NP. [

Theorem 6.4.6 combined with Theorems 6.1.3-6.1.4 gives the following:

Corollary 6.4.7 The KNAPSACK problem and the c-MAKESPAN problem
are not NP-hard in the strong sense unless P = NP.

The following theorem serves as a fundamental theorem for proving the
nonexistence of fully polynomial time approximation schemes for an NP-hard

172 FPTAS

optimization problem, in particular when Theorem 6.4.1 is not applicable.
A two-parameter function f(x,y) is a polynomial of x and y if f(z,y) is a
finite sum of the terms of form z¢y?, where ¢ and d are non-negative integers.

Theorem 6.4.8 Let (Q be an optimization problem that is NP-hard in the
strong sense. Suppose that for all instances x of Q, Optg(x) is bounded by a
polynomial of length(z) and max(xz). Then @ has no fully polynomial time
approrimation scheme unless P = NP.

PROOF. The proof of this theorem is very similar to the discussion we have
given for the TRAVELING SALESMAN problem.

Since) is NP-hard in the strong sense, a @Q4-subproblem @’ is NP-hard
for a polynomial q. Let Q' = (Ib,SQ, fo,optg). Then for each instance
x € I, we have max(z) < g(length(z)). Combining this condition with the
condition stated in the theorem that Optg(z) is bounded by a polynomial of
length(z) and max(x), we derive that Optg(z) is bounded by a polynomial
of length(x) for all instances x € I, é,g Now by Theorem 6.4.1, the problem Q’
has no fully polynomial time approximation scheme unless P = NP. Since
each instance of Q' is also an input instance of @, a fully polynomial time
approximation scheme for @) is also a fully polynomial time approximation
scheme for). Now the theorem follows. []

Remark. How common can Optg(z) be bounded by a polynomial of
length(x) and max(x)? In fact, this situation is fairly common because for
most optimization problems, the objective function value is defined through
additions or constant number of multiplications on the numbers appearing
in the instance x, which is certainly bounded by a polynomial of length(x)
and max(z). Of course, the condition is not universely true for general
optimization problems. For example, an objective function can be simply
defined to be the exponentiation of the sum of a subset of input values,
which cannot be bounded by any polynomial of length(x) and max(z).

In general, it is easy to verify the condition that Optg(z) is bounded by
a polynomial of length(z) and max(x). Therefore, in order to apply Theo-
rem 6.4.8, we need to prove the strong NP-hardness for a given optimization
problem Q. There are two general techniques serving for this purpose. The
first one is to pick an NP-complete problem L and show that L is polynomial
time reducible to a)4-subproblem of () for some polynomial g. Our poly-
nomial time reduction from HAMILTONIAN CIRCUIT to TRAVELING SALES-
MAN 1-2; which leads to the strong NP-hardness of the general TRAVELING
SALESMAN problem (Theorem 6.4.5), well illustrates this technique.

NoN-FPTAS 173

The second technique is to develop a polynomial time reduction from
a known strongly NP-hard optimization problem R to the given optimiza-
tion problem Q. For this, we also require that for each polynomial p, the
reduction transforms a R,-subproblem of R into a)4-subproblem of () for
some polynomial ¢g. We explain this technique by showing that the following
familiar optimization problem is NP-hard in the strong sense.

MAKESPAN

Ig: the set of tuples T' = {t1,...,tn;m}, where t; is the
processing time for the ¢th job and m is the number
of identical processors

Sg: Sq(T) is the set of partitions P = (T4, ...,T),) of the
numbers {t1,...,t,} into m parts

fo: fo(T,P) is equal to the processing time of the largest
subset in the partition P: fo(T,P) = maXi{theTi ti}

optg: min

To show that MAKESPAN is NP-hard in the strong sense, we reduce the
following strongly NP-hard (decision) problem to MAKESPAN.

THREE-PARTITION

INPUT: {t1,t2,...,t3m; B}, all integers, where B/4 <t; < B/2
for all i, and 2™ t; = mB

QUESTION: Can {t1,...,t3,} be partitioned into m sets, each
of size B?

The THREE-PARTITION problem has played a fundamental role in prov-
ing strong NP-hardness for many scheduling problems. For a proof that the
THREE-PARTITION problem is NP-hard in the strong sense, the reader is
referred to Garey and Johnson’s authoritative book [53], Section 4.2.2.

The reduction R from the THREE-PARTITION problem to the MAKESPAN
problem is straightforward: given an instance o = {t1,t2,...,t3y; B} of
THREE-PARTITION, we construct an instance = {t1,t2,...,t3m;m} for
MAKESPAN. It is clear that the optimal makespan for the instance [for
MAKESPAN is B if and only if « is a yes-instance for THREE-PARTITION.
Note that the input length length(/3) is at least 1/2 times the input length
length(a) (in fact, length(«) and length(f3) are roughly equal), and that
max(3) is bounded by max(a) + length(c).

Since the THREE-PARTITION problem is NP-hard in the strong sense,
there is a polynomial ¢ such that a (THREE-PARTITION),-subproblem R’

174 FPTAS

of THREE-PARTITION is NP-hard. Let @’ be a subproblem of MAKESPAN
such that Q' consists of instances of the form {t1,ta,...,t3m;m}, where

3m ¢, = mB and {t1,to,...,t3,; B} is an instance of R'. Therefore, the
polynomial time reduction R reduces the problem R’ to the problem Q’.
Therefore, the problem @’ is NP-hard. Moreover, for each instance o of R/,
we have max(a) < g(length(«)). Now for each instance 8 of Q' that is the
image of an instance a of R’ under the reduction R, we have

max([3) max(«) + length(a) < g(length(a)) + length(«)

<
< ¢q(2-length(pB)) + 2 - length(5).

Therefore, the NP-hard problem @’ is a (MAKESPAN),-subproblem of the
MAKESPAN problem, where p is a polynomial. This proves that the
MAKESPAN problem is NP-hard in the strong sense.

It is trivial to verify that the other conditions of Theorem 6.4.8 are
satisfied by the MAKESPAN problem. Thus,

Theorem 6.4.9 The MAKESPAN problem is NP-hard in the strong sense.
Moreover, the MAKESPAN problem has no fully polynomial time approzima-
tion scheme unless P = NP.

We should point out that the c-MAKESPAN problem, i.e., the MAKESPAN
problem with the number of processors being fixed by a constant ¢, has a
fully polynomial time approximation scheme (Corollary 6.2.3). However, if
the number m of processors is given as a variable in the input, then the
problem becomes NP-hard in the strong sense and has no fully polynomial
time approximation scheme.

