Chapter 5

Which Problems Are Not
Tractable?

We have seen a number of optimization problems. Some of them are rel-
atively simple, such as MINIMUM SPANNING TREE. Solving each of these
optimization problems in general requires a single (maybe smart) idea which
can be implemented by an efficient algorithm of a couple of dozens of lines.
Some other optimization problems, on the other hand, are much more non-
trivial. Examples of this kind of optimization problems we have seen include
MaxiMuM FrLow, Graph Matching, and LINEAR PROGRAMMING. Solving
each of these harder problems efficiently requires deep understanding and
thorough analysis on structures and properties of the problem. A polynomial
time algorithm for the problem is derived based on such a highly nontrivial
structural investigation plus maybe a number of subtle algorithmic tech-
niques. Moreover, it seems each of these problems requires a different set of
techniques and there is no powerful universal techniques that can be applied
to all of these problems.

This makes the task of solving an optimization problem very unpre-
dictable. Suppose that you have an optimization problem and want to de-
velop an efficient algorithm for it. If you are lucky and the problem is rela-
tively easy, then you solve the problem in a couple of days, or in a couple of
weeks. If the problem is as hard as, for example, the LINEAR PROGRAMMING
problem, but you work very hard and are also lucky enough to find a correct
approach, you may be able to develop an efficient algorithm for the problem
in several months or even in several years. Now what if all above are not the
case: you work hard, you are smart, but the problem still remains unsolved
after your enormous effort? You may start suspecting whether there even

125

126 NONTRACTABLE PROBLEMS

exists an efficient algorithm at all for you problem. Therefore, you may start
trying a proof to show that your problem is intrinsically difficult.

However, you may quickly realize that proving the problem’s intrinsic
difficulty is just as hard as, or even harder than, finding an efficient algorithm
for the problem — there are simply very few known techniques available
for proving the intrinsic difficulties for optimization problems. For example,
suppose that your problem is the TRAVELING SALESMAN problem, for which
no body has been able to develop an efficient algorithm. Experts would tell
you that also nobody in the world has been able to prove that TRAVELING
SALESMAN is even harder than MINIMUM SPANNING TREE.

Fortunately, an extremely useful system, the NP-hardness theory, has
been developed. Although this system does not provide you with a formal
proof that your problem is hard, it provides a strong evidence that your
problem is hard. Essentially, the NP-hardness theory has collected several
hundred problems that people believe to be hard, and provides systematic
techniques to let you show that your own problem also belongs to this cate-
gory so it is not easier than any of these hundreds of hard problems. There-
fore, not just you cannot develop an efficient algorithm for the problem,
nobody in the world so far can develop such an algorithm, either.

In this chapter, we formally introduce the concept of NP-hardness for
optimization problems. We provide enough evidence to show that if an op-
timization problem is NP-hard, then it should be very hard. General tech-
niques for proving NP-hardness for optimization problems are introduced
with concrete examples.

Proving the NP-hardness of an optimization problem is just the begin-
ning of work on the problem. It provides useful information that shows
solving the problem precisely is a very ambitious, maybe too ambitious, at-
tempt. However, this does not obviate our need for solving the problem
if the problem is of practical importance. Therefore, approximation algo-
rithms for NP-hard optimization problems have been naturally introduced.
In the last section of this chapter, we will formally introduce the concept
of approximation algorithms and the measures for evaluation of approxima-
tion algorithms. The rest of this book will be concentrating on the study of
approximation algorithms for NP-hard optimization problems.

5.1 NP-hard optimization problems

Recall that a decision problem @ is NP-hard if every problem in the class
NP is polynomial-time many-one reducible to Q). Therefore, if an NP-hard

NP-HARDNESS 127

decision problem () can be solved in polynomial time, then all problems in
NP are solvable in polynomial time, thus P = NP. According to our working
conjecture that P £ NP, which is commonly believed, the NP-hardness of
a problem (is a strong evidence that the problem () cannot be solved in
polynomial time.

The polynomial-time reductions and the NP-hardness can be extended
to optimization problems, as given by the following discussions.

Definition 5.1.1 An decision problem D is polynomial-time reducible to an
optimization problem @ = (Ig,Sg, fq,optq) if there are two polynomial-
time computable functions h and g such that

(1) for an instance z of the decision problem D, h(z) is an instance of the
optimization problem (), and

(2) given an optimal solution y to the instance h(z) of Q, g(x,h(z),y) =1
if and only if x is a yes-instance for the decision problem D.

As an example, we show that the decision problem PARTITION is poly-
nomial time reducible to the optimization problem c-MAKESPAN with ¢ > 2,
which is a restricted version of the MAKESPAN problem.

Recall that the PARTITION problem is defined as follows.

PARTITION

Given a set of integers S = {aji,as,...,a,}, can the set S be
partitioned into two disjoint sets S7 and So of equal size, that is,
S=51US8,, S1NSy = @, and Zaiesl a; = ZajESQ a; ?

For a given positive integer ¢, the c-MAKESPAN problem is defined by

c-MAKESPAN = (IQ, Saq. fo, Oth)

Ig: the set of tuples T'= {t1,...,t,}, where ¢; is an integer
that is the processing time for the i-th job

Sg: Sq(T) is the set of partitions P = (17, ...,T¢) of the

integers {t1,...,t,} in T into ¢ disjoint parts
for fo(T,P) = maxi{} er, t;}
oplg: min

Therefore, the c-MAKESPAN problem is the MAKESPAN problem in which
the number of processors is a fixed constant c.

Lemma 5.1.1 The PARTITION problem is polynomial-time reducible to the
c-MAKESPAN problem, for any integer ¢ > 2.

128 NONTRACTABLE PROBLEMS

Proor. The functions h and g for the polynomial-time reduction from
PARTITION to c-MAKESPAN are described as follows.

Let a = (x1,...,zy) be an instance of PARTITION. We define h(a) =
(tiy o ytnytnst, .oy tnge—2), where t; = x; for 1 < i <mn, and tpq41 =+ =
tnte—2 = [0, xi)/2]. Clearly, h(«) is an instance of c-MAKESPAN and
can be constructed from « in polynomial time.

Now for any optimal solution P = (T1,...,T,) to the instance h(«a) for
the c-MAKESPAN problem, the function g(«, h(a), P) = 1 if and only if

n

mzax{ Z tj} = (Z x;)/2.

tjETi i=1

It is easy to see that if « is a yes-instance for the PARTITION problem, then

every optimal schedule P on h(«) splits the numbers z1, .. ., 2, into two sets
S1 and Sy of equal size (> ;- x;)/2, assigns each of the sets to a processor,
and assigns each of the jobs of time ¢;, j =n+1,...,n+c— 2, to a distinct

processor. The schedule P has makespan (}i-; x;)/2 = [(; zi)/2].
On the other hand, if « is a no-instance for the PARTITION problem, then
the schedule P on h(«) always has makespan larger than (>, z;)/2. In
particular, if > 7' | z; is an odd number, then any schedule on h(a) has
makespan at least [(3°1; 2;)/2] > (i z4i)/2.

Therefore, the function value g(a, h(a), P) = 1 if and only if « is a yes-
instance for the PARTITION problem. Moreover, the function ¢ is clearly
computable in polynomial time. []

A polynomial-time reduction from a decision problem D to an optimiza-
tion problem @ implies that the problem D cannot be much harder than
the problem @, in the following sense.

Lemma 5.1.2 Suppose that a decision problem D is polynomial-time re-
ducible to an optimization problem Q. If Q) is solvable in polynomial time,
then so is D.

PRrROOF. Let h and g be the two polynomial-time computable functions for
the reduction from D to Q). Let A be a polynomial time algorithm that
solves the optimization problem). Now a polynomial-time algorithm for
the decision problem D can be easily derived as follows: given an instance
x for D, we first construct the instance h(z) for @Q; then apply the algo-
rithm A to find an optimal solution y for h(z); now x is a yes-instance for

NP-HARDNESS 129

D if and only if g(z,h(x),y) = 1. By our assumption, all h(z), y, and
g(z,h(x),y) are polynomial-time computable (in particular note that since
h(z) is computable in polynomial time , the length |h(z)| of h(x) is bounded
by a polynomial of |z|, and that since A runs in polynomial time, the length
ly| of y is bounded by a polynomial of |h(z)| thus by a polynomial of |z|).
Thus, this algorithm runs in polynomial time and correctly decides if = is a
yes-instance for the decision problem D. [

The polynomial-time reduction from decision problems to optimization
problems extends the concept of NP-hardness to optimization problems.

Definition 5.1.2 An optimization problem @) is NP-hard if there is an NP-
hard decision problem D that is polynomial-time reducible to Q.

Let @ be an NP-hard optimization problem such that an NP-hard de-
cision problem D is polynomial-time reducible to Q. If @ is solvable in
polynomial time, then by Lemma 5.1.2, the NP-hard decision problem @ is
solvable in polynomial time, which implies consequently, by Definition 1.4.5
and Lemma 1.4.1, that P = NP, violating our Working Conjecture in NP-
completeness Theory (see Section 1.4). Therefor, the NP-hardness of an
optimization problem () provides a very strong evidence that the problem
@ is intractable, i.e., not solvable in polynomial time.

Since the PARTITION problem is known to be NP-hard, Lemma 5.1.1
gives immediately

Theorem 5.1.3 The c-MAKESPAN problem is an NP-hard optimization
problem for any integer ¢ > 2.

Many NP-hard decision problems originate from optimization problems.
Therefore, the polynomial-time reductions from these decision problems to
the corresponding optimization problems are straightforward. Consequently,
the NP-hardness of these optimization problems follow directly from the
NP-hardness of the corresponding decision problems. For example, the NP-
hardness for the decision versions of the problems TRAVELING SALESMAN,
GRAPH COLORING, PLANAR GRAPH INDEP-SET, and PLANAR GRAPH
VERTEX-COVER (see Section 1.4) implies directly the NP-hardness for the
optimization versions of the same problems (see Appendix D for precise
definitions), respectively.

We give another example for NP-hard optimization problems, whose NP-
hardness is from a not so obvious polynomial time reduction. Suppose that
in the LINEAR PROGRAMMING problem, we require that we work only on

130 NONTRACTABLE PROBLEMS

the domain of integer numbers, then we get the INTEGER LINEAR PRO-
GRAMMING problem, or for short the INTEGER LP problem. More formally,
each instance of the INTEGER LP problem is a triple « = (b, ¢, A), where
for some integers n and m, b is an m-dimensional vector of integer numbers,
c is an n-dimensional vector of integer numbers, and A is an m X n matrix of
integer numbers. A solution x to the instance « is an n-dimensional vector
of integer numbers such that Ax = b and x > 0, and a solution x is optimal
if it minimizes the inner product ¢’x. This gives the standard form for the
INTEGER LP problem.

It might seem that the INTEGER LP problem is easier than the general
LINEAR PROGRAMMING problem since we are working on simpler numbers.
This intuition is, however, not true. In fact, the INTEGER LP problem
is computationally much harder than the general LINEAR PROGRAMMING
problem. This may be seen from the following fact: the set of solutions
to an instance a = (b, ¢, A) of the INTEGER LP problem, defined by the
constraints Ax = b and x > 0, is no longer a convex set in the n-dimensional
Euclidean space £". It instead consists of discrete points in £™. Therefore,
greedy algorithms based on local search, such as the simplex method, do not
seem to work any more.

The hardness of the INTEGER LP problem is formally given as follows.

Theorem 5.1.4 The optimization problem INTEGER LP is NP-hard.

PRrROOF. We show that the well known NP-complete problem, the SATISFI-
ABILITY problem, is polynomial-time reducible to INTEGER LP.

Formally, an instance « of the SATISFIABILITY problem is given by a
Boolean expression in conjunctive normal form (CNF):

a=CyACyA ... ACp (5.1)

where each C; (called a clause) is an OR of Boolean literals. The question is
whether there is a Boolean assignment to the Boolean variables x1, s, ...,
T, in « that makes the expression TRUE.

We show how a polynomial-time computable function h converts the
instance a in (5.1) of the SATISFIABILITY problem into an instance h(«) for
the INTEGER LP problem.

Suppose that the clause C; in « is

C; = (.:Cil V-V, VTj \/'--\/fjt)
We then construct a linear constraint

wil+"'+xis+(1_xj1)+"'+(1_xjt)ZZ (5-2)

NP-HARDNESS 131

where z is a new variable. Moreover, for each Boolean variable z; in a, we
have the constraints
z; >0 and ;<1 (5.3)

Thus, the integer variables x; can take only the values 0 and 1. We let
x; = 1 simulate the assignment x; = TRUE and let z; = 0 simulate the
assignment z; = FALSE. Therefore, the clause C; is TRUE under a TRUE-
FALSE assignment to the Boolean variables x1, ..., x, if and only if

l‘il+"‘+$is+(1—$j1)+"'+(1—$]‘t)Zl

under the corresponding 1-0 assignment to the integer variables xy, - - -, x,.

Finally, our objective function is to maximize the variable value z.

So our instance for the INTEGER LP problem consists of the constraints
(5.2) corresponding to all clauses C; in « and all constraints in (5.3). Let this
instance be B,.! Now we define a function h such that given an instance
a in (5.1) for the SATISFIABILITY problem, h(a) = B4, where [, is the
instance constructed as above for the INTEGER LP problem. It is clear that
the function h is computable in polynomial time.

Now note that if an optimal solution x to ,, which is a 1-0 assignment
to the variables x1, ..., x,, makes the objective function have value z > 0,
then we have (note that z is an integer)

xil+"'+l'is+(1_$.7'1)+"'+(1_$jt)Zzzl

for all linear constraints corresponding to the clauses of the instance a.
In consequence, the corresponding TRUE-FALSE assignment to the Boolean
variables x1, ..., x, makes all clauses in « TRUE. That is, the instance «
is a yes-instance for the SATISFIABILITY problem. On the other hand, if
the optimal solution to 5, has objective function value z < 0, then no 1-0
assignment to 1, ..., T, can make all linear constraints satisfy

T e w (L) e (L) 21

That is, no TRUE-FALSE assignment to zi, ..., £, can satisfy all clauses
in a. In other words, « is a no-instance to the SATISFIABILITY problem.
Therefore, with the instances o and S, and an optimal solution to f,, it
can be trivially decided whether « is a yes-instance for SATISFIABILITY.

1To follow the definitions strictly, we should also convert §, into the standard form.
However, since the discussion based on [, is more convenient and the translation of S,
to the standard form is straightforward, we assume that our instance for the INTEGER LP
problem is just Ba.

132 NONTRACTABLE PROBLEMS

This proves that the NP-complete problem SATISFIABILITY is polynomial
time reducible to the INTEGER LP problem. Consequently, the INTEGER
LP problem is NP-hard. [

The general LINEAR PROGRAMMING problem can be solved in polyno-
mial time [79]. Theorem 5.1.4 shows that the INTEGER LP problem is much
harder than the general LINEAR PROGRAMMING problem. Our later study
will show that INTEGER LP is actually one of the hardest NP-optimization
problems.

The NP-hardness of an optimization problem can also be derived from
the NP-hardness of other optimization problems. For this, we first need to
introduce a new reduction.

Definition 5.1.3 An optimization problem ()1 is polynomial-time reducible
(or p-reducible for short) to an optimization problem Q9 if there are two
polynomial-time computable functions y (the instance function) and v (the
solution function) such that
(1) for any instance x1 of @1, x(x1) is an instance of (Q2; and
(2) for any solution y, to the instance x(x1), ¥ (z1, x(x1),y2) is a
solution to z; such that yy is an optimal solution to x(x7) if
and only if ¥ (21, x(21), y2) is an optimal solution to .

The following theorem follows directly from the definition.

Lemma 5.1.5 If an optimization problem Q1 is p-reducible to an optimiza-
tion problem @2, and if Qo is solvable in polynomial time, then so is Q1.

PRrROOF. Suppose that @) is p-reducible to ()2 via the instance function x
and the solution function 1, both computable in polynomial time. Then an
optimal solution to an instance x of Q1 can be obtained from ¥ (zx, x (), y2),
where ys is an optimal solution to x(z) and is supposed to be constructible
in polynomial time from the instance x(x). [l

Lemma 5.1.6 Suppose that an optimization problem Q1 is p-reducible to
an optimization problem Qo. If Q1 is NP-hard, then so is Q3.

PROOF. Suppose that ()1 is p-reducible to Q5 via the instance function x
and the solution function), both computable in polynomial time. Since
(@1 is NP-hard, there is an NP-hard decision problem D that is polynomial-
time reducible to (J1, via two polynomial-time computable functions h and
g (see Definition 5.1.1). Define two new functions h; and g¢; as follows: for

NP-HARDNESS 133

any instance x of D, hi(x) = x(h(z)); and for any solution y to hi(z),
g1(z, hi(z),y) = g(x, h(z), ¥ (h(x),h1(x),y)). It is not hard to verify by the
definitions that for any instance z of D, hi(z) is an instance of (2, and
g1(z,hi(z),y) = 1 if and only if y is an optimal solution to @2 and = is a
yes-instance of D. Moreover, the functions hy and gy are clearly polynomial-
time computable.

This proves that the NP-hard decision problem D is polynomial-time
reducible to the optimization problem J2. Consequently, the optimization
problem Q2 is NP-hard. [l

As another example, we show that the KNAPSACK problem is NP-hard.
The KNAPSACK problem is formally defined as follows.

KNAPSACK = (Ig, S, fg,optg)

Ig ={(s1,...,8n;01,...,Up; B) | s;,vj, B are integers}
So({s1,.- .y 81, .., B)) ={S C{L,...,n} | Xcqsi < B}
fo((s1,...,8niv1, ..., 00 B),S) =3 icq i

optg = max

An “application” of the KNAPSACK problem can be described as follows.
A thief robbing a store finds n items. The i-th item is worth v; dollars and
weighs s; pounds. The thief wants to take as valuable a load as possible,
but he can carry at most B pounds in his knapsack. Now the thief wants to
decide what items he should take. Fortunately, the problem is NP-hard, as
we prove in the following theorem.

Theorem 5.1.7 The KNAPSACK problem is NP-hard.

Proor. By Theorem 5.1.3, the 2-MAKESPAN problem is NP-hard. Thus, by
Lemma 5.1.6, it suffices to show that 2-MAKESPAN is p-reducible to KNAP-
SACK. The instance function y and the solution function v are described as
follows.

Given an instance « = (t1,...,t,) of 2-MAKESPAN, x(«) is the instance
x(a) = (t1,...,tp;t1,...,tn; B) of KNAPSACK, where B = [> 1, ¢;/2].
Given any solution S to x(«), which is a subset of {¢1,...,¢,} satisfying
> t,esti < B, the value of ¢(a, x(), S) is the partition (5, {t1,...,tn} —5)
of the set {t1,...,t,}, which assigns all the jobs in S to Processor-1, and all
other jobs to Processor-2. Since an optimal solution S to x(«) is a subset
of {t1,...,t,} that maximizes the value the gtj subject to the constraint
2esty < [2i1ti/2], the solution S must give the “most even” splitting

134 NONTRACTABLE PROBLEMS

(S, {t1,...,tn} — S) for the set {t1,...,t,}. Therefore, S is an optimal so-
lution to the instance x(«) of KNAPSACK if and only if (S, {t1,...,tn} —9)
is an optimal solution to the instance « of 2-MAKESPAN. Moreover, the
instance function y and the solution function v are clearly computable in
polynomial time. This completes the proof. [l

Some optimization problems have subproblems that are of independent
interest. Moreover, sometimes the complexity of a subproblem may help the
study of the complexity of the original problem.

Definition 5.1.4 Let Q = (Ig, Sg, fq,optg) be an optimization problem.
An optimization problem Q' is a subproblem of Q if Q" = (I, Sq, fq, optq),
where Iég C Ip.

Note that for an optimization problem @’ to be a subproblem of another
optimization problem (), we not only require that the instance set Iég of
Q' be a subset of the instance set Ig of @, but also that the solution set
function Sg, the objective function fg, and the optimization type optg be
all identical for both problems. These requirements are important when
we study the computational complexity of a problem and its subproblems.
For example, every instance of the INTEGER LP problem is an instance of
the LINEAR PROGRAMMING problem. However, the INTEGER LP problem
is not a subproblem of the LINEAR PROGRAMMING problem since for each
instance « of the INTEGER LP problem, the solution set for a as an instance
for the INTEGER LP problem is not identical to the solution set for « as an
instance for the LINEAR PROGRAMMING problem.

Theorem 5.1.8 Let (Q be an optimization problem and Q' be a subproblem
of Q. If the subproblem Q' is NP-hard, then so is the problem Q.

PROOF. Since the subproblem @’ is NP-hard, there is an NP-hard decision
problem D that is polynomial-time reducible to the optimization problem Q'
via polynomial-time computable functions h and g. It is straightforward to
verify that the functions h and g also serve for a polynomial time reduction
from the NP-hard decision problem D to the optimization problem (). Thus,
the optimization problem (@) is also NP-hard. [

For example, consider the PLANAR GRAPH INDEP-SET problem (given
a planar graph G, find the largest subset S of vertices in G such that no
two vertices in S are adjacent) and the INDEPENDENT SET problem (given a
graph G, find the largest subset S of vertices in G such that no two vertices

APPROXIMATION 135

in S are adjacent). Clearly, PLANAR GRAPH INDEP-SET is a subproblem of
INDEPENDENT SET. Since PLANAR GRAPH INDEP-SET is NP-hard (see the
remark following Theorem 5.1.3), we conclude that INDEPENDENT SET is
also NP-hard. Similarly, from the NP-hardness of PLANAR GRAPH VERTEX-
COVER (given a planar graph G, find a minimum set S of vertices such that
every edge in G has at least one end in S), we derive the NP-hardness for
the VERTEX COVER problem (given a graph G, find a minimum set S of
vertices such that every edge in G has at least one end in S).

Corollary 5.1.9 The INDEPENDENT SET problem and the VERTEX COVER
problem are NP-hard.

5.2 Polynomial time approximation

We have established a powerful system, the NP-hardness theory, by which we
can show that a large number of optimization problems are computationally
intractable, based on our believing that P # NP. However, this does not
obviate the need for solving these hard problems — they are of obvious
practical importance. Knowing the computational difficulty of the problems,
one possible approach is that we could relax the requirement that we always
find the optimal solution. In practice, a near-optimal solution will work fine
in many cases. Of course, we expect that the algorithms for finding the
near-optimal solutions be efficient.

Definition 5.2.1 An algorithm A is an approzimation algorithm for an
optimization problem Q = (Ig, Sq, fg,optq), if on any instance x € Ig, the
algorithm A produces a solution y € Sg(x).

Note that here we have put no requirement on the approximation quality
for an approximation algorithm. Thus, an algorithm that always produces
a “trivial” solution for a given instance is an approximation algorithm. For
example, an algorithm that always returns the empty set is an approxima-
tion algorithm for the KNAPSACK problem. To measure the quality of an
approximation algorithm, we introduce the following concept.

Definition 5.2.2 An approximation algorithm A for an optimization prob-
lem Q = (Ig,Sq, fo,optg) has an approximation ratio r(n), if on each in-
stance x € I, the solution y produced by the algorithm A satisfies

136 NONTRACTABLE PROBLEMS

% <r(lz]) if optg = max
Jg;f(’j)) <r(|z|) if optg = min

where Opt(x) is defined to be max{f(z,y) | y € Sq(z)} if optg = max and
to be min{f(z,y) | y € Sg(x)} if optg = min.

Remark 5.2.3 By the definition, an approximation ratio is at least as large
as 1. The closer the approximation ratio to 1, the better the approximation
quality of the approximation algorithm.

Definition 5.2.4 An optimization problem can be polynomial-time approz-
imated to a ratio r(n) if it has a polynomial-time approximation algorithm
whose approximation ratio is bounded by 7(n).

As an example, let we consider the general MAKESPAN problem:
MAKESPAN

Ig: the set of tuples T' = {t1, ..., ty; m}, where ¢; is the process-
ing time for the i-th job and m is the number of identical
processors

Sq: So(T) is the set of partitions P = (11, ..., Ty,) of the num-
bers t1,...,t, into m parts

fo: fo(T,P)is equal to the processing time of the largest subset
in the partition P, that is, fo(7T, P) = maxi{theTi ti}

optg: min

A simple approximation algorithm is based on the greedy method: to
minimize the makespan, we always assign the next job to the processor that
has the lightest load. This algorithm is due to R. Graham [59], and is given
in Figure 5.1.

Using a data structure such as a 2-3 tree to organize the m processors
using their loads as the keys, we can find the lightest loaded processor and
update its load in the data structure in time O(logm). With this imple-
mentation, the algorithm Graham-Schedule runs in time O(nlogm).

We study the approximation ratio of the algorithm Graham-Schedule.

APPROXIMATION 137

Algorithm. Graham-Schedule
Input: I = (t1,...,tn;m), all integers
Output: a schedule of the n jobs of processing time ¢1,...,t, on m identical processors

1. for (i =1 to n) do assign ¢; to the processor with the lightest load;

Figure 5.1: Graham-Schedule

Theorem 5.2.1 The algorithm Graham-Schedule for the MAKESPAN
problem has approzimation ratio bounded by 2 — (1/m).

PrROOF. Let o« = (t1,...,tn;m) be an input instance for the MAKESPAN
problem. Suppose that the algorithm Graham-Schedule constructs a
schedule S for o with makespan 7. Let P; be a processor that has the
execution time 1" assigned by the scheduling S, i.e., P; finishes its work the
latest under the schedule S.

If the processor P; is assigned only one job, then the job has processing
time T, and any schedule on « has makespan at least T'. In this case, the
schedule S is an optimal schedule with approximation ratio 1.

So suppose that the processor P is assigned at least two jobs. Let the
last job Jp assigned to the processor P} have processing time tg. We have
T —top > 0. By our strategy, at the time the job Jy is about to be assigned
to the processor P, all processors have load at least 1" — tg. This gives:

n
St >m(T —to) +to = mT — (m — L)to.
=1

Thus
Yiciti+(m—1te it N m—1

m m m

T<

to.

Observe that the makespan Opt(a) of an optimal schedule on the instance
a is at least (374 t;) /m, and at least tg. We conclude

-1
T < Opt(a) + mTOpt(oz).

This gives
T <9 1
Opt(a) — m’

and completes the proof. []

138 NONTRACTABLE PROBLEMS

Let @ be an optimization problem. Suppose that we have developed a
polynomial-time approximation algorithm A for () and have derived that
the approximation ratio of the algorithm A is bounded by rg. Three natural
questions regarding the approximation algorithm A are as follows.

1. Is the approximation ratio rg tight for the algorithm A? That is,
is there another r < rg such that the approximation ratio of the
algorithm A is bounded by 7/?

2. Is the approximation ratio rg tight for the problem @7 That is, is
there another polynomial-time approximation algorithm A’ of approx-
imation ratio 7’ for the problem @ such that r’ < r¢?

3. Can a faster approximation algorithm A’ be constructed for the prob-
lem @ with approximation ratio at least as good as rg?

To answer the first question, either we need to develop smarter analysis
techniques that derive a smaller approximation ratio bound 7’ < r¢ for the
algorithm A, or we construct input instances for the problem () and show
that on these input instances, the approximation ratio of the algorithm A
can be arbitrarily close to r (thus 7 is a tight ratio for the algorithm A).

To answer the second question, either we need to develop a new (and
smarter) approximation algorithm for () with a smaller approximation ratio,
or we need to develop a formal proof that no polynomial-time approxima-
tion algorithm for the problem () can have approximation ratio smaller than
ro. Both directions could be very difficult. Developing a new approximation
algorithm with a better approximation ratio may require a deeper under-
standing of the problem) and new analysis techniques. On the other hand,
only for very few optimization problems, a tight approximation ratio of poly-
nomial time approximation algorithms has been derived. In general, it has
been very little understood how to prove that to achieve certain approxima-
tion ratio would require more than polynomial time.

The third question is more practically oriented. Most approximation
algorithms are simple thus their running time is bounded by a low degree
polynomial such as O(n?) and O(n3). However, there are certain optimiza-
tion problems for which the running time of the approximation algorithms
is a very high degree polynomial such as n?’. These algorithms may pro-
vide a very good approximation ratio for the problems thus are of great
theoretical interests. On the other hand, however, these algorithms seem
impractical. Therefore, to keep the same approximation ratio but improve
the running time of these algorithms is highly demanded in the computer
implementations.

APPROXIMATION 139

In the following, we will use the approximation algorithm Graham-
Schedule for the MAKESPAN problem as an example to illustrate these three
aspects regarding approximation algorithms for optimization problems.

Lemma 5.2.2 The approzimation ratio 2 — (1/m) for the approximation
algorithm Graham-Schedule is tight.

PrOOF. To prove the lemma, we consider the following input instance for

MAKESPAN: « = (tq,to,...,tp;m), wheren =m(m—1)+1,t; =tg =--- =
tn—1 =1, and t, = m. The algorithm Graham-Schedule assigns the first
n—1=m(m —1) jobs t1,...,t,—1 to the m processors, each then has a

load m — 1. Then the algorithm assigns the job ¢, to the first processor,
which then has a load 2m — 1. Therefore, the algorithm Graham-Schedule
results in a schedule of the n jobs on m processors with makespan 2m — 1.

On the other hand, the optimal schedule for the instance « is to assign
the job t,, to the first processor and then assign the rest n — 1 =m(m — 1)
jobs to the rest m — 1 processors. By this schedule, each processor has load
exactly m. Thus, the optimal schedule has makespan m.

Thus, on this particular instance «, the approximation ratio of the al-
gorithm Graham-Schedule is (2m — 1)/m = 2 — (1/m). This proves that
2 — (1/m) is a tight bound for the approximation ratio of the algorithm
Graham-Schedule. []

Now we consider the second question: can we have a polynomial-time
approximation algorithm for the MAKESPAN problem that has an approxi-
mation ratio better than 2—(1/m)? By looking at the instance a constructed
in the proof of Lemma 5.2.2, we should realize that the bad performance
for the algorithm Graham-Schedule occurs in the situation where we first
assign small jobs, which somehow gives a balanced assignment among the
processors, while a latter large job may simply break the balance by in-
creasing the load of one processor significantly while unchanging the load
of the other processors. This then results in a very unbalanced assignment
among the processors thus worsens the makespan. To avoid this situation,
we pre-sort the jobs, in a non-increasing order of their processing time, be-
fore we apply the algorithm Graham-Schedule. We call this the Modified
Graham-Schedule algorithm.

Theorem 5.2.3 The Modified Graham-Schedule algorithm for the
MAKESPAN problem has an approximation ratio bounded by 4/3.

PROOF. According to the algorithm, after the pre-sorting, we have the

140 NONTRACTABLE PROBLEMS

instance satisfying ¢ty > to > --- > t,, which is an input instance
a = (t1,...,tp;m) to the algorithm Graham-Schedule. We analyze the
approximation ratio of the algorithm.

Let Ty be the makespan of an optimal schedule on the instance « of
the MAKESPAN problem. Suppose k is the first index such that when the
algorithm assigns the job ¢; to a processor, the makespan of the schedule
exceeds Tp. We first prove that ¢ < Tp/3.

Suppose that t; > Tp/3. Thus, we have t; > Ty/3 for all i < k. Consider
the moment when the algorithm Modified Graham-Schedule has made
assignment on the jobs ¢1,...,tx_1. By our assumption, the makespan of
this assignment on the jobs ¢1,...,%x_1 is not larger than Ty. Since each
job t; with ¢ < k is larger than 7j/3, this assignment has at most two of
these k —1 jobs in each processor. Without loss of generality, we can assume
that each P; of the first h processors is assigned a single job t;, 1 < i < h,
while each of the rest m — h processors is assigned exactly two jobs from
th—i—la ce 7tk—1' Thus,

k—h—1=2(m—h) (5.4)

and by the assumption on the index k&, for each ¢ < h, we have t; + tx > Tp.
Now consider any optimal schedule Sy on the instance a. The makespan
of Sy is Tp. If a processor is assigned a job t; by &g with ¢ < A, then the
processor cannot be assigned any other jobs in tq,...,t;r by Sy since tj is
the smallest among t1,...,t; and t; + tx > Ty. Moreover, no processor
is assigned more than two jobs in tj11,...,%; since each of these jobs has
processing time larger than 7/3. Therefore, we need at least h + [(k —
h)/2] = h+ (m —h+ 1) = m+ 1 processors for the jobs t1,...,t; in order
to keep the makespan larger than Ty (note here we have used the equality
(5.4)). This contradicts the fact that Sp is an optimal schedule of makespan
Ty on the instance (t1,...,t,;m).

Thus, if t; is the first job such that when the algorithm Modified
Graham-Schedule assigns t; to a processor, the makespan of the schedule
exceeds Tp, then we must have t;, < Tp/3.

Now let S be the schedule constructed by the algorithm Modified
Graham-Schedule with makespan T for the instance «. If T' = T}, then
the approximation ratio is 1 so less than 4/3. If T' > T, let processor P;
have load T" and let t;, be the last job assigned to processor P;. Since when
the algorithm assigns ¢ to P; the makespan of t1,...,7; exceeds Ty, by the
above discussion, we must have t; < Tj/3 (t;, may not be the first such a job
but recall that the jobs are sorted in non-increasing order). Let T' =t + t.
Then at the time the job ¢; was assigned, all processors had load at least

FPTAS 141

t. Therefore, mt < Zf:ll t; < > oiqti, which implies ¢t < Y% t;/m < T.
This gives immediately

T=t+1t, <Ty —|—T0/3 = 4T0/3
That is, T'/Tp < 4/3. The theorem is proved. []

Note that 2 — (1/m) > 4/3 for all m > 1. Therefore, though 2 — (1/m)
is a tight bound for the approximation ratio of the algorithm Graham-
Schedule, it is not a tight bound on the approximation ratios for approxi-
mation algorithms for the MAKESPAN problem.

We should point out that the bound 4/3 is not quite tight for the algo-
rithm Modified Graham-Schedule. A tight bound on the approximation
ratio for the algorithm Modified Graham-Schedule has been derived,
which is (4 —1/m)/3. As an exercise, we leave the formal derivation of this
bound for the algorithm to interested readers.

It is natural to ask whether the bound (4 — 1/m)/3 is tight on approxi-
mation ratios for approximation algorithms for the MAKESPAN problem. It
is, in fact, not. For example, Hochbaum and Shmoys [66] have developed a
polynomial time approximation algorithm of approximation ratio 1 + € for
any fixed constant ¢ > 0. Such an algorithm is called a polynomial time ap-
proximation scheme for the problem. Therefore, there are polynomial time
approximation algorithms for the MAKESPAN problem whose approximation
ratio can be arbitrarily close to 1. These kind of approximation algorithms
will be investigated in more details in the next few chapters.

Unfortunately, the algorithm given in [66] runs in time O((n/e)Y/<),
which is totally impractical even for moderate values of n and e. Thus, we
come to the third question: can we keep the approximation ratio 1+ ¢ while
improving the running time for approximation algorithms for the MAKESPAN
problem? Progress has been made towards this direction. For example,
more recently, Hochbaum and Shmoys [68] have developed an approximation
algorithm for the MAKESPAN problem whose approximation ratio remains
1+€ with running time improved to O(n)+ f(1/€), where f(1/e€) is a function
independent of n.

