Chapter 4

Linear Programming

Recall that a general instance of the LINEAR PROGRAMMING problem is
described as follows.

LINEAR PROGRAMMING

minimize 121 + -+ Cpy
subject to a1121 + a12T9 + ... + a1pxy > a1
ar121 + Gr2T2 + . + QrpTy 2> Qr
b1l + biowe + ... + b1z, < by

bsiz1 + bsaxa + ... + bepy < by
di1x1 + digzo + ... + dipxy, = dy

dnxy + dpxa + ... + dipxy, = dy

where ¢;, aj;, aj, by, by, dj;, and d; are all given real numbers,
for1<i<n 1<j<r, 1<k<s and1 <[ <t and z;,
1 < i < n, are unknown variables.

The LINEAR PROGRAMMING problem is characterized, as the name implies,
by linear functions of the unknown variables: the objective function is linear
in the unknown variables, and the constraints are linear equalities or linear
inequalities in the unknown variables.

For many combinatorial optimization problems, the objective function
and the constraints on a solution to an input instance are linear, i.e., they
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88 LINEAR PROGRAMMING

can be formulated by linear equalities and linear inequalities. Therefore,
optimal solutions for these combinatorial optimization problems can be de-
rived from optimal solutions for the corresponding instance in the LINEAR
PROGRAMMING problem. This is one of the main reasons why the LINEAR
PROGRAMMING problem receives so much attention.

For example, consider the MAXiMUM FLOW problem. Let G be an in-
stance of the MAXIMUM FLOW problem. Thus, G is a flow network. Without
loss of generality, we can assume that the vertices of G are named by the
integers 1, 2, ..., n, where 1 is the source and n is the sink. Each pair of
vertices 7 and j in G is associated with an integer c¢;;, which is the capacity
of the edge [¢,j] in G (if there is no edge from i to j, then ¢;; = 0). To
formulate the instance G of the MAXIMUM FLOW problem into an instance
of the LINEAR PROGRAMMING problem, we introduce n? unknown variables
fij» 1 <14,j < n, where the variable f;; is for the amount of flow from vertex
7 to vertex j. By the definition of flow in a flow network, the flow value
fi; must satisfy the capacity constraint, the skew symmetry constraint, and
the flow conservation constraint. These constraints can be easily formulated
into linear relations:

capacity constraint:  fj; <¢;  forall1<i,j<n
skew symmetry:  f;; =—f; foralll<i,j<n

flow conservation: 77 4 fi; =0 fori#1,n

Finally, the MAXiIMUM FLOW problem is to maximize the flow value, which
by definition is given by fi1+ fia+- - -+ fin- This is equivalent to minimizing
the value —fi11 — fio — -+ — fin. Therefore, the instance G of the MAXI-
MUM FLOW problem has been formulated into an instance of the LINEAR
PROGRAMMING problem as follows.

minimize —fun—Jiz2— = fin
subject to fij < cij forall1<4,57<n
fij +fji=0 forall1 <i,57<n
i1 fiy =0 fori#1,n

An efficient algorithm for the LINEAR PROGRAMMING problem implies
an efficient algorithm for the MAXIMUM FLOW problem.

In this chapter, we introduce the basic concepts and efficient algorithms
for the LINEAR PROGRAMMING problem. We start by introducing the basic
concepts and preliminaries for the LINEAR PROGRAMMING problem. An al-
gorithm, the “simplex method”, is then described. The simplex method is,
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though not a polynomial time bounded algorithm, very fast for most prac-
tical instances of the LINEAR PROGRAMMING problem. We will also discuss
the idea of the dual LINEAR PROGRAMMING problem, which can be used
to solve the original LINEAR PROGRAMMING problem more efficiently than
by simply applying the simplex method to the original problem. Finally,
polynomial time algorithms for the LINEAR PROGRAMMING problem will
be briefly introduced.

We assume in this chapter the familiarity of the fundamentals of linear
algebra. In particular, we assume that the readers are familiar with the
definitions of vectors, matrices, linear dependency and linear independency,
and know how a system of linear equations can be solved. All these can be
found in any introductory book in Linear Algebra. To avoid confusions, we
will use little bold letters such as x and c for vectors, and use capital bold
letters such as A and B for matricies. For a vector x and a real number c,
we write x > c if all elements in x are larger than or equal to c.

4.1 Basic concepts

First note that in the constraints in a general instance in (4.1) of the LINEAR
PROGRAMMING problem, there is no strict inequalities. Mathematically, any
bounded set defined by linear equalities and non-strict linear inequalities is
a “compact set” in the Euclidean space, in which the objective function
can always achieve its optimal value, while strict linear inequalities define a
non-compact set in which the objective function may not be able to achieve
its optimal value. For example, consider the following instance:

minimize —x1 — T2
subject to r1+xo+a3 <1
iUle) 352207 .1?320

The set S defined by the constraints xy + zo + 3 < 1, 1 > 0, 22 > 0,
and z3 > 0 is certainly bounded. However, no vector (z1,z2,23) in S can
make the objective function —x1 — x5 to achieve the minimum value: for any
e > 0, we can find a vector (1, z2,3) in the set S that makes the objective
function —x1 — 29 to have value less than —1 + € but no vector in the set S
can make the objective function —x1 — x9 to have value less than or equal
to —1.

Now we show how a general instance in (4.1) of the LINEAR PROGRAM-
MING problem can be converted into a simpler form.
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The standard form for the LINEAR PROGRAMMING problem is given in
the following format

minimize c1x1 + coxo + -+ cpxy
subject to a1121 + a12x9 + ... + a1y = b1
a2121 + agaxe + ... + agpry = bo
...... (4.2)
Am1T1 + QmaZTo + ... + GmnTn = bm
1 >0, 2920, ..., z, >0

The general form in (4.1) of the LINEAR PROGRAMMING problem can
be converted into the standard form in (4.2) through the following steps.

1. Eliminating “>” inequalities
Each inequality a;121 + ajppxe + ... + ajpxy, > a; is replaced by the
equivalent inequality (—a;1)z1 + (—ai2)x2 + ... + (—ain)Tn < (—a;).

2. Eliminating “<” inequalities
Each inequality bjix1 + bjaz2 + ... + bjpx, < b; is replaced by the
equality bj1x1 +bjoxe + ...+ bjnx, +y; = b; by introducing a new slack
variable y; with the constraint y; > 0.

3. Eliminating unconstrained variables
For each variable x; such that the constraint x; > 0 is not present,
introduce two new variables u; and v; satisfying u; > 0 and v; > 0,
and replace the variable z; by u; — v;.

The above transformation rules are not strict. For example, the > in-
equalities can also be eliminated using a “surplus variable”. Moreover, some-
times a simple linear transformation may be more convenient and more ef-
fective than the above transformations. We illustrate these transformations
and other possible transformations by an example. Consider the instance in
(4.3) for the LINEAR PROGRAMMING problem.

minimize 2x1 + x0 — 3x3
subject to 2r1 —x9 — T3 > 5 (4.3)
209 —x3 =3
To > 2

We apply the first rule to convert the first constraint 2xy — xo — 723 > 5
into —2x1 4+ x9 + 7x3 < —5. Then we apply the second rule and introduce a
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new slack variable x4 with constraint x4 > 0 to get an equality —2z; + z2 +
Txs + xg4 = —5.

For the constraint x2 > 2, we could also convert it into an equality using
the first and second rules. However, we can also perform a simple linear
transformation as follows. Let 2 = x9 — 2 and replace in (4.3) the variable
x9 by ah+2. This combined with the transformations on the first constraint
will convert the instance (4.3) into the form

minimize 2x1 + xh — 33
subject to =21 + b+ Teg + x4 = =7 (4.4)
2xh —x3 = —1

2y >0, x4>0

Note that after the linear transformation xo = x4 + 2, the objective function
2x1 4 22 — 3z should have become 221+, — 323 + 2. However, minimizing
2x1 + xh, — 3x3 + 2 is equivalent to minimizing 2z + x5 — 3.

Now we need to remove the unconstrained variables in the instance (4.4).
For the unconstrained variable x1, by the third rule, we introduce two new
variables z} and 2 with constraints 2} > 0 and 2/ > 0, and replace in (4.4)
x1 by 2} — xf. We obtain

minimize 22 — 22 + af — 3x3
subject to =22 + 22 + 2 + Tag + x4 = =7 (4.5)
2ah —x3 = —1

) >0, />0 a5, >0, 24>0

The unconstrained variable x3 could also be eliminated using the same rule.
But it can also be eliminated using a simple linear transformation. For this,
we observe the constraint 2z, —x3 = —1 so x3 = 2a5+ 1. Thus, replacing x3
in (4.5) by 2z, + 1, we obtain the following standard form for the LINEAR
PROGRAMMING problem.

minimize 2z — 2z — 5ab
subject to =22} + 22 + 152h + x4 = —14 (4.6)
) >0, />0 2, >0 24 >0

It is easy to verify that if we solve the instance (4.6) and obtain an op-
timal solution (), 2!, x5, z4), then we can construct an optimal solution
(21, z9,x3) for the instance (4.3), where z1 = z} — Y, 2 = x4, + 2, and
r3 = 2$/2 + 1.
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Note that the transformations do not result in an instance whose size is
much larger than the original instance. In fact, to eliminate an inequality,
we need to introduce at most one new variable y plus a new constraint
y > 0, and to eliminate an unconstrained variable we need to introduce at
most two new variables u and v plus two new constraints © > 0 and v > 0.
Therefore, if the original instance consists of n variables and m constraints,
then the corresponding instance in the standard form consists of at most
2n 4+ m variables and 2n 4 2m constraints.

Therefore, without loss of generality, we can always assume that a given
instance of the LINEAR PROGRAMMING problem is in the standard form.
Using our 4-tuple formulation, the LINEAR PROGRAMMING problem can
now be formulated as follows.

LINEAR PROGRAMMING = (Ig, Sq, fg,optg), where

e [g is the set of triples (b, c, A), where b is an m-
dimensional vector of real numbers, c is an n-dimensional
vector of real numbers, and A is an m x n matrix of real
numbers, for some integers n and m;

e for an instance o = (b, ¢, A) in Iy, the solution set Sg ()
consists of the set of n-dimensional vectors x that satisfy
the constraints Ax = b and x > 0;

e for a given input instance o € I and a solution x € Sg (),
the objective function value is defined to be the inner prod-
uct ¢T'x of the vectors ¢ and x;

e optg is min.

We make a further assumption that the m x n matrix A in an instance of
the LINEAR PROGRAMMING problem has its m rows linearly independent,
which also implies that m < n. This assumption can be justified as follows.
If the m rows of the matrix A are not linearly independent, then either the
constraint Ax = b is contradictory, in which case the instance obviously
has no solution, or there are redundancy in the constraint. The redundancy
in the constraint can be eliminated using standard linear algebra techniques
such as the well-known Gaussian Elimination algorithm.

Under these assumptions, we can assume that there are m columns in
the matrix A that are linearly independent. Without loss of generality,
suppose that the first m columns of A are linearly independent and let B be
the nonsingular m x m submatrix of A such that B consists of the first m
columns of A. Let xg = (x1, 22, ... ,xm)T be the m-dimensional vector that
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consists of the first m unknown variables in the vector x. Since the matrix
B is nonsingular, the equation

BXB — b
n—m
: 0 1y e 0 00 0 :
has a unique solution x3, = B™'b. If we let x” = (x3,0,...,0), then obvi-
ously, x° is a solution to the system Ax = b. If the vector x” happens to

also satisfy the constraint x° > 0, then x° is a solution to the instance of
the LINEAR PROGRAMMING problem

minimize cI'x

subject to Ax =b and x>0 (4.7)

This introduces a very important class of solutions to an instance of the
LINEAR PROGRAMMING problem, formally defined as follows.

Definition 4.1.1 A vector x° = (z9,29,...,29)7 satisfying Ax” = b and

x0 > 0 is a basic solution if there are m indices 1 < iy < iy < ... < im <n
such that the ¢ith, ioth, ..., 7,;,th columns of the matrix A are linearly
independent, and z9 = 0 for all i € {i1,...,%y}. These m columns of the

matrix A will be called the basic columns for x9.

Note that we did not exclude the possibility that a:?j = 0 for some index

i; in the basic solution x°. If any element x?j = 0 in the above basic solution

xY, the basic solution x° is called a degenerate basic solution.

The following theorem is fundamental in the study of the LINEAR PRO-
GRAMMING problem.

Theorem 4.1.1 Let o = (b, ¢, A) be an instance for the LINEAR PRO-
GRAMMING problem. If the solution set Sg(«) is not empty, then Sg(«)
contains a basic solution. Moreover, if the objective function c'x achieves
the minimum value at a vector x° in Sg(a), then there is a basic solution

xP in Sg(a) such that cT'x) = cTx0.

PROOF. Suppose that Sg(a) # 0. Let x, = (21,22,...,2,)T be a solution
to the instance « such that x; has the maximum number of 0 elements over
all solutions in Sg(«). We show that x;, must be a basic solution.

For convenience, we suppose that the first p elements x1, x2, ..., x, in
xp are larger than 0 and all other elements in x; are 0. Let the n column
vectors of the matrix A be aj, ag, ..., a,. Then the equality Ax; = b can
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be written as z1a; + z2az + - - - + x,a, = b. Since zp41 = -z, = 0, this
equality is equivalent to

riay +x0a9 + - - + Tpap = b (48)
If x3 is not a basic solution, then the column vectors ai, ..., a, are linearly
dependent. Thus, there are p real numbers y1, ..., y, such that at least one

y; is positive and that
yiar +y2az + - -+ ypa, =0 (4.9)

where 0 denotes the m-dimensional vector (0,0, ...,0)T. Let e be a constant.
Subtract e times the equality (4.9) from the equality (4.8), we get

(x1 —eyr)ar + (x2 —ey2)ag + - -+ (zp —€yp)a, =b (4.10)

Equality (4.10) holds for any constant e. Since at least one y; is positive,
the value ¢ = min{x;/y; | y; > 0} is well-defined and €y > 0 (note that
xz; > 0 for all 1 <14 < p). Again for convenience, suppose that y, > 0 and
€0 = Tp/yp. With this choice of €y, we have z; — egy; > 0 for all 1 < i < p.
Thus, in equality (4.10), if we let z; = z; — €gy; for all 1 < i < p, we will get

z1a; +za3 + -+ zp—1a,1 = b

and
2120, 2220, ..., 2120

Now if we let z = (21,22, ...,2y-1,0,0,...,0)T be the n-dimensional vector
with the last n — p + 1 elements all equal to 0, we will get

Az=b and z>0

Thus, z is a solution to the instance a and z has at least n — p+ 1 elements
equal to 0. However, this contradicts our assumption that the vector x; is a
solution to the instance o with the maximum number of 0 elements over all
solutions to «. This contradiction shows that the vector x; must be a basic
solution to .

This proves that if Sg(«) # (), then Sg(c) contains basic solutions.

Now suppose that there is a solution x° in Sg(a) such that ¢Tx? is
the minimum over all solutions in Sg(«). We pick from Sg(a) a solution
x) = (29,...,29) such that ¢T'x) = ¢?'x? and x{ has the maximum number
of 0 elements over all solutions x in Sg(«) satisfying ¢?x = ¢Tx?. We show
that xg is a basic solution. As we proceeded before, we assume that the first



BASIC CONCEPTS 95

p elements in xg are positive and all other elements in xg are 0. If xg is not
a basic solution, then we can find p real numbers yq, ..., y, in which at least

one y; is positive such that
(=) — eyr)ar + (2 — eyz)ag + -+ + (2) — eyp)a, = b

for any constant e. Now if we let y = (y1,%2,.--,%p,0,...,0)T be the n-
dimensional vector with the last n — p elements equal to 0, then A(xg —€y)
= b for any €. Since z; > 0for 1 <7 < pand z; = y; = 0 for j > p, we have
xg — ey > 0 for small enough (positive or negative) e. Thus, for any small
enough €, z, = Xg — ey > 0 is a solution to the instance o. Now consider
the objective function value c’z.. We have

cl'z, = chg —ecly

We claim that we must have ¢’y = 0. In fact, if ¢’y # 0, then pick a

proper small €, we will have ec’y > 0. But this implies that the value ¢z, =

c'x)—ecly is smaller than ¢?'xY, and z. is a solution in Sg(«), contradicting
our assumption that Xg minimizes the value ¢’x over all solutions x in
Sol(a).

Thus, we must have ¢y = 0. In consequence, c’z, = ¢'x) for any
e. Now if we let €g = min{z;/y; | y; > 0}, and let zg = x) — €gy, then we
have ¢’z = chg = c''x% Azy = b, zp > 0, and zg has at least n — p + 1
elements equal to 0. However, this contradicts our assumption that xg is a
solution in Sg(a) with the maximum number of 0 elements over all solutions
x satisfying ¢/x = ¢”x°. This contradiction shows that the vector x) must
be a basic solution.

This completes the proof of the theorem. [

T

Theorem 4.1.1 reduces the problem of finding an optimal solution for an
instance of the LINEAR PROGRAMMING problem to the problem of finding
an optimal basic solution for the instance. According to the theorem, if the
instance has an optimal solution, then the instance must have an optimal
solution that is a basic solution. Note that in general there are infinitely
many solutions to a given instance while the number of basic solutions is
always finite — it is bounded by the number of ways of choosing m columns
from the n columns of the matrix A. Moreover, all these basic solutions can
be constructed systematically: pick every m columns from the matrix A,
check if they are linearly independent. In case the m columns are linearly
independent, a unique m-dimensional vector x = B™!b can be constructed
using standard linear algebra techniques, where B is the submatrix con-
sisting of the m columns of A. Now if this vector x also satisfies x > 0,
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then we can expand x into an n-dimensional vector xg by inserting properly
n —m 0’s. The vector xq is then the basic solution with these m linearly
independent columns as basic columns.

Algorithmically, there can be still too many basic solutions for us to
search for the optimal one — the number of ways of choosing m columns from
the n columns of the matrix A is (), which is of order ©(n™). In the next
section, we introduce the simplex method, which provides a more effective
way to search for an optimal basic solution among all basic solutions.

Theorem 4.1.1 has an interesting interpretation from the view of geom-
etry. Given an instance o of the LINEAR PROGRAMMING problem, each
solution x to « can be regarded as a point in the n-dimensional Euclidean
space £". Thus, the solution set Sg(«) of a is a subset in the Euclidean
space £". In fact, Sg(a) is a convex set in ™ in the sense that for any two
points x and y in Sg (), the entire line segment connecting x and y is also
in Sg(a). An example of convex sets in 3-dimensional Euclidean space &
is a convex polyhedron. An extreme point in a convex set S is a point that
is not an interior point of any line segment in S. For example, each vertex
in a convex polyhedron P in £2 is an extreme point of P. It can be formally
proved that the basic solutions in Sg(«) correspond exactly to the extreme
points in Sg(a). From this point of view, Theorem 4.1.1 claims that if Sg(«)
is not empty then Sg(a) has at least one extreme point, and that if a point
in Sg(«) achieves the optimal objective function value, then some extreme
point in Sg(a) should also achieve the optimal objective function value.

4.2 The simplex method

Theorem 4.1.1 claims that in order to solve the LINEAR PROGRAMMING
problem, we only need to concentrate on basic solutions. This observation
motivates the classical simplex method. Essentially, the simplex method
starts with a basic solution, and repeatedly moves from a basic solution to
a better basic solution until the optimal basic solution is achieved. Three
immediate questions are suggested by this approach:

1. How do we find the first basic solution?
2. How do we move from one basic solution to a better one? and
3. How do we realize that an optimal basic solution has been achieved?

We first discuss the solutions to the second and the third questions. A
solution to the first question can be easily obtained when the solutions to
the second and the third are available.
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Many arguments in the LINEAR PROGRAMMING problem are substan-
tially simplified upon the introduction of the following assumption.

Nondegeneracy Assumption. For an instance o = (b, ¢, A)
of the LINEAR PROGRAMMING problem, we assume that all basic
solutions to « are nondegenerate.

This assumption is invoked throughout our development of the simplex
method, since when it does not hold the simplex method can break down if
it is not suitably amended. This assumption, however, should be regarded
as one made primarily for convenience, since all arguments can be extended
to include degeneracy, and the simplex method itself can be easily modified
to account for it. After the whole system of methods is established, we will
mention briefly how the situation of degeneracy is handled.

In the following discussion, we will fix an instance o = (b, ¢, A) of the
LINEAR PROGRAMMING problem, where b is an m-dimensional vector, c is
an n-dimensional vector, m < n, and A is an m X n matrix whose m rows
are linearly independent. Let the n column vectors of the matrix A be aj,
ag, ..., Ap.

How to move to a neighbor basic solution

Let x be a basic solution to the instance a = (b, ¢, A) such that the i;th,
ioth, ..., i,,th elements in x are positive and all other elements in x are
0. Let x’ be another basic solution to « such that the #jth, #th, ..., i th
elements in x’ are positive and all other elements in x’ are 0. The basic
solution x’ is a neighbor basic solution to x if the index sets {t1,...,t,} and
{t},....t;,} have m — 1 indices in common. For a give basic solution x, the
simplex method looks at neighbor basic solutions to x and tries to find one
that is better than the current basic solution x.

For the convenience of our discussion, we will suppose that the basic
solution x has the first m elements being positive:

x=(z1,...,Zm,0,...,0) (4.11)
Since x is a basic solution to the instance o = (b, ¢, A), we have
r1a1 +ToXg + -+ Tma;, = b (4.12)
By the definition, the m m-dimensional vectors aj, ..., a,, are linearly
independent. Therefore, every column vector a, of the matrix A can be
represented as a linear combination of the vectors ay, ..., a;,:

a; = y1ga1 + Y2422 + -+ Ymgam for ¢=1,....n (4.13)
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or
Y1qa1 + Y2922 + -+ + Ymg@m — g = 0 (414)

where 0 is the m-dimensional vector with all elements equal to 0. Let € be
a constant. Substract e times the equality (4.14) from the equality (4.12),

(x1 — eyrg)ar + (2 — eyag)az + -+ + (T — €Ymg)am +€ag=b  (4.15)

The equality (4.15) holds for all constant €. In particular, when € = 0, it
corresponds to the basic solution x and for € being a small positive number,
it corresponds to a non-basic solution (note that by the Nondegeneracy
Assumption, x; > 0 for 1 < ¢ < m). Now if we let € be increased from
0, then the coefficient of the vector a, in the equality (4.15) is increased,
and the coefficients of the other vectors a;, i # ¢, in the equality (4.15) are
either increased (when y;; < 0), unchanged (when y;; = 0), or decreased
(when y;, > 0). Therefore, if there is a positive y;q, then we can let € be the
smallest positive number that makes x;, — €y,q = 0 for some p, 1 < p < m.
This € corresponds to the value

€0 = Tp/Ypqg = Min{x; /yiq | Yig >0 and 1 <i < m}

Note that with this value ¢, all coefficients in the equality (4.15) are non-
negative, the coefficient of a, is positive, and the coefficient of a, becomes
0. Therefore, in this case, the vector

/
X = (T1— €Wy Tp1 — €0Yp—1,4:0, Tp11 — €0Ypti,g-- -5
ey Ty — €0Ymg, 0,...,0,€0,0,...,0) (4.16)

satisfies A x’ = b and x’ > 0, and has at most m nonzero elements, where
the element ¢ in x’ is at the gth position. These m possibly nonzero elements
in x’ correspond to the m columns ay, ..., ap_1, ap+1, ..., &y, a4 of the
matrix A. By our assumption y,, > 0, thus by equality (4.14), we have

ap = (—Y1g/Ypq)ar + -+ (—Up-1,4/Ypa)ap—1 + (—Yp+1,4/Upg)ap+1 +
+ -+ (= Ymag/Ypg)am + (1/ypg)ag (4.17)
That is, the vector a, can be represented by a linear combination of the
vectors ay, ..., 8p 1, Aptl, -, Ay, Ag. Since the vectors ai, as, ..., a,
are linearly independent, Equality (4.17) implies that the vectors ay, ...,
ap_1, Ap11, - .., &y, a4 are linearly independent (see Appendix C). Hence,

the vector x' is in fact a basic solution to the instance a = (b, ¢, A).
Moreover, x’ is a neighbor basic solution to the basic solution x.
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Let us consider how each column vector a; of the matrix A is represented
by a linear combination of this new group of linearly independent vectors
al, ..., y_1, Apyl, ..., Ay, 8. By equality (4.13), we have

a; = Y1ia1 + Y@z + -+ Ymidm (4.18)

Replace a,, in (4.18) by the expression in (4.17) and reorganize the equality,
we get

a; = (yli - ypiqu/ypq)al + -+ (ypfl,i - ypiypfl,q/ypq)apfl
+(ypi/ypq)aq + (yp—i-l,i - ypiyp—i-l,q/ypq)ap-i-l + (4'19)
+o T+ (ymz - ypiqu/ypq)am

Thus, the column a, replaces the column a, and becomes the pth basic
column for the basic solution.

The above transformation from the basic solution x to the neighbor
basic solution x’ can be conveniently managed in the form of a tableau.

For the basic solution x = (z1,...,2Zm,0,...,0), and suppose that the last
n —m columns a,, m + 1 < ¢ < n, of the matrix A are given by the linear
combinations of the columns a;, ag, ..., a, in equality (4.13), then the

tableau corresponding to the basic solution x is given as

aj oAy e ap A1 a, a,

1 0 0 Y1,m+1 Yiq Yin T
0 1 0 yp7m+1 ypq ypn ‘Tp
0 0 1 Ym,m+1 qu Ymn | Tm

In order to move from the basic solution x to the neighbor basic solution
x’ by replacing the column a, by the column a, (assume that y,, > 0 and
Zp/Ypq is the minimum w;/y;, over all 7 such that 1 < ¢ < m and y;; > 0),
we only need to perform the following row transformations on the tableau:
(1) divide the pth row of the tableau by ype; and (2) for each row j, j # p,
subtract y;, times the pth row from the jth row. After these transformations,
the tableau becomes
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al .. ap DR am am+1 DY aq DY an
/ / / /
T | S P
/ / / /
O ... ypp ... 0 yp,m_’_l DY 1 DY yp',L a:‘p
/ / / /
0 L Ymp 1 Ynm+1 0 0 Y | T

Thus, the gth column in the tableau, which corresponds to column a,,
now becomes a vector whose pth element is 1 and all other elements are 0.
Consider the pth column a, in the tableau. We have

y;,p =1/ypq (4.20)

and
y}p = —Yjq/Ypg for 1 <i<m and j#p (4.21)

By equality (4.17), we get
ay = Y181+ -+ Y1 81 T Unpdg T Ypi1 p3pi1 + o F Y

Therefore, the pth column in the new tableau gives exactly the coefficients of
the linear combination for the column a, in terms of the new basic columns

ar, ..., dp—1, g, Ap41, -+, A
For the ith column a; in the tableau, where m + 1 < i < n and i # ¢,
we have

Ypi = Ypi/Ypq (4.22)
and
Yii = Yji — YjqUpi/Ypg for 1<j<m and j#p (4.23)

By eqality (4.19), the ith column in the tableau gives exactly the coefficients
of the linear combination for the column a; in terms of the new basic columns

ag, ..., ap_1, g, Ap41, -+ Am-
Finally, let us consider the last column in the tableau. We have

m; = Tp/Ypg = €0
and
x; =Tj — YjqTp/Ypg = Tj; — €0Yjq for 1 <j<m and j#p

Thus, the last column of the tableau gives exactly the values for the new
basic solution x’.
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Therefore, the row transformations performed on the tableau for the
basic solution x result in the tableau for the new basic solution x’.

We should point out that in the above discussion, the basic columns for a
basic solution are not ordered by their indices. Instead, they are ordered by
the positions of the element 1 in the corresponding columns in the tableau.
For example, the column a; becomes the pth basic column because in the
qth column of the new tableau, the pth element is 1 and all other elements
are 0. Hence, the pth row in the new tableau corresponds to the coefficients
for the column ag, i.e., y;n» is the coefficient of a, in the linear combination
for a; in terms of ay, ..., ap_1, ag, Apy1, - .., Ay, and :1:;, is the value of the
gth element in the basic solution x’.

In general case, suppose that we have a basic solution x in which the
11th, doth, ..., ip,th elements z;,, x4,, ..., z;, are positive, and the tableau
T for x such that (1) for each j, 1 < j < m, the ijth column of 7 has
the jth element equal to 1 and all other elements equal to 0; (2) for each 7,
1 < j < m, the jth element in the last column of 7 is z;;; and (3) for each
i, 1 <i < n, the ith column of T is (y14,¥2i, ..., Yms)" if the ith column a;
of the matrix A is represented by the linear combination of the columns a;,
iy, ..., A, as

a; = Y1y + Y2i@iy + - Ymidi,,

In order to replace the column a;, in the basic solution x by a new column a,
to obtain a new basic solution x’, we first require that the element y,, in the
gth column of the tableau 7 be positive, and that z,/y,, be the minimum
over all z;/yjq, with y;j, > 0. With these conditions satisfied, perform the
following row transformation on the tableau 7: (1) divide the pth row by
Ypg; and (2) for each j, 1 < j < m and j # p, subtract y;q times the pth
row from the jth row. The resulting tableau by these row transformations
is exactly the tableau for the new basic solution x’ obtained by adding the
gth column and deleting the 7,th column from the basic solution x.

Example 4.2.1 Consider the following instance o = (b, ¢, A) of the
LINEAR PROGRAMMING problem
minimize T
subject to 3z + bxo + x3 = 24
4z + 2x9 + 14 = 16
1 +ax2—a5+x6=3 (4.24)

L1,T2,T3, T4, L5, L6 > 0

Let the six column vectors of the matrix A be aj, as, as, a4, as, ag. The
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vector x= (0,0,24,16,0,3) is obviously a basic solution to the instance «
with the basic columns as, ay, and ag. The other columns of A can be
represented by linear combinations of the columns as, a4, and ag as follows.

a; = 3az +4ay + ag
ag = daz + 2a4 + ag

a; = —ag

Thus, the tableau for the basic solution x is

ay a2 az a4 Aaz Aag

3 5 1 0 0 0|24
4 2 0 1 0 0|16
1 1 0 0o -1 1 3

It should not be surprising that the tableau for the basic solution x
consists of the columns of the matrix A plus the vecter b. This is because
that the three columns as, a4, and ag are three linearly independent unit
vectors in the 3-dimensional Euclidean space £3.

Now suppose that we want to construct a new basic solution by replacing
a column for the basic solution x by the second column as of the matrix
A. All elements in the second column of the tableau are positive. Thus, we
only need to check the ratios. We have

T1/y1o =24/5 =4.8  x9/yxn =16/2=8 x3/y32=3/1=3

Thus, we will replace the column ag by the column as (note that the 3rd
row of the tableau corresponds to the 3rd basic column for x, which is ag).
Dividing the third row of the tableau by y3s does not change the tableau
since y32 = 1. Then we subtract from the second row by 2 times the third
row, and subtract from the first row by 5 times the third row. We obtain
the final tableau

0 1
2 0O 0 1 2 =2110
1 0

The new basic solution x’ corresponds to the columns as, a4, and as
(again note that though as has the smallest index, it is the 3rd basic col-
umn for x’). The value of x’ can be read directly from the last column of
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the tableau, which is x’ = (0,3,9,10,0,0). The coefficients of the linear
combinations of the columns aj, a5, and ag in terms of the columns as, as,
and ay can also read directly from the tableau:

a; = —2a3 + 2a4 + as = as — 2a3 + 2ay
as = bag + 2a4 — ag = —ag + Hag + 2ay
ag = —bag — 2a4 + as = ag — bag — 2ay

All these can be verified easily in the original instance a = (b, ¢, A).

How to move to a better neighbor basic solution

We have described how the basic solution x = (z1,...,%m,0,...,0) for
the instance o = (b, ¢, A) of the LINEAR PROGRAMMING problem can be
converted to a neighbor basic solution

/
X = (T1— €Yigs-- > Tp—1 — €0Yp—1,¢> 0, Tpt1 — €OYpt1,qr-- -5
oy Ty —eoqu,o,...,0,60,0,...,0)

by replacing the column a,, by the column a,, where yp,, > 0 and €y = z,/ypq
is the minimum over all z;/y;q with y;; > 0. Since we want to minimize the
value of the objective function ¢’'x, we would like to have x’ to give a smaller
objective function value. Consider the objective function values on these two
basic solutions:

T
C'X=1CT1+CT2+ -+ CnTnm

and

cx = («’151 - Eoqu) +F Cp—l(xp—l - Eoyp—l,q) +

Fepr1(Tpr1 — €0Ypr1,g) T F Cn(Tm — €0Ymq) + C4€0

m m
= Qi) — cpup +eolcg — Y ¢¥iq) + €0pYpg
j=1 J=1

Since €y = xp/Ypq, We have egcpypg = cpxp. Thus, the last equality gives

m
Iy =cTx + eo(cq — Z CiVYjiq)
j=1

Thus, the basic solution x’ gives a better (i.e., smaller) objective function
value ¢’'x” than ¢x if and only if eg(c; — Y7L, ¢jyjq) < 0. This thus
gives us a guideline for choosing a column to construct a better neighbor
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aj a, an, Am+t1 a, a,

1 0 0 y17m+1 qu Yin T
0 1 0 yp7m+1 ypq ypn :I:p
0 e 0 e 1 Ym,m+1 . qu e Ymn T,
0 0 0 Tm+1 frq T 20

Figure 4.1: The general tableau format for the basic solution x

basic solution. The constant c; — Z;ﬁ:l ¢jYjq Plays such a central role in the
development of the simplex method, it is convenient to introduce somewhat
abbreviated notation for it. Denote by 7, the constant ¢, — >, ¢jy;q for
1 < ¢ < n, and call them the reduced cost coefficients. The above discussion
gives us the following lemma.

Lemma 4.2.1 Let x and X' be the basic solutions as given above. The basic
solution X' gives a better (i.e., smaller) objective function value c’'x’ than
cT'x if and only if the reduced cost coefficient

s less than 0.

The nice thing is that the reduced cost coeflicients r; as well as the
objective function value ¢’x can also be made a row in the tableau for the
basic solution x and calculated by formal row transformations of the tableau.
For this, we create a new row, the (m + 1)st row, in the tableau so that the
element corresponding to the vector a; in this row is r; (note that by the
formula if 1 <4 < m then r; = 0), and the element in the last column of this
row is the value zg = —c’x. The new tableau format is given in Figure 4.1.

Now suppose that we replace the basic column a,, for the basic solution
x by the column a, to construct the basic solution x’. Then in addition to
the row transformations described before to obtain the coefficients y;; and
x/, we also (after dividing the pth two by y,,) subtract r, times the pth row
from the (m+1)st row. We verify that this row transformation converts the
(m+ 1)st row to give exactly the reduced cost coefficients and the objective
function value for the new basic solution x’.
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By the above described procedure, the new value r] of the ith element
in the (m + 1)st row in the tableau is

i = T = TqYpi/Ypg
m m
= (- chyji) —(cq — Z ¢jYiq)¥pi/ Ypq
j=1 j=1

m m
= G- Z CjYji = CqYpi/Ypq + Z CiYiqYpi/Ypq
j=1

j=1
m
= ¢ — Z i (Yji — Yiq¥pi/ Ypq) — Cq¥pi/Ypq
j=1
By equalities (4.22) and (4.23), and note y,; = Ypi — Ypq¥pi/Ypg = 0, We get

m
ro_ o /
o= G~ Z CiYj5i — Cqlpi
j=1
L / / ’ ’ /
= ci—(ayy + F p1Yp1i T pr1Ypi1i T+ CnYni T CqYpi)

Therefore, the value 7} is exactly the reduced cost coefficient for the column
a; in the new basic solution x’.

Consider the new value z{ in the last column of the (m + 1)st row. By
the procedure, the new value is equal to

!
Zy = 20— TqTp/Ypq

m
= —c'x— (cg — Z CiYiq)Tp/Ypq
j=1

m m
= = Z CiTj + Z CiYiqTp/Ypq — CqTp/Ypq
j=1 j=1

Let €g = xp/ypq and note that x, — eoypy = 0, we get

m

m
zg = —chx]—i-Zc]eoy]q Cq€0
j=1 J=1
m

= —(>_ ¢ilzj — eoyjq) + cq0)
j=1

= —(c1(z1 — €oyiq) + -+ cp1(Tp_1 — €0Yp-1,4) +

Fepi1(Tpr1 — €0Yprig) + o F Cm(Tm — €0Ymg) + Cq€0)
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According to equality (4.16), z) gives exactly the value —cx’

Therefore, after the row transformations of the tableau, the (m+1)st row
of the tableau gives exactly the reduced cost coefficients and the objective

function value for the new basic solution x’.

Example 4.2.2. Let us reconsider the instance a = (b, ¢, A) of the
LINEAR PROGRAMMING problem given in Example 4.2.1.

minimize T

subject to 3z + bxo + x3 = 24
4x1 + 229 + x4 = 16
T1+ 22— 25+ 16 =3

Z1,T2,T3,T4,T5,T6 > 0

The extended tableau for the basic solution x= (0, 0,24, 16,0, 3), which has
an objective function value 3, is as follows.

ajl ag as a4 ag ag
3 ) 1 0 0 0| 24
4 0 1 0 0] 16
1 1 0O 0 -1 1 3
-1 -1 0 O 1 0| -3

If we replace the column ag by the column as (note 7o < 0), then after
the row transformations, we obtain the tableau

aj Az A3 a4 ag ag

-2 0 1 0 5 519
2 0 0 1 2 =210
1 1 0 0 -1 1 3
0o 0 0 0 O 1 0

Thus, we obtained an improved basic solution x’ = (0, 3,9,10,0,0) that
has an objective function value 0.

We summarize the above discussion on tableau transformations into the
algorithm given in Figure 4.2. Thus, suppose that 7 is the tableau for the
basic solution x with 7[m + 1,¢q] < 0 and let p be the index such that
T1lp,q] > 0 and the ratio T[p,n + 1]/T[p, ¢] is the minimum over all ratios
Tlj,n + 1]/Tj,q] with T[j,q] > 0, then according to Lemma 4.2.1, the
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Algorithm. TableauMove(T,p,q)
INPUT: an (m+1) X (n+ 1) tableau 7, 1 <p<m, 1 < q<n, T|p,q] #0
L. ypg =TIp,dl;
2. fori=1ton+1do Tlp,i]=TIp,t]/ypq;
3. for (1<j<m+1)and (j #p) do
Yiq = T,
fori=1ton+1do Tji =Tl —Tlp, i *Yjqs

Figure 4.2: Tableau transformation

algorithm TableauMove(T,p, q) will result in the tableau for a neighbor
basic solution x’, by replacing the pth basic column for x by the gth column,
such that ¢x’ < ¢T'x.

When an optimal solution is achieved

Suppose that we have the basic solution x = (z1,...,%m,0,...,0) and the
tableau T in Figure 4.1 for x. By Lemma 4.2.1, if there is a column ¢ in T
such that r, < 0 and there is a positive element y,, in the gth column, then
we can perform the row transformations to obtain a better basic solution
x’ with ¢T'x/, thus achieving an improvement. What if no such a column g
exists in the tableau?

If no such a column exists in the tableau, then either we have r, > 0
for all ¢, 1 < g < n, or we have r, < 0 for some ¢ but y,, < 0 for all p,
1 < p <m. We consider these two cases separately below.

CASE 1. all values r4 > 0.

We prove that in this case, the basic solution x is an optimal solution.

Let x' = (2, 5%,...,2]) be any solution to the instance oo = (b, ¢, A).
Thus, we have 2 >0, 1 <i <n, and

zha; + zhag + -+ + a8, = b (4.25)

Since x = (x1,...,Zm,0,...,0) is a basic solution, each column a; of A
can be represented by a linear combination of aj, as, ..., a,:

m
a; = Zyjiaj, m+1<i1<n (426)
Jj=1
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Replace each a; in (4.25), m + 1 < i < n, by the equality (4.26), we

obtain

m
/ / /
riar + -+ Tpam + Ty Z Yjm+1a5+
J=1

m m
/ /
+ g2 Z Yjm+2; + -+ T, Z yina; = b
j=1 j=1

Regrouping the terms gives

(o) + Z riyri)a) + (24 + Z Thyoi)as+
i=m+1 i=m+1

n
ot (@, + Y ymiam = b
i=m+1

Since x = (1,...,Tm,0,...,0) is a basic solution, we also have

r1a] + 289 + -+ xma, =b

Compare equalities (4.27) and (4.28). Since the columns ay, ...

(4.27)

(4.28)

, &, are

linearly independent, the vector b has a unique representation in terms of

the linear combination of ay,...,a;. Thus, we must have
n
/ /
T = z+ Z TiY1i
i=m+1
n
/ /
T2 = X9+ Z T3Y2i
i=m+1
...... .
/ /
T = Tt Y Tiymi
i=m+1
Bringing these values for z1, za, . .., T, to the inner product ¢’'x, we get

o
~
>
I

.
Il
—

Cjly = ZCJ%
c] x + Z Zyﬂ

i=m+1

=va+ZZmyﬂ

=1 j=1li=m+1

I
iMs

3|
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m n m
= ZCjSU; + Z Jf;(z Cj?/jz’)
j=1

i=m+1  j=1

n n n m
= Y cay— Y it Y (> cyi)
j=1

i=m+1 i=m+1  j=1
n m
= X' = Y wilei— )Y cyi)
i=m+1 j=1
n
= c'x — Z xhr;
1=m+1

Since x’ is a solution to the instance a = (b, ¢, A), } > 0 for m+1 < i < n,
and by our assumption, 7, > 0 for m +1 < ¢ < n, we get

n
cx=c"x - > airi <%

i=m-+1

Since x’ is an arbitrary solution to the instance o = (b, ¢, A), we con-
clude that x is an optimal solution to & = (b, ¢, A). This conclusion is
summarized in the following lemma.

Lemma 4.2.2 Let x be a basic solution to the instance a = (b, ¢, A) with
the tableau given in Figure 4.1. If all reduced cost coefficients rqy > 0, 1 <
q < n, then x is an optimal solution.

Example 4.2.3. Recall that in Example 4.2.2, we obtained the basic
solution x’ = (0, 3,9, 10,0, 0), which has the objective function value 0, such
that all reduced cost coefficients are larger than or equal to 0 (see the last
tableau in Example 4.2.2). By Lemma 4.2.2, the solution x’ is an optimal
solution to the given instance.

CASE 2. There is a g such that r, < 0 but no element in the gth
column of the tableau is positive.

In this case, consider the equalities

Y1ga1 + Y2482 + - + Ymg@m — a8 =0

and

r1a1 + xeas + - -+ Tpma, = b
Subtract from the second equality by e times the first equality, where € is
any positive number, we get

(x1 — eyrg)ar + (2 — eyzg)az + - - + (T — €Ymg)am +€ag =b
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Since z; > 0 for 1 < ¢ < m, and yjq < 0 for all 1 < j < m, we have

T — eyjq > 0 for all 1 < j < m. Thus,
Xe = (T1 — €Y1gy - - s Tm — €Ymgq,0,...,0,€6,0,...,0)

where the element € is in the gth position, is a solution to a = (b, ¢, A) for
all positive value e.

Consider the objective function value ¢’

X, on the solution x., we have

T

c'x, = cj(xj — eyjq) + cq€

Ir

<
Il
_

I
NE

J

Il
—

m
cjxj +€(cq — Z CjYiq)
=1

~

= X+ erg

By our assumption, 7, < 0 and € can be any positive number, the value c’'x,
can be arbitrarily small, i.e., the instance « = (b, ¢, A) has no optimal
solution. We summarize this in the following lemma.

Lemma 4.2.3 Let x be a basic solution to the instance a = (b, ¢, A) with
the tableau given in Figure 4.1. If there is a reduced cost coefficients ry < 0,
and all elements in the qth column of the tableau are less than or equal to 0,
then the objective function can have arbitrarily small value and the instance
a has no optimal solution.

Degeneracy

It is possible that in the course of the simplex method described above,
a degenerate basic solution occurs. Often they can be handled as a non-
degenerate basic solution. However, it is possible that after a new column
a, is selected to replace a current basic column a,, the ratio x,/yp is 0,
implying that the basic column a, is the one to go out. This means that
the new variable x, will come into the new basic solution at value 0, the
objective function value will not decrease, and the new basic solution will
also be degenerate. Conceivably, this process could continue for a series
of steps and even worse, some degenerate basic solution may repeat in the
series, leading to an endless process without being able to achieve an optimal
solution. This situation is called cycling.

Degeneracy often occurs in large-scale real-world problems. However,
cycling in such instances is very rare. Methods have been developed to avoid
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cyclings. In practice, however, such procedures are found to be unnecessary.
When degenerate solutions are encountered, the simplex method generally
does not enter cycling. However, anticycling procedures are simple, and
many codes incorporate such a procedure for the sake of safety.

How to obtain the first basic solution

Lemmas 4.2.1, 4.2.2, and 4.2.3 completely describe how we can move from a
basic solution to a better basic solution and when an optimal basic solution
is achieved. To describe the simplex method completely, the only thing
remaining is how the first basic solution can be obtained.

A basic solution is sometimes immediately available from an instance
of the LINEAR PROGRAMMING problem. For example, suppose that the
instance of the LINEAR PROGRAMMING problem is given in the form

minimize Cc1T1 + cox9 + - - Ty
subject to a1121 + a1oT + - + arpxy < by
a2121 + 222 + -+ + ATy < by
Am1T1 + Ama®2 + -+ QT < by,
1U1207 xZZoa R fUnZO

with b; > 0 for all 2. Then in the elimination of the < signs we introduce m

slack variables yq, ..., ¥, and convert it into the standard form
minimize c1T1 + cox9 + - Ty
subject to a11x1 + a12T2 + - - + a1p Ty + Y1 = by

a21x1 + a2 + - -+ + a2, Ty + Y2 = bo

am1$1+am2x2+"'+amnxn+ym:bm
.1:120, ZEQEO, R 55n20
Y1 20,9220, ..., ym >0

Obviously, the (n + m)-dimensional vector (0,...,0,b1,bo,...,by) is a
basic solution to this new instance, from which the simplex method can be
initiated. In fact, this method can be applied to general instances for the
LINEAR PROGRAMMING problem, as described below.

Given an instance a = (b, ¢, A) of the LINEAR PROGRAMMING prob-
lem, by multiplying an equality by —1 when necessary, we can always assume
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that b> 0. In order to find a solution to «, consider the auxiliary instance
o’ for the LINEAR PROGRAMMING problem

minimize Y1 +y2 + - -+ Ym

subject to Ax+y=Db (4.29)
x,y=>0
where y = (y1,¥2,...,Ym) is an m-dimensional vector of artificial variables.

Note that the (n + m)-dimensional vector w = (0,0,...,0,b1,ba,...,by,) is
clearly a basic solution to the instance o’ in (4.29). If there is a solution
(1,...,xy) to the instance «, then it is clear that the instance o’ in (4.29)
has an optimal solution (x1,...,2,,0,...,0) with optimal objective function
value 0. On the other hand, if the instance a has no solution, then the
optimal objective function value for the instance ' is larger than 0 (note
that the solution set Sg(c) for the instance o/ is always nonempty).

Now starting with the basic solution w = (0,0,...,0,b1,ba,...,by,) for
the instance o', we can apply the simplex method to find an optimal solution
for o/. Note that the tableau for the basic solution w is also immediate —
the first m rows of the tableau have the form [A, I, b], where I is the m-
dimensional identity matrix, the reduced cost coefficient r; for 1 < j < nis
equal to —v;, where v; is the sum of the elements in the jth column in the
tableau, and the last element in the (m 4+ 1)st row is equal to —b; — - -+ —byy,.

Suppose that the simplex method finds an optimal basic solution wy =
(w1, ws, ..., Wy+m) for the instance o’ in (4.29). If wy does not have ob-
jective function value 0, then the original instance « has no solution. If
wo has objective function value 0, then we must have w; = 0 for all
n+1 < j < n+m. In the second case, we let x = (wi,wa,...,wy).
We claim that the vector x is a basic solution for the instance a. First of
all, it is clear that x> 0 and Ax = b. Moreover, suppose that w;,, w;,, ...,
wj, are the positive elements in x, then they are also positive elements in wy.
Thus, the columns a;,, a;,, ..., a;, of the matrix A are basic columns for
wy thus are linearly independant. Thus, if we extend the k columns a;,, a;,,
..., a;, of the matrix A (arbitrarily) into m linearly independent columns of
A then the solution x is a basic solution with these m linearly independent
columns as its basic columns. In case k = m, x is a non-degenerate basic
solution, and in case k < m, x is a degenerate basic solution.

To summarize, we use artificial variables to attack a general instance of
the LINEAR PROGRAMMING problem. Our approach is a two-phase method.
This method consists of the first phase in which artificial variables are intro-
duced to construct an auxiliary instance o’ with an obvious starting basic



SIMPLEX METHOD 113

solution, and an optimal solution wq for o/ is constructed using the simplex
method; and the second phase in which, a basic solution x for the original
instance « is constructed from the vector wg obtained in the first phase,
and an optimal solution for « is constructed using the simplex method.

Putting all these together

We summarize the above procedures to give the complete simplex method.
See Figure 4.3. For a given column ¢ in a tableau 7 of m+1 rows and n+ 1
columns, an element 7 [p, q] of T is said to have the minimum ratio in the
gth column if T[p,q] > 0 and the ratio T [p,n + 1]/T [p, ¢] is the minimum
over all ratios T[j,n+ 1]/T[j,¢] with 1 < j <n and Tj,¢q] > 0.

Note that in Phase I, step 3, we do not have to check whether the gth
column of the tableau 77 has an element with minimum ratio — it must
have one. This is because if it does not have one, then by Lemma 4.2.3, the
objective function of the instance o’ would have had arbitrary small value.
On the other hand, 0 is obviously a lower bound for the objective function
values for the instance o'.

The correctness of the algorithm Simplex Method is by Lemmas 4.2.1,
4.2.2, and 4.2.3. Under the Nondegeneracy Assumption, each procedure call
TableauMove(T, p, q) results in a basic solution with a smaller objective
function value. Since the number of basic solutions is finite, and since no
basic solution repeats because of the strictly decreasing objective function
values, the algorithm Simplex Method will eventually stop, either with an
optimal solution to the instance «, or with a claim that there is no optimal
solution to the instance «. In the case of degeneracy, incorporated with an
anticycling procedure, we can also guarantee that the algorithm Simplex
Method terminates in a finite number of steps with a correct conclusion.

Moving from one basic solution to a neighbor basic solution, using the
tableau format, can be done in time O(nm). Thus, the time complexity
of the algorithm Simplex Method depends on how many basic solution
moves are needed to achieve an optimal basic solution. Extensive experience
with the simplex method applied to problems from various fields, and hav-
ing various of the number n of variables and the number m of constraints,
have indicated that the method can be expected to converge to an optimal
solution in O(m) basic solution moves. Therefore, practically, the algorithm
Simplex Method is pretty fast. However and unfortunately, there are
instances for the problem for which the algorithm Simplex Method re-
quires a large number of basic solution moves. These instances show that
the algorithm Simplex Method is not a polynomial time algorithm.
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Algorithm. Simplex Method
INPUT: an instance a = (b, ¢, A) with b >0

Phase L.
1. construct a new instance o’: Ax +y =b; x,y >0
2. construct the basic solution w for «’ and the tableau 71[1..m + 1,1..m + n + 1] for w;
3. while (71[m +1,¢] < 0 for some 1 < g < n+m) do
let 71[p, ¢] have the minimum ratio in column ¢; call TableauMove(71,p,q);
4. if (Ti[m + 1,m 4+ n + 1] # 0) then stop: instance a has no solution;

Phase II.
5. let T2[l..m + 1,1..n + 1] be 71 with the (n 4 1)st ..., (n + m)th columns deleted;
\\ 72 is the tableau for a basic solution x for a.
Tae[m+1,n+1] = —cTx;

6. while (72[m + 1,¢] < 0 for some 1 < ¢ <n) do

if no element in the gth column of 73 is positive

then stop: the instance « has no optimal solution

else let T2[p, ¢] have the minimum ratio in column ¢; call TableauMove(72,p,q);

7. stop: the tableau 72 gives an optimal solution x to a.

Figure 4.3: The Simplex Method algorithm

4.3 Duality

Associated with every instance (b, ¢, A) of the LINEAR PROGRAMMING
problem is a corresponding dual instance. Both instances are constructed
from the vectors b and ¢ and the matrix A but in such a way that if one
of these instances is one of a maximization problem then the other is a
minimization problem, and that the optimal objective function values of
the instances, if finite, are equal. The variables of the dual instance are
also intimately related to the calculation of the reduced cost coefficients in
the simplex method. Thus, a study of duality sharpens our understanding
of the simplex method and motivates certain alternative solution methods.
Indeed, the simultaneous consideration of a problem form both the primal
and dual viewpoints often provides significant computational advantage.

Dual instance

We first depart from our usual strategy of considering instance in the stan-
dard form, since the duality relationship is most symmetric for instances
expressed solely in terms of inequalities.
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Given an instance « of the LINEAR PROGRAMMING problem

Primal Instance o

minimize c’'x (4.30)
subject to Ax>b, x>0
where A is an m X n matrix, ¢ is an n-dimensional vector, b is an m-
dimensional vector, and x is an n-dimensional vector of variables, the cor-

responding dual instance o is of the form

Dual Instance o

maximize y'b (4.31)
subject to y'A <c, y>0

where y is an m-dimensional vector of variables.

The pair (a,a’) of instances is called the synmmetric form of duality.
We explain below how the symmetric form of duality can be used to define
the dual of any instance of the LINEAR PROGRAMMING problem. We first
note that the role of primal and dual can be reversed. In fact, if the dual
instance o’ is transformed, by multiplying the objective function and the
constraints by —1 so that it has the format of the primal instance in (4.30)
(but is still expressed in terms of y), then its corresponding dual will be
equivalent to the original instance « in the format given in (4.30).

Consider an instance of the LINEAR PROGRAMMING in the standard
form

Primal Instance o

minimize cfx (4.32)

subject to Ax=b, x>0

Write it in the equivalent form
minimize c’'x
subject to Ax>b, —Ax>—-b, x>0

which is now in the format of the primal instance in (4.30), with coefficient

matrix
A
-A
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Now we will let z be the (2m)-dimensional vector of variables for the
dual instance, and write z as z7 = (u, v)? where both u and v are m-
dimensional vectors of variables, the corresponding dual instance has the

format

maximize u’b —vTb
subject to u'A —vIA <c’, u,v>0

Letting y = u — v we simplify the representation of the dual problem into
the following format

Dual Instance o

maximize y'b (4.33)
subject to yTA <c”

The pair (o, ') in (4.32) and (4.33) gives the asymmetric form of the duality
relation. In this form the dual vector y is not restricted to be nonegative.

Similar transformation can be worked out for any instance of the LINEAR
PROGRAMMING problem by first converting the primal instance into the
format in (4.30), calculating the dual, and then simplifying the dual to
account for a special structure.

The Duality Theorem

So far the relation between a primal instance a and its dual instance o for
the LINEAR PROGRAMMING problem has been simply a formal definition. In
the following, we reveal a deeper connection between a primal instance and
its dual. This connection will enable us to solve the LINEAR PROGRAMMING
problem more efficiently than by simply applying the simplex method.

Lemma 4.3.1 Let x be a solution to the primal instance o in (4.32) and
let y be a solution to the dual instance in (4.33). Then c'x>yTb.

PROOF. Since x is a solution to the instance o, we have y'b = y’ Ax.
Now since y is a solution to the dual instance o/, y’ A < c¢’. Note that x
> 0, thus, yT Ax < ¢Tx. This gives ¢'x > y'b. [

Note that the instance « in (4.32) looks for a minimum value ¢?x while
the instance o/ in (4.33) looks for a maximum value y’b. Thus, Lemma
4.3.1 shows that a solution to one problem yields a finite bound on the
objective function value for the other problem. In particular, this lemma
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can be used to test whether the primal instance or the dual instance has
solution. We say that the primal instance a has an unbounded solution if
for any negative value —M there is a solution x to « such that ¢’x < —M,
and that the dual instance o has an unbounded solution if for any positive
value M there is a solution y to o/ such that y’b > M.

Theorem 4.3.2 If the primal instance v in (4.32) has an unbounded solu-
tion then the dual instance o' in (4.33) has no solution, if the dual instance
o' has an unbounded solution then the primal instance has no solution.

PROOF. Suppose that a has an unbounded solution but o’ has a solution
y. Fix y. Given any negative number —M , by defintion, there is a solution
X to a such that ¢’x < —M. By Lemma 4.3.1, ¢/x > y'b. Thus, y'b
< —M. But this is impossible since —M can be any negative number.

The second statement can be proved similarly. []

If c’x = y”b for a solution x to o and a solution y to ', then by
Lemma 4.3.1, x must be an optimal solution for the instance a and y must
be an optimal solution for the instance o/. The following theorem indicates
that, in fact, this is a necessary and sufficient condition for x to be an
optimal solution for o and for y to be an optimal solution for /.

Theorem 4.3.3 Let x be a solution to the primal instance o in (4.32).
Then x is an optimal solution to o if and only if c'x = y'b for some
solution y to the dual instance o' in (4.33).

PROOF. Suppose that ¢’x = y’b. By Lemma 4.3.1, for every solution x’
to the primal instance o, we have ¢’x’ > yTb = ¢’x. Thus, x is an optimal
solution to the primal instance .

Conversely, suppose that x is an optimal solution to the primal instance
a. We show that there is a solution y to the dual instance o’ such that ¢’x
= y'b.

Since all optimal solutions to the primal instance « give the same ob-
jective function value, we can assume, without loss of generality, that the
solution x is a basic solution to the instance «. Furthermore, we assume
for convenience that x = (x1,22,...,%m,0,...,0)7, and that the first m
columns ai,as,...,a,, of the matrix A are the basic columns for x. Then



118 LINEAR PROGRAMMING

the tableau for the basic solution x is of the following form.

ap az -+ anm Am+1 Am42 e an

I 0 - 0 Gimrt Sumz - i | @
0 1 - 0 wyome1 Yomt2 - Yon | T2
o 0 --- 1 Ymm+1 Ymm+2 ~° Ymn | Tm
o o0 --- 0 Tm+1 Tm4+2 " Tn | 20

where for each j, m 4+ 1 < j < n, we have
m m
a; = Z Yijaq and ry==¢5 — Z CiYij
i=1 i=1

Since x is an optimal solution, by Lemmas 4.2.1 and 4.2.2, we must have
r; > 0 for all m +1 < j < n. That is,

m
cj > Zciyij form+1<j<n (4.34)
i=1
Let B = [aj,a9,...,a,,] be the m X m nonsingular submatrix of the

matrix A and let B~! be the inverse matrix of B. Note that for each 4,
1 < i < m, B7la; is the ith unit vector of dimension m (i.e., the m-
dimensional vector whose ith element is 1 while all other elements are 0):

B !a;=(0,...,0,1,0,...,00", i=1,...,m (4.35)

Therefore, for j =m +1,...,n, we have

Bilaj = Bi1 ZyUaZ = ZyijBilai - (y1j7 y2j7 s 7y’mj)T (436)
=1 =

The last equality is because of the equality (4.35).

Now we let y!' = (c1,¢2,...,¢n)B7L Then y is an m-dimensional vec-
tor. We show that y is a solution to the dual instance o’ and satisfies the
condition ¢’'x = y’b.

First consider y” A. We have

yIA = y'B,an.1,...,a,)
= (c1y.-., )Bfl[B F- WO PO 1
= (017 C'm)[I B~ am+17 . 7B_lan]

= (ClyeeesCmy Crg1s -, Cry)
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where (note the equality (4.36))
i =(c1,. . em)B Ay = (c1, o) Wi - ymg) T =D civig
i=1

for j = m+1,...,n. By the inequality (4.34), we have c;- < g¢jfor j =
m+1,...,n. This thus proves yT A < ¢”. That is, y is a solution to the
dual instance o in (4.33).

Finally, we have

m
y'b = (cl,...,cm)B_lb =(c1y...,cm)(x1,. .. ,a:m)T = Zcixi =c''x
i=1

Therefore, y is a solution to the dual instance o’ that satisfies ¢’ x = yTb.

This completes the proof of the theorem. [

The dual simplex method

Suppose that we have an instance a = (b, ¢, A) (in the standard form) of
the LINEAR PROGRAMMING problem. Often available is a vector x such that
x satisfies Ax = b but not x > 0. Moveover, x “optimizes” the objective
function value ¢’x in the sense that no reduced cost efficient is negative (cf.
Lemma 4.2.2). Such a situation may arise, for example, if a solution to a
certain instance § = (b, ¢, A) of the LINEAR PROGRAMMING problem is
calculated and then the instance « is constructed such that o differs from 8
only by the vector b. In such situations a basic solution to the dual instance
o’ of the instance « is available and hence, based on Theorem 4.3.3, it may
be desirable to approach the optimal solution for the instance « in such a
way as to optimize the dual instance /.

Rather than constructing a tableau for the dual instance o/, it is more
efficient to work on the dual instance from the tableau for the primal instance
a. The complete technique based on this idea is the dual simplex method.
In terms of the primal instance «, it operates by maintaining the optimality
condition of the reduced cost coefficients while working toward a solution
x to « that satisfies x > 0. In terms of the dual instance o/, however, it
maintains a solution to o’ while working toward optimality.

Formally, let the primal instance a be of the form

Primal Instance o

minimize cI'x

subject to Ax=b, x>0
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The dual instance o’ of the instance « is of the form

Dual Instance o

maximize yI'b
subject to yIA <c”

Suppose that m linearly independent columns of the matrix A have
been identified such that with these m columns as “basic columns”, no
reduced cost coefficient is negative. Again for convenience of our discussion,
suppose these m columns are the first m columns of A and let B be the
m X m nonsingular submatrix consisting of these m columns. Therefore,
the corresponding tableau should have the form (following our convention,

ai,...,a, denote the columns of the matrix A).
ay a2 - Qp Amtl Am+2 0 Ap
I 0 -+ 0 Yim+1 Yim+2 - Yin | 21
0 1 - 0 wyomt1 Y2mt2 - Yoo | T2
0 o --- 1 Ynm+1 Ymm+2 ~°° Ymn | Tm
0 0 - 0 rpa Tmt2 0 Thno| 20

where for each j, m 4+ 1 < j < n, we have

m m
=1 i=1

and
20 = —(c1w1 + cama + -+ epa) and  (a1,...,7,)" =B7'b (4.38)

We show how we find an optimal solution for the primal instance «,
starting from this tableau.

If 2; > 0 for all 1 < ¢ <m, then x = (z1,...,%m,,0,...,0) is an optimal
basic solution to the instance « so we are done.

Thus we suppose that there is an z, < 0 for some 1 < p < m. Fix this
index p.

Let y” = (c1,...,¢cm)B7! Theny” A= (c1,...,¢m, v, - - -+ Ch), Where
cg =Y it iy < cj, for j =m+1,...,n (see the proof for Theorem 4.3.3).
Thus, y'A < ¢’ and y” is a solution to the dual instance o/, with the

objective function value

yib=(c1,...,cm)B7 b= (c1,. . em) (@1, 2m)T = —20
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Thus, it is proper to call the vector x= (z1,...,Zm,0,...,0) the dual basic
solution to the instance « (distinguish it from the a basic solution to the
dual instance ), and the columns ag,...,a,, the dual basic columns.

Our intention is to replace a dual basic column by a new column so
that the dual basic solution corresponds to an improved solution to the dual
instance o’.

Note that B~'a; = (0,...,0,1,0,...,0)7 is the ith unit vector of
dimension m for i = 1,...,m (see equality (4.35)), and B7la; =
(Y15> Y24y - -+ Ymj) T for 5 = m+1,...,n (see equality (4.36)). Therefore,
if we let u, be the row vector given by the pth row of the matrix B!, we
will have

)0 ifi#p .
upaz—{ 1 ifi=p fori=1,...,m (4.39)
and
wa; =y, forj=m+1,...,n (4.40)

Let y! =yT — eu,. We show that with properly selected € > 0, y. is an
improved solution to the dual instance o'.
First consider

yiA = (y' —eu)A =yTA - cu A
= yTA —eulay,...,a,) (4.41)
= y'A— elupar, ..., wpam, Upam41, . . ., Upay)
= (€1, s Cmy Cpigs e Cy) —€(0,...,0,1,0, .. .,0, Ypmt1s-- - Ypn)
= (Clyve s Cpa1Cp = € Cpgls s Cmy Crni] — EYpmtds -« -5 Cry — EYpn)

The fifth equality is from the equalities (4.39) and (4.40).
If all y,; > 0 for j = m +1,...,n, then y, is a solution to the dual
instance o for any € > 0 with the objective function value

yIb = (y! - euy)b = yI'b — eu,b = yI'b — €Tp

(note B~!'b = (z1,...,2m,)T thus uyb = z,). Since , < 0, yIb can be
arbitrarily large. That is, the solution to the dual instance o’ is unbounded.
By Theorem 4.3.2, the primal instance « has no solution. Thus, again, we
are done.

So we assume that y,, < 0 for some ¢, m + 1 < ¢ < n. Select the index
q such that ¢ — eyp, is the first that meets ¢, when e increases from 0.
Therefore, the index g should be chosen as follows.
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Tq . Tj
€g=——"= min {———|y,; <0

Unq m+1§j§n{ Uos ’ypj }
(note yp, < 0 and 7y > 0 s0 g > 0). We verify that yI =y’ — eu, is a
solution to the dual instance o, i.e., yd A<c”.

Consider the equality (4.41). Since €y > 0, we have ¢, — €y < ¢,. More-

over, for each c;» — €oYpj with j = m +1,...,n, if y,; > 0, then of course
cg- — €0Ypj < c;- < ¢j; while for y,; < 0, by our choice of ¢ we have

Te o Ty TaoTi
Ypq Ypj Ypg  Ypj
and we have (note y,; < 0)
/ / T'q / Tj /
Cj—€0Ypj = Cj+ —Ypj S ¢+ —=Ypj =C; + 1 =¢j
Ypq Ypj

This proves that ygA < ¢’ and yy is a solution to the dual instance o'

Algorithm. Dual Simplex Method
INPUT: an instance a with a tableau 7 for a dual basic solution x to o
1. while (T[p,n + 1] < 0 for some 1 < p < m) do
if (no 7p,j] <0 for any 1 < j < n)
then stop: the instance o has no solution
else let T[p, q] have the minimum ratio in row p;
call TableauMove(T,p,q);

2. stop: the tableau 7 gives an optimal solution x to .

Figure 4.4: The Dual Simplex Method algorithm

We evaluate the objective function value for yq:
yib = (y! — eouy)b = yI'b — eouyb = yI'b — €0Tp

Since x, < 0, we have yOTb > y''b. In particular, if ¢y > 0, then yq is an
improvement over the solution y for the dual instance o’. The case ¢y = 0,
i.e., ry =0, is the degenerate situation for the dual simplex method. As we
have discussed for the regular simplex method, the dual simplex method in
general works fine with degenerate situations, and special techniques can be
adopted to handle degenerate situations.
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Therefore, the above procedure illustrates how we obtain an improved
solution for the dual instance o/ by replacing a dual basic column a, by
a new column a,. Note that this replacement is not done based on the
tableau for the solution y to the dual instance o/. Instead, it is accom-
plished based on the tableau for the dual basic solution x for the primal
instance «. This replacement can be simply done by calling the algorithm
TableauMove(T,p, q) in Figure 4.2 when the indices p and ¢ are decided.
We summarize this method in Figure 4.4, where we say that an element
T1p,q] in the pth row in 7 has the minimum ratio if the ratio —rq/ypq is
the minimum over all —r;/y,; with y,; < 0.

Example 4.3.1. Consider the following instance « for the LINEAR PRO-
GRAMMING problem.

minimize 3x1 + 4xo + bxs
subject to —x1 —2x9 — 323+ x4 = =5
—2x1 — 2x9 —x3+ 25 = —6

T1,T2,T3, T4, L5 > 0

The dual basic solution x = (0,0,0, -5, —6)T to a has the tableau

ap a2 a3 a4 a5
-1 -2 -3 1 0]-5
(2] 2 -1 0 1|-6
3 4 5 0 0|0
Pick x5 = —6. To find a proper element in the second row, we compute
the ratios —r,/y2q and select the one with the minimum ratio. This makes
us to pick yo1 = —2 (as indicated by the box). Applying the algorithm
TableauMove(T,2, 1) gives us
a; az a a4 3
0 |—-1| =5/2 1 —=1/2| -2
1 1 /2 0 -1/2| 3
0 1 7/2 0 3/2 | -9
Now pick x4 = —2 and choose the element y12 = —1 (as indicated in the
box). The algorithm Tableau(7,1,2) results in
ay a» az a4 ajs
0 1 5/2 -1 1/2| 2
1 0 -2 1 -1] 1
0o 0 1 1 1 | -11
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The last tableau yields a dual basic solution xo = (1,2,0,0,0)7 with
X9 > 0. Thus it must be an optimal solution to the instance a. The
objective fucntion value on xq is 11.

4.4 Polynomial time algorithms

It was an outstanding open problem whether the LINEAR PROGRAMMING
problem could be solved in polynomial time, until the spring of 1979, the
Russian mathematician L. G. Khachian published a proof that an algorithm,
called the Ellipsoid Algorithm, solves the LINEAR PROGRAMMING problem
in polynomial time [85]. Despite the great theoretical value of the Ellipsoid
Algorithm, it is not clear at all that this algorithm can be practically useful.
The most obvious among many obstacles is the large precision apparently
required.

Another polynomial time algorithm for the LINEAR PROGRAMMING
problem, called the Projective Algorithm, or more generally, the Interior
Point Algorithm, was published by N. Karmarkar in 1984 [79]. The Projec-
tive Algorithm, and its derivatives, have great impact in the study of the
LINEAR PROGRAMMING problem.



