Chapter 3

Maximum Flow

In this chapter, we consider the following problem: suppose that we have
built a network of pipes to transport oil in an area. Each pipe has a fixed
capacity for pumping oil, measured by barrels per hour. Now suppose that
we want to transport a very large quantity of oil from city s to city t. How
do we use the network system of pipes so that the oil can be transported in
the shortest time?

This problem can be modeled by the MAXiMUM FLOW problem. The
network of pipes will be modeled by a directed graph G with two distin-
guished vertices s and ¢. Each edge in the graph G is associated with an
integer, indicating the capacity of the corresponding pipe. Now the problem
is to assign each edge with a flow, less than or equal to its capacity, so that
the maximum amount of flow goes from vertex s to vertex t.

The MaxiMUM FLOW problem arises in many settings in operations re-
search and other fields. It can be used to model liquids flowing through pipes,
parts through assembly lines, current through electrical networks, informa-
tion through communication networks, and so forth. Efficient algorithms for
the problem have received a great deal of attention in research.

In this chapter, we will study fundamental properties and efficient algo-
rithms for the MAXiMUM FLOW problem. In particular, we give detailed
analysis on the shortest path saturation method, and show how it leads to
efficient algorithms for MAXiMUM FLow. We also show how algorithms for
MAXIMUM FLOW can be used to solve the GRAPH MATCHING prolem on un-
weighted bipartite graphs. Remarks on related topics and further readings
on the MAXIMUM FLOW problem are also given.

o1

52 MaxiMuM FLow

3.1 Preliminary

We start with the formal definitions.

Definition 3.1.1 A flow network G = (V, E) is a directed graph with two
distinguished vertices s (the source) and ¢ (the sink). Each edge [u,v] in G is
associated with a positive integer cap(u,v), called the capacity of the edge.
If there is no edge from vertex u to vertex v, then we define cap(u,v) = 0.

Remark. There is no special restriction on the directed graph G that
models a flow network. In particular, we allow edges in G to be directed
into the source and out of the sink.

Intuitively, a flow in a flow network should satisfy the following condi-
tions: (1) the amount of flow along an edge should not exceed the capacity
of the edge (capacity constraint); (2) a flow from a vertex u to a vertex v
can be regarded as a “negative” flow of the same amount from vertex v to
vertex u (skew symmetry); and (3) except for the source s and the sink ¢,
the amount of flow getting into a vertex v should be equal to the amount
of flow coming out of the vertex (flow conservation). These conditions are
formally given in the following definition.

Definition 3.1.2 A flow f in a flow network G = (V, E) is an integer-valued
function on pairs of vertices of G satisfying the following conditions:

1. For all u,v € V', cap(u,v) > f(u,v) (capacity constraint);
2. For all u,v € V| f(u,v) = —f(v,u) (skew symmetry);

3. For all u # s,t, 3 cy f(u,v) =0 (flow conservation).

An edge [u,v] is saturated by the flow f if cap(u,v) = f(u,v). A path P
in the flow network G is saturated by the flow f if at least one of the edges
in P is saturated by f.

Note that even when there is no edge from a vertex u to a vertex v, the
flow value f(u,v) can still be non-zero. For example, suppose that there is
no edge from u to v but there is an edge from v to u of capacity 10, and that
the flow value f(v,u) is equal to 8. Then by the skew symmetry property,
the flow value f(u,v) is equal to —8, which is not 0. On the other hand, by
the capacity constraint, it is easy to see that if there is neither edge from u
to v and nor edge from v to u, then the flow value f(u,v) must be 0.

PRELIMINARY 53

v o4/4 vz 2/0 t
7/4 4/4 8/4
s 2/0 vz 4/4 v

Figure 3.1: A flow network with a flow.

Figure 3.1 is an example of a flow network G with a flow, where on each
edge e = [u,v], we label a pair of numbers as “a/b” to indicate that the
capacity of the edge e is @ and the flow from vertex u to vertex v is b.

The value of a flow f in a flow network G = (V, E) with the source s
and the sink ¢ is defined to be >°, oy f(s,v), denoted by |f|.

Now the MAaXiMUM FLOW problem can be formally defined using our
definition of optimization problems as a 4-tuple.

MaxiMuM Frow = (Ig, S, fo,optg)

In: the set of flow networks G

Sg: Sq(G) is the set of flows f in G

fo: [fo(G, f) is equal to the flow value |f]
optg: max

Our first observation on the properties of a flow is as follows.

Lemma 3.1.1 Let G = (V, E) be a flow network with the source s and the
sink t, and let f be a flow in G. Then the value of the flow f is equal to
ZUGV f("U, t) .

Proor. We have

|f’:Zf(S7U): Z Zf(wvv)_ZZf(wvv)

veV weV veV w#sveV

By the skew symmetry property, f(w,v) = —f(v,w). Note that in the sum
> wev 2vev f(w,v), for each pair of vertices w and v, both f(w,v) and
f(v,w) appear exactly once. Thus, we have >, oy >, cy f(w,v) = 0. Now
apply the skew symmetry property on the second term on the right hand

side, we obtain
1= f(v,w)

w#sveV

54 MaxiMuM FLow

Thus, we have

‘f|:ZZf(va): Z Zf(vvw)+2f(vvt)

w#s veV w{s,t} veV veV

Finally, according to the skew symmetry property and the flow conservation
property, for each w # s,t, we have

S fw) ==Y f(w,w) =0

veV veV

Thus, the sum 3 ,g¢5 1 2 vey f(v,w) is equal to 0. This gives the proof
that |f| = ZUEV f(’U,t)

The following lemma describes a basic technique to construct a positive
flow in a flow network.

Lemma 3.1.2 Let G = (V, E) be a flow network with the source s and the
sink t. There is a flow f in G with a positive value if and only if there is a
path in G from s to t.

PROOF. Suppose that there is a path P from the source s to the sink ¢. Let
e be an edge on P with the minimum capacity ¢ > 0 among all edges in P.
Now it is easy to see that if we assign flow ¢ to each edge on the path P,
and assign flow 0 to all other edges, we get a valid flow of value ¢ > 0 in the
flow network G.

For the other direction, suppose that f is a flow of positive value in the
flow network G. Suppose that the sink ¢ is not reachable from the source s.
Let V' be the set of vertices in G that are reachable from s. Then t ¢ V.

Let w be a vertex in V’'. We first show

Zf(U)?U):Zf(wvv)_Zf(wvv>22f(w>v) (31)

veV’ veV vgV! veV

In fact, for any v ¢ V', since v is not reachable from the source s, there is
no edge from w to v. Thus, cap(w,v) = 0, which implies f(w,v) < 0 by the
capacity constraint property.

By Equation (3.1), we have

|f|:Zf(Sav)§Zf(3aU):Z Zf(wvv)_ Z Zf(w7v)

veV veV’ weV’ veV! weV'—{s} veV’

PRELIMINARY 55

By the skew symmetry property, > .,cv’ > ey f(w,v) = 0. Thus,

fl== > > flwv)

weV/—{s} veV’

For each w € V' —{s}, according to Equation (3.1) and the flow conservation
property, we have (note ¢ € V' so w is neither t)

S fww) > Y flw,w) =0

veV’ veV

Thus, we have |f| < 0. This contradicts our assumption that f is a flow of
positive value. This contradiction shows that the sink ¢ must be reachable
from the source s, or equivalently, there is a path in the flow network G
from the source s to the sink ¢. []

Thus, to construct a positive flow in a flow network GG, we only need to
find a path from the source to the sink. Many graph algorithms effectively
find such a path.

Now one may suspect that finding a maximum flow is pretty straight-
forward: each time we find a path from the source to the sink, and add a
new flow to saturate the path. After adding the new flow, if any edge be-
comes saturated, then it seems the edge has become useless so we delete it
from the flow network. For those edges that are not saturated yet, it seems
reasonable to have a new capacity for each of them to indicate the amount
of room left along that edge to allow further flow through. Thus, the new
capacity should be equal to the difference of the original capacity minus the
amount of flow through that edge. Now on the resulting flow network, we
find another path to add further flow, and so forth.

One might expect that if we repeat the above process until the flow
network contains no path from the source s to the sink ¢, then the obtained
flow must be a maximum flow. Unfortunately, this observation is incorrect.

Consider the flow network with the flow in Figure 3.1. After deleting
all saturated edges, the sink ¢ is no longer reachable from the source s (see
Figure 3.2).

However, it seems that we still can push a flow of value 2 along the
“path” s — v3 — vo — t, where although we do not have an edge from wvs
to vg, but we still can push a flow of value 2 from v3 to ve by reducing the
original flow by 2 on edge [ve,v3]. This, in fact, does result in a larger flow
in the original flow network, as shown in Figure 3.3.

Therefore, when a flow f(u,v) is assigned on an edge [u, v], it seems that
not only do we need to modify the capacity of the edge [u,v] to cap(u,v) —

56 MaxiMuM FLow

V1 v2 2 t
3 i 4 ;
S 2 v3 V4

Figure 3.2: t is not reachable from s after deleting saturated edges.

vio4/4 v2 o 2/2 ¢
) L
s 2/2 v3 4/4 Vg

Figure 3.3: A flow larger than the one in Figure 77

f(u,v) to indicate the amount of further flow allowed through the edge, but
also we need to record that a flow of amount f(u,v) can be pushed along the
opposite direction [v,u], which is done by reducing the original flow along
the edge [u,v]. In other words, we need add a new edge of capacity f(u,v)
from the vertex v to the vertex u. Motivated by this discussion, we have the
following definition.

Definition 3.1.3 Given a flow network G = (V, E) and given a flow f in
G, the residual network Gy = (V,E') of G (with respect to the flow f) is a
flow network that has the same vertex set V as G. Moreover, for each vertex
pair u,v, if cap(u,v) > f(u,v), then [u,v] is an edge in Gy with capacity
cap(u,v) — f(u,v).

Figure 3.4 is the residual network of the flow network in Figure 3.1 with
respect to the flow given in the Figure. It can be clearly seen now that in
the residual network, there is a path from s to t: s — v3 — vy — ¢.

Remark. New edges may be created in the residual network Gy that were
not present in the original flow network G. For example, there is no edge
from vertex v3 to vertex vs in the original flow network in Figure 3.1, but in
the residual network in Figure 3.4, there is an edge from vs to vo. However,
if there is neither an edge from v to v nor an edge from v to u, then, since
we must have cap(u,v) = f(u,v) = 0, there is also no edge from u to v in
the residual network. This implies that the number of edges in a residual

PRELIMINARY 57

v1 v2 t

S v3 V4

Figure 3.4: The residual network for Figure 3.1

network cannot be more than twice of that in the original flow network.
This fact will be useful when we analyze maximum flow algorithms.

Lemma 3.1.3 Let G be a flow network and let f be a flow in G. If f* is
a flow in the residual network Gy, then the function f™ = f+ f*, defined
as fT(u,v) = f(u,v)+ f*(u,v) for all vertices u and v, is a flow with value

[T =11+ 1 in G.

PRrooF. It suffices to verify that the function fT satisfies all the three
constraints described in Definition 3.1.2. For each pair of vertices u and v
in G, we denote by cap(u,v) the capacity from u to v in the original flow
network G, and by caps(u,v) the capacity in the residual network G/.

The Capacity Constraint Condition. We compute the value cap(u,v) —
f*(u,v). By the definition we have

cap(u, U) - f+(uvv) = Cap(’u,,’l)) - f(u,v) - f*(uvv)

Now by the definition of capy, we have cap(u,v) — f(u,v) = capy(u,v).
Moreover, since f*(u,v) is a flow in the residual network Gy, caps(u,v) —
f*(u,v) > 0. Consequently, we have cap(u,v) — f*(u,v) > 0.

The Skew Symmetry Condition. Since both f(u,v) and f*(u,v) are flows
in the flow networks G and G, respectively, we have f(u,v) = —f(v,u) and
f*(u,v) = —f*(v,u). Thus,

FHu,v) = flu,v) + fHu,v) = —f(v,u) — f*(v,u) = —f(v,u)

The Flow Conservation Condition. Again, since both f(u,v) and
f*(u,v) are flows in the flow networks G and Gy, respectively, we have
for all u # s,t

Y) =Y fuo)+ Y fFuw) =0

veV veV veV

58 MaxiMuM FLow

Thus, f* is a flow in the flow network G. For the flow value of f*, we have

=22 s0) =D f(s,0) + Y fi(s,0) = [f +|f7]

veV veV veV]

Now we are ready for the following fundamental theorem for maximum
flow algorithms.

Theorem 3.1.4 Let G be a flow network and let f be a flow in G. The flow
[is a mazimum flow in G if and only if the residual network Gy has no
positive flow, or equivalently, if and only if there is no path from the source
s to the sink t in the residual network Gy.

PROOF. The equivalence of the second condition and the third condition is
given by Lemma 3.1.2. Thus, we only need to prove that the first condition
and the second condition are equivalent.

Suppose that f is a maximum flow in G. If the residual network Gy has
a positive flow f*, |f*| > 0, then by Lemma 3.1.3, f* = f+ f* is also a flow
in G with flow value |f| + |f*|. This contradicts the assumption that f is a
maximum flow in G since |f*| > 0. Thus, the residual network G has no
positive flow.

For the other direction, we assume that f is not a maximum flow in G.
Let fmax be a maximum flow in G. Thus, |fmax| — |f] > 0. Now define
a function f~ on each pair (u,v) of vertices in the residual network G as
follows,

f_(ua U) = fmax(uav) - f(u,v)

We claim that f~ is a valid flow in the residual network G .
The function f~ satisfies the capacity constraint condition: since
cap¢(u,v) = cap(u,v) — f(u,v), we have

capy(u,v) = f~(u,0) = cap(u,v) — f(u,v) = f~(u,v)

Note that f(u,v)+ f~ (4, v) = fmax(u,v). Since fmax is a flow in G, we have
cap(u,v) — fmax(u,v) > 0. Consequently, we have caps(u,v) — f~(u,v) > 0.
The function f~ satisfies the skew symmetry condition:

f_(u’v) = fmax(u7v) - f(u7v) = _fmax(va U) + f(va u) = —f_(U,’LL)

The function f~ satisfies the flow conservation condition: for all u # s, t,

we have
ST 0) = 3 fuax(w0) = 3 fluyv) =0

veV veV veV

SHORTEST PATH SATURATION 99

Thus, f~ is a valid flow in the residual network G y. Moreover, since we
have

|f_| = Z f(s,0) = Z Jmaz(8,v) — Z J(5,v) = | fmae| = [f| >0

veV veV veV

We conclude that the residual network Gy has a positive flow.
This completes the proof of the theorem. [

Theorem 3.1.4 suggests a classical method (called Ford-Fulkerson’s
method), described in Figure 3.5 for constructing a maximum flow in a given
flow network.

Algorithm. Ford-Fulkerson
INPUT: a flow network G
OUuTPUT: a maximum flow f in G

1. let f(u,v) =0 for all pairs (u,v) of vertices in G}
2. construct the residual network G y;

3. while there is a positive flow in Gy do

3.1 construct a positive flow f* in G;
3.2 let f = f+ f* be the new flow in Gj
3.3 construct the residual network G.

Figure 3.5: Ford-Fulkerson’s method for maximum flow

According to Lemma 3.1.2, there is a positive flow in the residual network
G if and only if there is a directed path from the source s to the sink ¢ in
G . Such a directed path can be found by a number of efficient graph search
algorithms. Thus, the condition in the while loop in step 3 in the algorithm
Ford-Fulkerson can be easily checked. Theorem 3.1.4 guarantees that
when the algorithm halts, the obtained flow is a maximum flow.

The only problem left is how we construct a positive flow each time the
residual network G is given. In order to make the algorithm efficient, we
need to adopt a strategy that constructs a positive flow in the given residual
network G effectively so that the number of executions of the while loop
in step 3 is as small as possible. Many algorithms have been proposed for
finding such a positive flow. In the next section, we describe an important
technique, the shortest path saturation method, for constructing a positive
flow given a flow network. We will see that when this method is adopted,
the algorithm Ford-Fulkerson is efficient.

60 MAXIMUM FLOW

3.2 Shortest path saturation method

The method of shortest path saturation is among the most successful meth-
ods in constructing a positive flow in the residual network G to limit the
number of executions of the while loop in step 3 of the algorithm Ford-
Fulkerson, where the length of a path is measured by the number of edges
in the path.

In the rest discussions in this chapter, we always assume that the flow
network GG has n vertices and m edges.

We first briefly describe an algorithm suggested by Edmond and Karp
[37]. Edmond and Karp considered the method of constructing a positive
flow for the residual network G by finding a shortest path from s to ¢ in
Gy and saturating it. Intuitively, each execution of this process saturates
at least one edge from a shortest path from s to ¢ in the residual network
Gy. Thus, after O(m) such executions, all shortest paths from s to ¢ in
G are saturated, and the distance from the source s to the sink ¢ should
be increased. This implies that after O(nm) such executions, the distance
from s to t should be larger than n, or equivalently, the sink ¢ will become
unreachable from the source s. Therefore, if we adopt Edmond and Karp’s
method to find positive flow in the residual network Gy, then the while
loop in step 3 in the algorithm Ford-Fulkerson is executed at most O(nm)
times. Since a shortest path in the residual network Gy can be found in
time O(m) (using, for example, breadth first search), this concludes that
Edmond-Karp’s algorithm finds the maximum flow in time O(nm?).

Dinic [35] proposed a different approach. Instead of finding a single
shortest path in the residual network Gy, Dinic finds all shortest paths from
s to t in Gy, then saturates all of them. In the following, we give a detailed
analysis for this approach.

Definition 3.2.1 Let G be a flow network. A flow f in G is a shortest
saturation flow if (1) f(u,v) > 0 implies that [u,v] is an edge in a shortest
path from s to ¢ in G, and (2) the flow f saturates every shortest path from
stotinG.

For each vertex v in a flow network GG with source s and sink ¢, denote
by dist(v) the length of (i.e., the number of edges in) the shortest path in
G from the source s to v (the distance from s to v). Similarly, if f is a flow
in G, we let dists(v) be the length of the shortest path from s to v in the
residual network G .

SHORTEST PATH SATURATION 61

Lemma 3.2.1 Let G be a flow network with source s and sink t, and let f
be a shortest saturation flow in G. Then dist(t) < dists(t).

PrOOF. First we note that if a vertex v is on a shortest path P from the
source s to a vertex w in G, then the subpath of P from s to v is a shortest
path from s to v.

We prove two facts.

Fact 1: Suppose [v,w] is an edge in G, then dist(w) < dist(v) + 1.

Suppose [v,w] is an edge in G. Then since any shortest path from s to
v plus the edge [v,w] is a path from s to w, whose length cannot be smaller
than dist(w), we have dist(w) < dist(v) + 1.

If [v,w] is not an edge in G, then since [v,w] is an edge in the residual
network G of G' with respect to the flow f, the flow value f(w,v) must be
larger than 0. Since f is a shortest saturation flow, only for edges in shortest
paths from s to ¢ in G, f may have positive flow value. Thus [w, v] must be
an edge in a shortest path P from s to ¢ in G. Then the subpath of P from
s to w is a shortest path from s to w, and the subpath of P from s to v is
a shortest path from s to v. That is, dist(w) = dist(v) — 1, which of course
implies dist(w) < dist(v) + 1.

Fact 2: For any vertex v, we have dist(v) < dist¢(v).

Suppose r = dists(v). Let (s,vi,v2,...,v,—1,v) be a shortest path in
Gy from s to v. Then by Fact 1, we have dist(v) < dist(v,—1)+1, dist(v;) <
dist(vi—1) + 1, for i =2,...,r — 1, and dist(v1) < dist(s) + 1. Thus,

dist(v) < dist(v,—1)+1
< dist(vy—2) +2
< dist(vy) + (r— 1)
< dist(s)+r

r = disty(v)

This proves Fact 2.

Now we are ready to prove our lemma.

Fact 2 shows that dist(t) < disty(t). Hence, to prove the lemma, we
only need to show that dist(t) and dist¢(t) are distinct. Let us assume the
contrary that dist(t) = disty(t) = r and derive a contradiction.

Let P = (vo,v1,...,0r—1,v;) be a shortest path in the residual network
G from the source s to the sink ¢, where vy = s and v, = t. By Fact 1, we

62 MAXIMUM FLOW

have
dist(v,) < dist(vy—1)+1
< dist(vy_2) + 2
< dist(vg) + r
= dist(s)+r=r
By our assumption, we also have dist(v,) = dist(t) = r. Thus, all in-

“_»

equalities “<” in the above formula should be equality This gives
dist(viy1) = dist(v;) + 1 for all ¢ = 0,...,7 — 1. But this implies that all
[vi,viy1] are also edges in the original flow network G. In fact, if [v;, vi11]
is not an edge in G, then since [v;, v;1+1] is an edge in the residual network
Gy, [vit1,v] must be an edge in G with the flow value f(vit1,v;) > 0.
Since f is a shortest saturation flow, f(v;11,v;) > 0 implies that the edge
[vit1,v;] is in a shortest path in G from s to ¢. But this would imply that
dist(viy1) = dist(v;) — 1, contradicting the fact dist(vi11) = dist(v;) + 1.
Thus all [v;,vi4+1],7=0,...,7 —1, are edges in the original flow network
G, so P is also a path in G. Since P is of length r and dist(t) = r, P is
a shortest path from s to t. Since f is a shortest saturation flow, the path
P in G must be saturated by f, i.e., one of the edges in P is saturated by
f, which, by the definition of residual networks, should not appear in the
residual network Gy. But this contradicts the assumption that P is a path
in G'y. This contradiction shows that we must have dist(t) < disty(t). [

Now we are ready to discuss how the shortest path saturation method
is applied to the algorithm Ford-Fulkerson.

Theorem 3.2.2 If in each execution of the while loop in step 8 in the
algorithm Ford-Fulkerson, we construct a shortest saturation flow f* for
the residual network Gy, then the number of executions of the while loop is
bounded by n — 1.

PROOF. Suppose that f* is a shortest saturation flow in the residual network
Gy. By Lemma 3.2.1, the distance from s to ¢ in the residual network (G) s+
(of G¢ with respect to f*) is at least 1 plus the distance from s to t in the
original residual network G . Note that the residual network (Gy)s+ of G
with respect to f* is the residual network G s« of the original flow network
G with respect to the new flow f + f*. This can be easily verified by the

SHORTEST PATH SATURATION 63

following relation:

capy(u,v) = f*(u,0) = cap(u,v) = (f(u,v) + f*(u,v))
= cap(u,v) = [f + [7](u,)

Thus, caps(u,v) > f*(u,v) if and only if cap(u,v) > [f + f*](u,v), or
equivalently, [u,v] is an edge in (Gy) ¢« if and only if it is an edge in Gy p«.

Therefore, the distance from s to ¢ in the current residual network Gy is
at least 1 plus the distance from s to t in the residual network in the previous
execution of the while loop. Since before the while loop, the distance from
stotin Gy = G is at least 1 (s and t are distinct in G), we conclude
that after n — 1 executions of the while loop, the distance from s to ¢ in
the residual network Gy is at least n. This means that the sink ¢ is not
reachable from the source s in the residual network Gy. By Theorem 3.1.4,
the algorithm Ford-Fulkerson stops with a maximum flow f. [

The problem left is how a shortest saturation flow can be constructed
for the residual network Gy. By the definition, a shortest saturation flow
saturates all shortest paths from s to t and has positive value only on edges
on shortest paths from s to t. Thus, constructing a shortest saturation flow
can be split into two steps: (1) finding all shortest paths from s to t in Gy,
and (2) saturating all these paths.

Since there can be too many (up to ©(2°") for some constant ¢ > 0)
shortest paths from s to t, it is infeasible to enumerate all of them. In-
stead, we construct a subnetwork Lg in G, called the layered network, that
contains exactly those edges contained in shortest paths of Gy from s to t.

The layered network Lo of Gy can be constructed using a modification
of the well-known breadth first search process, given in Figure 3.6, where @
is a queue that is a data structure serving for “first-in-first-out”.

Stage 1 of the algorithm Layered-Network is a modification of the
standard breadth first search process. The stage assigns a value dist(v)
to each vertex v, which equals the distance from the source s to v, and
includes an edge [v, w] in Ly only if dist(v) = dist(w) — 1. The difference of
this stage from the standard breadth first search is that for an edge [v,w]
with dist(v) = dist(w) — 1, even if the vertex w has been in the queue @,
we still include the edge [v,w] in Ly to record the shortest paths from s to
w that contain the edge [v,w]. Therefore, after stage 1, for each vertex v,
exactly those edges contained in shortest paths from s to v are included in
the network Ly = (Vp, Ep).

Stage 2 of the algorithm is to delete from Lo all vertices (and their
incident edges) that are not in shortest paths from the source s to the sink

64 MAXIMUM FLOW

Algorithm. Layered-Network

INPUT: the residual network Gy = (Vy, Ef)
OuTPUT: the layered network Lo = (Vo, Eo) of G

Stage 1. \\constructing all shortest paths from s to each vertex
1. Vo=0; Eo=0;
2. for all vertices v in Gy do dist(v) = oo;
3. dist(s) =0; Q + s;
4. while @ is not empty do
CRaR®
for each edge [v,w] do
if dist(w) = oo then
Q +— w; dist(w) = dist(v) +1; Vo =VoU{w}; Eo = Ep U {[v,w]};
else if dist(w) = dist(v) + 1 then Ey = Eg U {[v,w]};

Stage 2. \\deleting vertices not in a shortest path from s to ¢
5. let L{ be Lo = (Vo, Eo) with all edge directions reversed;

6. perform a breadth first search on Lg, starting from ¢;

7. delete the vertices v from Lg if v is not marked in step 6.

Figure 3.6: Construction of the layered network Lg

t. Since Lo contains only shortest paths from s to each vertex and every

vertex in Ly is reachable from s in Lo, a vertex v is not contained in any

shortest path from s to ¢ if and only if ¢ is not reachable from v in the network

Ly, or equivalently, v is not reachable from ¢ in the reversed network L.

Step 6 in the algorithm identifies those vertices that are reachable from ¢ in
0, and step 7 deletes those vertices that are not identified in step 6.

Therefore, the algorithm Layered-Network correctly constructs the
layered network Lg of the residual network G . By the well-known analy-
sis for the breadth first search process, the running time of the algorithm
Layered-Network is bounded by O(m).

Having obtained the layered network Lg, we now construct a shortest
saturation flow so that for each path from s to t in Ly, at east one edge is
saturated. There are two different methods for this, which are described in
the following two subsections.

3.2.1 Dinic’s algorithm

Given the layered network Lo, Dinic’s algorithm for saturating all shortest
paths from s to ¢ in G is very simple, and can be described as follows.
Starting from the vertex s, we follow the edges in L to find a maximal path
P of length at most dist(t). Since the network Lg is layered and contains

SHORTEST PATH SATURATION 65

only edges in the shortest paths from s to ¢ in G, the path P can be found
in a straightforward way (i.e., at each vertex, simply follow an arbitrary out-
going edge from the vertex). Thus, the path P can be constructed in time
O(dist(t)) = O(n). Now if the ending vertex is ¢, then we have found a path
from s to t. We trace back the path P to find the edge e on P with minimum
capacity c¢. Now we can push ¢ amount of flow along the path P. Then we
delete the edges on P that are saturated by the new flow. Note that this
deletes at least one edge from the layered network Lg. On the other hand,
if the ending vertex v of P is not ¢, then v must be a "deadend”. Thus,
we can delete the vertex v (and all incoming edges to v). In conclusion,
in the above process of time O(n), at least one edge is removed from the
layered network Ly. Thus, after at most m such processes, the vertices s and
t are disconnected, i.e., all shortest paths from s to ¢ are saturated. This
totally takes time O(nm). A formal description for this process is given in
Figure 3.7.

Algorithm. Dinic-Saturation
INPUT: the layered network Lo
OuTPUT: a shortest saturation flow f* in Gy

1. while there is an edge from s in Lo do
1.1 find a path P of maximal length from s in Lg;
1.2 if P leads to t then

saturate P and delete at least one edge on P;

1.3 else delete the last vertex of P from Lg.

Figure 3.7: Dinic’s algorithm for a shortest saturation flow

For completeness, we present in Figure 3.8 the complete Dinic’s algo-
rithm for constructing a maximum flow in a given flow network.

Theorem 3.2.3 The running time of Dinic’s mazimum flow algorithm (Al-
gorithm Max-Flow-Dinic in Figure 3.8) is O(n?m).

ProoOF. Theorem 3.2.2 claims that the while loop in step 3 in the algorithm
is executed at most n — 1 times. In each execution of the loop, constructing
the layered network Lo by Layered-Network takes time O(m). Construct-
ing the shortest saturation flow f* in G from the layered network Lo by
Dinic-Saturation takes time O(nm). All other steps in the loop takes
time at most O(n?). Therefore, the total running time for the algorithm
Max-Flow-Dinic is bounded by O(n?m). [

66 MAXIMUM FLOW

Algorithm. Max-Flow-Dinic

INPUT: a flow network G

OUTPUT: a maximum flow f in G

1. let f(u,v) =0 for all pairs (u,v) of vertices in G}

2. construct the residual network G y;

3. while there is a positive flow in Gy do
call Layered-Network to construct the layered network Lo for G y;
call Dinic-Saturation on Lg to construct a shortest saturation flow f*;
let f = f+ f* be the new flow in G;

construct the residual network Gy.

Figure 3.8: Dinic’s algorithm for maximum flow

3.2.2 Karzanov’s algorithm

In Dinic’s algorithm Max-Flow-Dinic, the computation time for each exe-
cution of the while loop in step 3 is dominated by the substep of constructing
the shortest saturation flow f* in Gy from the layered network Lg. There-
fore, if this substep can be improved, then the time complexity of the whole
algorithm can be improved. In this subsection, we show an algorithm by
Karzanov [84] that improves this substep.

Let us have a closer look at our construction of the shortest saturation
flow f* in the algorithm Max-Flow-Dinic. With the layered network Lg
being constructed, we iterate the process of searching a path in Ly from the
source s to the sink ¢, pushing flow along the path, and saturating (thus
cutting) at least one edge on the path. In the worst case, for each such
a path, we may only be able to cut one edge. Therefore, to ensure that
the source s is eventually separated from the sink t in Ly, we may have to
perform the above iteration m times.

The basic idea of Karzanov’s algorithm is to reduce the number of times
we have to perform the above iteration from m to n. In each iteration,
instead of saturating an edge in Ly, Karzanov saturates a vertex in Lg.
Since there are at most n vertices in the layered network Lg, the number of
iterations will be bounded by n.

Definition 3.2.2 Let v be a vertex in the layered network Ly = (Vp, Ep).
Define the capacity, cap(v), of the vertex v to be

cap(v) = min Z cap(w,v), Z cap(v,u)

[w,v]€Ey [v,ul€Eq

SHORTEST PATH SATURATION 67

That is, cap(v) is the maximum amount of flow we can push through the
vertex v. For the source s and the sink ¢, we naturally define

cap(s) = Z cap(s,u) and cap(t) = Z cap(w,t)
[S,u]GEo [w,t]GEo

If we start from an arbitrary vertex v and try to push a flow of amount
cap(v) through v, it may not always be possible. For example, pushing
cap(v) = 10 units flow through a vertex v may require to push 5 units
flow along an edge (v,w), which requires that cap(w) is at least 5. But
the capacity of the vertex w may be less than 5, thus we would be blocked
at the vertex w. However, if we always pick the vertex w in Ly with the
smallest capacity, this problem will disappear. In fact, trying to push a
flow of amount cap(w), where w has the minimum cap(w), will require no
more than cap(v) amount of flow to go through a vertex v for any vertex v.
Therefore, we can always push the flow all the way to the sink ¢ (assuming
we have no deadend vertices). Similarly, we can pull this amount cap(w) of
flow from the incoming edges of w all the way back to the source s. Note
that this process saturates the vertex w. Thus, the vertex w can be removed
from the layered network Ly in the remaining iterations.

Now we can formally describe Karzanov’s algorithm. The first subrou-
tine given in Figure 3.9 computes the capacity for each vertex in the layered
network L.

Algorithm. Karzanov-Initiation
INPUT: the layered network Lo
OUTPUT: the vertex capacity for each vertex
1. for each vertex v # s,t do in[v] = 0; out[v] = 0;
2. in[s] = +oo; out[t] = +o0;
3. for each edge [u,v] in Lo do
in[v] = inv] + cap(u,v); out[u] = out[u] + cap(u,v);

4. for each vertex v in Lo do cap[v] = min{in[v], out[v]}.

Figure 3.9: Computing vertex capacities

We will always start with a vertex v with the smallest cap(v) and push a
flow f¥ of amount cap(v) through it all the way to the sink ¢. This process,
called Push(v, f¥) and given in Figure 3.10, is similar to the breadth first
search process starting from v. We use the array fl[w] to record the amount
of flow requested to push through the vertex w, and fl[w] = 0 implies that
the vertex w has not been seen in the breadth first search process.

68 MAXIMUM FLOW

Algorithm. Push(v, f)
INPUT: the layered network Lo
1. Q<+ v; {Q is a queue} fl[v] = cap(v);
2. while @ is not empty do
2.1 uQ; fo= fllul;
2.2 while fp > 0 do
pick an out-going edge [u,w] from u;
if fljw] =0 and w # ¢ then Q + w;
2.2.1 if cap(u, w) < fo then
FV(u,w) = cap(u,w); delete the edge [u, w];
Flfw] = flfw] + cap(u,w); fo = fo— cap(u, w);
2.2.2 else {cap(u,w) > fo}
fou,w) = fo; fllw] = fllw] + fo;
cap(u, w) = cap(u, w) — fo; fo=0;
2.3 if u # v then cap(u) = cap(u) — flul;
24 if u # v and cap(u) = 0 then delete the vertex u.

Figure 3.10: Pushing a flow of value cap(v) from v to ¢

We make a few remarks on the algorithm Push(v, f¥). First we assume
that there is no dead-vertex in the layered network L. That is, every edge
in Lo is on a shortest path from s to ¢. This condition holds when the
layered network Lg is built by the algorithm Layered-Network. We will
keep this condition in Karzanov’s main algorithm when vertices and edges
are deleted from L.

The algorithm Push(v,), unlike the standard breadth first search,
may not search all vertices reachable from v. Instead, for each vertex u,
with a requested flow amount fl[u] through it, the algorithm looks at the
out-going edges from u to push the flow of amount fl[u] through these
edges. Once this amount of flow is pushed through some of these edges, the
algorithm will ignore the rest of the out-going edges from u. Note that since
the vertex v has the minimum cap(v), and no fl[u] for any vertex u is larger
than cap(v), the amount fl[u] can never be larger than cap(u). Thus, the
amount fl[u] of flow can always be pushed through the vertex w.

When a flow f’ is pushed along an edge [u,w], we add f" to fl[w] to
record this new requested flow through the vertex w. Note that when a
vertex u is picked from the queue @ in step 2.1, the flow requested along
in-coming edges to u has been completely decided. Thus, fl[u] records the
correct amount of flow to be pushed through .

SHORTEST PATH SATURATION 69

Also note in Subroutine Push(v, f¥), we neither change the value cap(v)
nor remove the vertex v from the layered network Lg. This is because the
vertex v will be used again in the following Pull(v, V) algorithm.

The algorithm Pull(v, fV) is very similar to algorithm Push(v, f”). We
start from the vertex v and pull a flow fY of amount cap(v) all the way
back to the source vertex s. Now the breadth first search is on the reversed
directions of the edges of the layered network Lg. Thus, we will also keep a
copy of the reversed layered network L, which is Ly with all edge directions
reversed. The reversed layered network L{; can be constructed from the
layered network Lo in time O(m) (this only needs to be done once for all
calls to Pull). Moreover, the only vertex that can be seen in both algorithms
Push(v, f) and Pull(v, f?) is the vertex v — Push(v, f") is working on the
vertices “after” v in Lo while Pull(v, f¥) is working on the vertices “before”
v in Ly. Therefore, no updating is needed between the call to Push(v, f?)
and the call to Pull(v, f¥). The algorithm Pull(v, fV) is given in Figure 3.11.

After the execution of the Pull(v, f) algorithm, the vertex v with min-
imum capacity always gets removed from the layered network L.

Algorithm. Pull(v, f?)
INPUT: the reversed layered network Lg
1. Q<+ v; {Q is a queue} fl[v] = cap(v);
2. while @ is not empty do
2.1. u Q; fo = fllu];
2.2. while fp > 0 do
pick an in-coming edge [w, u] to u;
if fljw] =0 and w # s then Q + w;
2.2.1. if cap(w,u) < fo then
FP(w,u) = cap(w,u); delete the edge [w,ul;
filw] = filw] + cap(w,u); fo = fo — cap(w, u);
2.2.2. else {cap(w,u) > fo}
f(w,u) = fo; fllw] = fllw] + fo;
cap(w,u) = cap(w,u) — fo; fo=0;
2.3. cap(u) = cap(u) — fllu]; if cap(u) = 0 then delete the vertex u.

Figure 3.11: Pulling a flow of value cap(v) from s to v

With the subroutines Push and Pull, Karzanov’s algorithm for con-
structing a shortest saturation flow f* is given in Figure 3.12.

70 MAXIMUM FLOW

Some implementation details should be explained for the algorithm
Karzanov-Saturation.

The dynamic deletions of edges and vertices from in the layered network
Lg can be recorded by the array cap(-,): we set cap(u,w) = 0 when the edge
[u,w] is deleted from Ly. The actual deletion of the item [u,w] from the
adjacency list representation of the layered network Ly or of the reversed
layered network L is done later: when we scan the adjacency list and
encounter an item [u, w|, we first check if cap(u, w) = 0. If so, we delete the
item (using an extra O(1) time) and move to the next item in the list.

Similarly, we keep a vertex array to record whether a vertex is in the
layered network Lg. There are two ways to make a vertex v become a
dead-vertex: (1) cap(v) = 0, which means either all in-coming edges to v or
all out-going edges from v are saturated; and (2) v becomes a dead-vertex
because of removal of other dead-vertices. For example, suppose that v has
only one in-coming edge [u,v] of capacity 10 and one out-going edge [v, w]
of capacity 5. Then cap(v) = 5 # 0. However, if w becomes a dead-vertex
(e.g., because all out-going edges from w are saturated) and is deleted, then
the vertex v will also become a dead-vertex. For this, we also record the
number in[v] of in-coming edges and the number out[v] of out-going edges
for each vertex v. Once one of infv] and out[v] becomes 0, we set cap(v) = 0
immediately. Since in step 3 of the algorithm Karzanov-Saturation we
always pick the vertex of minimum cap(v), dead-vertices in Ly will always be
picked first. Consequently, when the subroutines Push and Pull are called
in step 3, there must be no dead-vertex in the current layered network Lg.

Algorithm. Karzanov-Saturation
INPUT: the layered network Lg
OUTPUT: a shortest saturation flow f* in G
1. call Karzanov-Initiation to compute the vertex capacity for each vertex;
2. f*=0;
3. while there is a vertex in Lg do
pick a vertex v in Lo with minimum cap(v);
if v is a dead-vertex then delete v from Lg

else call Push(v, f¥); call Pull(v, f¥); f*= f*+ f*.

Figure 3.12: Karzanov’s algorithm for shortest saturation flow

We now analyze the algorithm Karzanov-Saturation.

SHORTEST PATH SATURATION 71

Lemma 3.2.4 The algorithm Karzanov-Saturation takes time O(n?).

PROOF. Step 1 takes time O(e) = O(n?). Since each execution of the while
loop deletes at least one vertex v from Lg (either because v is a dead-vertex
or because of the subroutine call Pull(v, fV)), the while loop in step 3 is
executed at most n times.

The first substep in step 3, finding a vertex v of minimum cap(v) in the
layered network Lo, takes time O(n). Thus, the total time spent by the
algorithm Karzanov-Saturation on this substep is bounded by O(n?).

The analysis for the time spent on the subroutine calls to Push and
Pull is a bit more tricky. Let us first consider the subroutine Push(v, f).
To push a flow of amount fl[u] through a vertex u, we take each out-going
edge from u. If the capacity of the edge is not larger than the amount of flow
we request to push (step 2.2.1 in the algorithm Push(v, fV)), we saturate
and delete the edge; if the capacity of the edge is larger than the amount of
flow we request to push (step 2.2.2 in the algorithm Push(v, fv)), we let all
remaining flow go along that edge and jump out from the while loop in Step
2.2 in the algorithm Push(v, f¥). Moreover, once an edge gets deleted in
the algorithm, the edge will never appear in the layered network Ly for the
later calls for Push in the algorithm Karzanov-Saturation. Thus, each
execution of the while loop in step 2.2 of the algorithm Push(v, fV), except
maybe the last one, deletes an edge from the layered network L. Hence,
the total number of such executions in the whole algorithm Karzanov-
Saturation cannot be larger than m plus n times the number of calls to
Push, where m is for the executions of the loop that delete an edge in Ly,
and n is for the executions of the loop that do not delete edges. Therefore,
the total number of executions of the while loop in step 2.2 in the algorithm
Push(v, f¥) for all calls to Push in the algorithm Karzanov-Saturation
is bounded by O(n?). Since each execution of this while loop takes constant
time and this part dominates the running time of the algorithm Push, we
conclude that the total time spent by Karzanov-Saturation on the calls
to Push is bounded by O(n?). Similarly, the total time spent on the calls
to the subroutine Pull is also bounded by O(n?). [

Now if we replace the call to Dinic-Saturation in the algorithm Max-
Flow-Dinic by a call to Karzanov-Saturation, we get Karzanov’s maxi-
mum flow algorithm, which is given in Figure 3.13.

By Theorem 3.2.2, Lemma 3.2.4, and the analysis for the algorithm
Layered-Network, we get immediately,

72 MAXIMUM FLOW

Algorithm. Max-Flow-Karzanov

INPUT: a flow network G

OUTPUT: a maximum flow f in G

1. let f(u,v) =0 for all pairs (u,v) of vertices in G;

2. construct the residual network G's;

3. while there is a positive flow in G; do
call Layered-Network to construct the layered network Lo for Gg;
call Karzanov-Saturation on Lg to construct a shortest saturation flow f*;
let f = f+ f* be the new flow in G}

construct the residual network G.

Figure 3.13: Karzanov’s algorithm for maximum flow

Theorem 3.2.5 Karzanov’s mazimum flow algorithm (algorithm Max-
Flow-Karzanov) runs in time O(n?)

3.3 Preflow method

The preflow method was proposed later by Goldberg and Tarjan [58]. To
describe this method, let us start by reviewing Karzanov’s maximum flow
algorithm. Consider the subroutine Push(v, f¥) in Karzanov’s algorithm.
On each vertex u in the search, we try to push the requested amount fl[u]
of flow through the vertex u. Since the operation uses only the local neigh-
borhood relation for the vertex u and is independent of the global structure
of the underlying flow network, the operation is very efficient. On the other
hand, Karzanov’s algorithm seems a bit too conservative: it pushes a flow
of value fl[u] through the vertex u only when it knows that this amount
of flow can be pushed all the way to the sink ¢. Moreover, it pushes flow
only along the shortest paths from s to t. Can we generalize this efficient
operation so that a larger amount of flow can be pushed through each vertex
along all possible paths (not just shortest paths) to the sink ¢?

Think of the flow network as a system of water pipes, in which vertices
correspond to pipe junctions. Each junction has a position such that water
only flows from higher positions to lower positions. In particular, the posi-
tion of the sink is the lowest, and the position of the source is always higher
than that of the sink. For each junction u, we have a requested amount e[u]
of flow to be pushed through the junction, which at the beginning is sup-

PREFLOW METHOD 73

posed to be stored in a private reservoir for the junction u. Now if there is
a non-saturated pipe [u, w] such that the position of w is lower than u, then
a certain amount of flow can be pushed along the pipe [u,w]. The pushed
flow seems to flow to the sink since the sink has the lowest position. In
case no further push is possible and there are still junctions with non-empty
reservoir, we “lift” the positions for the junctions with non-empty reservoir
to make further pushes possible from these junctions.

How do we decide the requested flow e[u] for each junction? According
to the principal “higher pressure induces higher speed,” we try to be a bit
aggressive, and let e[u] be the amount requested from the incoming pipes to
u, which may be larger than the capacity of u. It may eventually turn out
that this request is too much for the junction u to let through. In this case,
we observe that with the position of the junction w increased, eventually the
position of u is higher than the source. Thus, the excess flow e[u] will go
backward in the flow network all the way back to the source.

Let us formulate the above idea using the terminologies in the MAXIMUM
Frow problem.

Definition 3.3.1 Let G = (V, E)) be a flow network with source s and sink
t. A function f on vertex pairs of G is a preflow if f satisfies the capacity
constraint property, the skew symmetry property (see Definition 3.1.2), and
the following nonnegative excess property: 3 ,cy f(v,w) > 0 for all w €
V —{s}. The amount),y f(v,w) is called the excess flow into the vertex
w, denoted efw].

The excess flow e[w] is the amount of further flow we want to push
through the vertex w.

The concept of the residual network can be extended to preflows in a
flow network. Formally, suppose that f is a preflow in a flow network G,
then the residual network Gy (with respect to f) has the same vertex set as
G, and [u,v] is an edge of capacity capy(u,v) = cap(u,v) — f(u,v) in Gy if
and only if cap(u,v) > f(u,v).

Note that both the processes described above of pushing along non-
saturated edges and of sending excess flow back to the source can be imple-
mented by a single type of push operation on edges in the residual network:
if an edge [u, v] is non-saturated then the edge [u,v] also exists in the resid-
ual network, and if there is a positive flow request from s to u along a path
that should be sent back to the source, then the reversed path from w to s
is a path in the residual network.

Each flow network G is also associated with a height function h such
that for any vertex u of G, h(u) is a non-negative integer. To facilitate

74 MAXIMUM FLOW

the analysis of our algorithms, we require that the height function be more
restricted when it is associated with a preflow, as given in the following
definition.

Definition 3.3.2 Let G be a flow network, f be a preflow in G, and h be
a height function for G. The pair (f, h) is a preflow scheme for G if for any
edge [u,w] in the residual network G, we have h(u) < h(w) + 1.

Now we are ready to describe our first basic operation on a flow network
with a preflow scheme.

The operation Push(u,w) is applied to a pair of vertices u and w in
a flow network G only when the following three conditions all holds: (1)
h(u) = h(w) + 1; (2) caps(u,w) > 0; and (3) efu] > 0. In this case,
the Push operation pushes as much flow as possible (i.e., the minimum
of cap¢(u,w) and e[u]) along the edge [u,w], and update the values for
elu], elw], and f(u,w). In other words, the operation shifts an amount of
min{caps(u,w), e[u]} excess value, along edge [u, w], from u to w. A formal
description of the operation Push(u,w) is given in Figure 3.14.

Algorithm. Push(u,w)

\\ apply when (f,h) is a preflow scheme, h(u) = h(w) + 1, caps(u,w) > 0, and e[u] > 0.
1. fo = min{efu], capy(u, w)};

2. flu,w) = flu,w) + fo; flw,u) =—Ff(u,w);

3. elw] =e[w] + fo; elu] = e[u] — fo.

Figure 3.14: Pushing a flow along the edge [u, w]

Note that the operation Push(u,w) does not change the height function
value. On the other hand, the operation does change the flow value f(u,w),
and the excess values of the vertices u and w. The following lemma shows
that the operation Push preserves a preflow scheme.

Lemma 3.3.1 Let (f,h) be a preflow scheme for a flow network G. Suppose
that the operation Push(u,w) is applicable to a pair of vertices u and w in
G. Then after applying the operation Push(u,w), the new values for f and
h still make a preflow scheme.

PrOOF. The Push(u,w) operation only changes values related to vertices
u and w and to edge [u,w]. For the new value for f, (1) the capacity

PREFLOW METHOD 75

constraint is preserved: since capy(u,w) > fo and capy(u,w) is equal to
cap(u, w) minus the old flow value f(u,w), thus, cap(u,w) is not smaller
than the old flow value f(u,w) plus fo, which is the new flow value f(u,w);
(2) the skew symmetry property is preserved by step 2; and (3) the non-
negative excess property is preserved: the excess e[u] of u is decreased by
fo < e[u] and the excess e[w] is in fact increased.

To consider the constraint for the height function, note that the only
possible new edge that is created by the Push(u,w) operation is edge [w, u].
Since the Push operation does not change the height function values, we
have h[w] = h[u] — 1, which is of course not larger than hfu] + 1. [

Now we consider the second basic operation, Lift on a preflow scheme.
The Lift operation is applied to a vertex v in a preflow scheme (f, h) when
the position of v is too low for the Push operation to push a flow through
v. Therefore, to apply a Lift operation on a vertex v, the following three
conditions should all hold: (1) e[v] > 0; (2) there is an out-going edge
[v,w] from v in the residual network Gy; and (3) for each out-going edge
[v,w] from v in Gy, we have h(v) < h(w) + 1 (note that condition (3) is
equivalent to h(v) # h(w) + 1 since for a preflow scheme (f,h), we always
have h(v) < h(w)+1). The formal description of the Lift operation is given
in Figure 3.15.

Algorithm. Lift(v)

\\ applied only when (f,h) is a preflow scheme, e[v] > 0, and for all out-going

\\ edges [v,w] from v (there is at least one such an edge), h(v) < h(w) + 1.

1. wo = a vertex with the min. h(wp) over all w such that [v,w] is an edge in Gy

2. h(v) = h(wo) + 1.

Figure 3.15: Lifting the position of a vertex v

Note that the operation Lift(v) does not change the preflow value.

Lemma 3.3.2 Let (f,h) be a preflow scheme for a flow network G. Sup-
pose that Lift(v) is applicable to a vertex v in G. Then after applying the
operation Lift(v), the new values for f and h still make a preflow scheme.

PROOF. Since the operation Lift(v) does not change the preflow value, we
only need to verify that the new values for the height function h still make
a preflow scheme with the preflow f. For this, we only need to verify the
edges in the residual network G that have the vertex v as an end.

76 MAXIMUM FLOW

For any in-coming edge [u, v] to v, before the operation Lift(v), we have
h(u) < h(v)+ 1. Since the Lift(v) increases the height h(v) of v by at least
1, we still have h(u) < h(v) + 1 after the Lift(v) operation.

For each out-going edge [v, w] from v, by the choice of the vertex wy, we
have h(w) > h(wg). Thus, the new value of h(v) = h(wg) + 1 is not larger
than h(w) +1. [

Now we are ready to describe our maximum flow algorithm using the
preflow method. The algorithm was developed by Goldberg and Tarjan
[58]. The algorithm is given in Figure 3.16.

Algorithm. Max-Flow-GT
INPUT: a flow network G with source s and sink ¢
OUuTPUT: a maximum flow f in G
1. for each vertex v in G do h(v) =0; e[v] =0;
2. for each pair of vertices v and w in G do f(u,w) = 0;
3. h(s) =mn;
4. for each out-going edge [s, v] from s do
£(5,0) = —f(v,5) = cap(s,v); elv] = cap(s, v);
5. while there is a vertex v # s,t with e[v] > 0 do
5.1. pick a vertex v # s,t with e[v] > 0;
5.2. if Push is applicable to an edge [v,w] in G¢ then Push(v,w) else Lift(v).

Figure 3.16: Golberg-Tarjan’s algorithm for maximum flow

In the rest of this section, we first prove that the algorithm Max-flow-
GT correctly constructs a maximum flow given a flow network, then we
analyze the algorithm. Further improvement on the algorithm will also be
briefly described.

Lemma 3.3.3 Let f be a preflow in a flow network G. If a verter ug has
a positive excess e[ug] > 0, then there is a path in the residual network Gy
from ug to the source s.

PrROOF. Let Vj be the set of vertices reachable from ug in the residual
network Gy. Consider any pair of vertices v and w such that v € Vp and
w & Vp. Since in Gy, the vertex v is reachable from the vertex wuy while
the vertex w is not reachable from wug, there is no edge from v to w in Gy.
Thus, capy(v,w) = 0, which by the definition implies that in the original

PREFLOW METHOD 77

flow network G we have f(v,w) = cap(v,w) > 0, f(w,v) < 0. Therefore,
for any v € Vp and w ¢ Vp, we must have f(w,v) <0.
Now consider

ZE[U]: Z Zf(wav): Z Z f(wav)+z Z f(w,v)

veV) veEVH wev veVH weVy veVo wgVoy

The first term in the right hand side is equal to 0 by the skew symmetry
property, and the second term in the right hand side is not larger than 0
since for any v € Vy and w ¢ Vi we have f(w,v) < 0. Thus, we have

> ev] <0 (3.2)

veVp

Now if the source s is not in the set Vj, then since eug] > 0 and by the
non-negative excess property, for all other vertices v in Vj, we have e[v] > 0,
we derive 3y, e[v] > 0, contradicting to the relation in (3.2).

In conclusion, the source s must by reachable from the vertex wug, i.e.,
there must be a path from wug to s in the residual network Gy. [l

Now we are ready to prove the correctness for algorithm Max-flow-GT.

Lemma 3.3.4 Goldberg-Tarjan’s mazimum flow algorithm (the algorithm
Max-Flow-GT in Figure 3.16) stops with a maximum flow f in the given
flow network G.

PROOF. Steps 1-4 initialize the values for the functions f and h. It is easy
to verify that after these steps, f is a preflow in the flow network G. To
verify that at this point (f,h) is a preflow scheme, note that f has positive
value only on the out-going edges from the source s, and f saturates all
these egdes. Thus, in the residual network Gy, the source s has no out-
going edges. Moreover, all vertices have height 0 except the source s, which
has height n. Therefore, if [u, v] is an edge in the residual network Gy, then
u # s and h(u) = 0. In consequence, for any edge [u,v] in the residual
network Gy, we must have h(u) < h(v) 4+ 1. This shows that at the end of
step 4 in the algorithm, (f, h) is a preflow scheme for the flow network G.

An execution of the while loop in step 5 applies either a Push or a Lift
operation. By Lemma 3.3.1 and Lemma 3.3.2, if (f, h) is a preflow scheme
for G before the operations, then the new values for f and h after these
operations still make a preflow scheme. Inductively, before each execution
of the while loop in step 5, the values of f and h make (f,h) a preflow
scheme for the flow network G.

78 MAXIMUM FLOW

We must show the validity for step 5.2, i.e., if the operation Push does
not apply to any out-going edge [v, w] from the vertex v, then the operation
Lift must apply. By step 5.1, we have e[v] > 0. By Lemma 3.3.3, there must
be an outgoing edge [v, w] from v in the residual network G¢. Therefore, if
the operation Push does not apply to any out-going edge [v, w] from v, then
we must have h(v) # h(w)+1 for any such an edge. Since (f, h) is a preflow
scheme, h(v) < h(w) 4+ 1. Thus, h(v) # h(w) 4+ 1 implies h(v) < h(w) + 1
for all out-going edges [v,w] from v. Now this condition ensures that the
Lift(v) operation must apply.

Now we prove that when the algorithm Max-Flow-GT stops, the re-
sulting preflow f is a maximum (regular) flow in the flow network G. The
algorithm stops when the condition in step 5 fails. That is, for all vertices
v # s,t, we have e[v] = 0. By the definition, this means that for all ver-
tices v # s,t, we have), oy f(w,v) = 0. Thus, the function f satisfies the
flow conservation property. Since f is a preflow, it also satisfies the capac-
ity constraint property and the skew symmetry property. Thus, when the
algorithm stops, the resulting preflow f is actually a regular flow in G.

To prove that this flow f is maximum, by Theorem 3.1.4, we only have
to prove that there is no path from the source s to the sink ¢ in the residual
network. Suppose the opposite that there is a path P from s to ¢ in the
residual network G'y. Without loss of generality, we assume that the path P
is a simple path of length less than n. Let P = {vg, v1,..., vt }, where vy = s,
v, =t and k < n. Since [v;, vi41], for 0 <47 < k—1, are edges in Gy and the
pair (f,h) is a preflow scheme for G, we must have h(v;) < h(vi41) + 1 for
all 1 <¢ <k — 1. Therefore,

h(s) = h(vo) < h(v1) + 1 < h(ve) +2 < -+ < h(vg) + k = h(t) + k.

Since h(s) = n and h(t) = 0 the above formula implies n < k contradicting
the assumption n > k. Therefore, there is no path from the source s to the
sink ¢ in the residual network G'y. Consequently, the flow f obtained by the
algorithm is a maximum flow in the flow network G. []

Now we analyze the algorithm Max-Flow-GT. The running time of the
algorithm is dominated by step 5, which is in turn dominated by the number
of subroutine calls to the operations Push and Lift. Thus, a bound on the
subroutine calls will imply a bound to the running time of the algorithm.

Lemma 3.3.5 Let (f,h) be the final preflow scheme obtained by the algo-
rithm Max-Flow-GT for a given flow network G. Then for any vertex vy
of G, we have h(vy) < 2n — 1.

PREFLOW METHOD 79

PRrROOF. If the vertex vy never gets a positive excess e[v] > 0, then it is
never picked up in step 5.1. Thus, the height of v is never changed. Since
the initial height of each vertex in G is at most n, the lemma holds.

Now suppose that the vertex vy does get a positive excess e[vg] > 0
during the execution of the algorithm. Let (f’, ') be the last preflow scheme
during the execution of the while loop in step 5 in which e[vg] > 0. By
Lemma 3.3.3, there is a path from vy to s in the residual network G . Let
P" = {vg,v1,...,v;} be a simple path in Gy from vy to s, where vy = s and
k < n—1. Then since (f’, h') is a preflow scheme, we have h'(v;) < h'(vi+1)+
1, for all 0 <4 < k—1. This implies immediately h'(vy) < h/(s)+k < 2n—1,
since the height of the source s is n and is never changed.

Since the execution of the while loop on the preflow scheme (f’,h')
changes the excess e[ug] on vy from a positive value to 0, this execution
must be a Push on an out-going edge from vg, which does not change the
height value for vg. After this execution, since e[vg] remains 0 so vy is never
picked by step 5.1 and its height value is never changed. In consequence, at
the end of the algorithm, the height value h(vg) for the vertex vy is still not
larger than 2n — 1. [J

Now we can derive a bound on the number of calls to the subroutine
Lift by the algorithm Max-Flow-GT.

Lemma 3.3.6 The total number of calls to the subroutine Lift by the algo-
rithm Max-Flow-GT is bounded by 2n? — 8.

ProOF. By Lemma 3.3.5, the height of a vertex v cannot be larger than
2n — 1. Since each call Lift(v) increases the height of v by at least 1, the
number of calls Lift(v) on the vertex v cannot be larger than 2n — 1. Note
that the operation Lift does not apply on the source s and the sink ¢. Thus,
the total number of calls to Lift in the algorithm Max-Flow-GT cannot
be larger than (2n — 1)(n — 2) < 2n% — 8 (note n > 2). [J

Lemma 3.3.5 can also be used to bound the number of calls to the sub-
routine Push.

Lemma 3.3.7 The total number of calls to the subroutine Push by the
algorithm Max-Flow-GT is bounded by O(n*m).

PROOF. A subroutine call to Push(u,w) is a saturating push if it makes

80 MAXIMUM FLOW

f(u,w) = cap(u,w). Otherwise, the subroutine call is called a non-
saturating push.

We first count the number of saturating pushes.

Suppose that we have a saturating push Push(u, w) along the edge [u, w]
in the residual network Gy. Let the value of h(u) at this moment be hg.
After this push, there is no edge from u to w in the residual network G/.
When can the next saturating push Push(u,w) from u to w happen again?
To make it possible, we first have to make [u, w] an edge again in the residual
network G'y. The only way to make [u, w] an edge in the residual netowrk is
to push a positive flow from w to u, i.e., a call Push(w, u) must apply. In
order to apply Push(w, u), the height of vertex w must be larger than the
height of vertex u. Therefore, the new value of h(w) must be at least ho+ 1.
Now after the call Push(w,u), a new edge [u,w] is created in the residual
network. Now similarly, if we want to apply another call to Push(u,w) to
the edge [u,w] (no matter if it is saturating on non-saturating), the height
h(u) must be larger than the new height h(w) of w. That is, the new height
h(u) is at lest hg+ 2. Therefore, between two consecutive saturating pushes
Push(u,w) along the edge [u,w] in the residual network Gy, the height of
the vertex w is increased by at least 2. By Lemma 3.3.5, the height of the
vertex u is bounded 2n — 1. Thus, the total number of saturating pushes
Push(u,w) for the pair of vertices u and w is bounded by (2n —1)/2+1 <
n+ 1. Now note that a push Push(u,w) applies only when [u, w] is an edge
in the residual network G, which implies that either [u,w] or [w,u] is an
edge in the original network G. Thus, there are at most 2m pairs of vertices
uw and w on which a saturating push Push(u,w) can apply. In summary,
the total number of saturating pushes in the algorithm Max-Flow-GT is
bounded by 2m(n + 1).

Now we count the number of non-saturating pushes.

Let V4 be the set of vertices u in V' — {s, ¢} such that e[u] > 0. Consider
the value 84 = 37, cy, h(u). The value B4 is 0 before step 5 of the algorithm
Max-Flow-GT starts since at that point all vertices except s have height
0. The value 5, is again 0 at the end of the algorithm since at this point
all vertices u # s,t have e[u] = 0. Moreover, the value 5, can never be
negative during the execution of the algorithm. Now we consider how each
of the operations Push and Lift affects the value 5.

If Push(u, w) is a non-saturating push, then before the operation u € V.
and h(u) = h(w) 4+ 1, and after the operation, the excess e[u] becomes 0 so
the vertex u is removed from the set V;. Note that the vertex w may be
a new vertex added to the set V,. Thus, the operation subtracts a value
h(u) from Sy, and may add a value h(w) = h(u) —1 to 4. In any case, the

PREFLOW METHOD 81

non-saturating push Push(u,w) decreases the value 4 by at least 1.

If Push(u,w) is a saturating push, then u belongs to the set V. before
the operation but w may be added to the set V, by the operation. By
Lemma 3.3.5, the height h(w) of w is bounded by 2n — 1. Thus, each
saturating push increases the value 54 by at most 2n — 1.

Now consider the Lift(v) operation. When the operation Lift(v) applies,
the vertex v is in the set V. Since the height h(v) of v cannot be larger than
2n — 1, the operation Lift(v) increases the value 81 by at most 2n — 1. In
consequence, the operation Lift(v) increases the value 54 by at most 2n—1.

By Lemma 3.3.6, the total number of calls to the subroutine Lift is
bounded by 2n? — 8, and by the first part in this proof, the total number
of saturating pushes is bounded by 2m(n + 1). Thus, the total value of S1
increased by the calls to Lift and by the calls to saturating pushes is at
most

(2n — 1)(2n% — 8 + 2m(n + 1)) < 4n3 + 6n’m

Since each non-saturating push decreases the value 54 by at least 1 and
the value 4 is never less than 0, we conclude that the total number of non-
saturating pushes by the algorithm is bounded by 4n® + 6n?m = O(n?m).

This completes the proof for the lemma. []

Now we conclude the discussion for the algorithm Max-Flow-GT.

Theorem 3.3.8 Goldberg and Tarjan’s maximum flow algorithm (algo-
rithm Max-Flow-GT in Figure 3.16) constructs a mazimum flow for a
given flow network in time O(n?*m).

PrOOF. The correctness of the algorithm has been given in Lemma 3.3.4.
The running time of the algorithm is dominated by step 5, for which we give
a detailed analysis.

We keep two 2-dimensional arrays f[1..n,1..n] and cap[l..n, 1..n| for the
flow value and the capacity for the original flow network G, respectively, so
that the flow value between a pair of vertices, and the capacity of an edge
in the residual network Gy can be obtained and modified in constant time.
Similarly, we keep the arrays h[l..n] and e[1..n] for the height and excess for
vertices in G so that the values can be obtained and modified in constant
time.

The residual network G’y is represented by an adjacency list L such that
for each vertex v in Gy, the edges [v, w] with h(v) = h(w) + 1 appear in the
front of the list L¢[v]. Finally, we also keep a list OF for the vertices u in
G with e[u] > 0.

82 MAXIMUM FLOW

With these data structures, the condition in step 5 can by checked in
constant time (simply check if the list OF is empty), and step 5.1 takes a
constant time to pick a vertex v from the list OF. Since the edges [v, w]
with h(v) = h(w) + 1 appear in the front of the list L[v], in constant time,
we can check if the operation Push applies to an out-going edge from v.

For each Push(u,w) operation, the modification of the flow values and
the excess values can be done in constant time. Moreover, if [w,u] was
not an edge in Gy (this can be checked by comparing the values f[w,u]
and cap[w, u]) then the operation Push(u,w) creates a new edge [w,u] in
the residual network Gy. This new edge [w,u] shoud be added to the end
of the list Ly[w] since h(w) = h(u) — 1 # h(u) + 1. In conclusion, each
Push operation takes time O(1). By Lemmma 3.3.7, the total number of
Push operations executed by the algorithm Max-Flow-GT is bounded by
O(n?m). Thus, the total time the algorithm Max-Flow-GT spends on the
Push operations is bounded by O(n?m).

Now consider the Lift operation. A Lift(v) operation needs to find a
vertex wo with minimum h(wp) in the list L¢[v], which takes time O(n).
After increasing the value of h(v), we need to check each in-coming edge
[u,v] to v to see if now h(u) = h(v) + 1, and to check each out-going edge
[v,w] from v to see if now h(v) = h(w) + 1. If so, the edge should be moved
to the front of the list for the proper vertex in Ly. In any case, all these
can be done in time O(m). According to Lemma 3.3.6, the total number of
Lift operations executed by the algorithm Max-Flow-GT is bounded by
2n? — 8. Thus, the total time the algorithm Max-Flow-GT spends on the
Lift operations is also bounded by O(n?m).

This concludes that the running time of the algorithm Max-Flow-GT
is bounded by O(n?m). [

We point out that it has been left totally open for the order of the ver-
tices selected by step 5.1 in the algorithm Max-Flow-GT, which gives us
further opportunity for improving the running time of the algorithm. In
fact, with a more careful selection of the vertex v in step 5.1 and a more
efficient data structure, it can be shown that running time of the algorithm
Max-Flow-GT can be improved to O(nmlog (n?/m)). For dense flow net-
works with m = Q(n?) edges, the bound O(nmlog(n?/m)) is as good as
O(n?), the bound for Karzanov’s maximum flow algorithm, while for sparse
flow networks with m = O(n) edges, the bound O(nmlog(n?/m)) becomes
O(n?logn), much lower than O(n3). A description of this improvement can
be found in [58].

3.4. FINAL REMARKS 83

3.4 Final remarks

Before closing the chapter, we give some remarks on the MAXIMUM
FLow problem. First, we show that the MAXiMUM FLOW problem is
closely related to a graph cut problem. This is given by the classical
Maz-Flow-Min-Cut theorem. Then, we briefly mention the updated status
in the research in maximum flow algorithms.

Max-Flow-Min-Cut theorem

Let G = (V,E) be a directed and positively weighted graph. A cut in
G is a partition of the vertex set V of G into an orderd pair (V1, V2) of two
non-empty subsets V; and Vs, ie., ViUVo =V and Vi NV, = (). The weight
of the cut (V1,Va) is the sum of the weights of the edges [u, w] with u € V;
and w € V5.

The MIN-CUT problem is to find a cut of minimum weight for a given
directed and positively weighted graph. Formally,

MIN-CuT = (Ig, S, fq, optg)

Ig: the set of directed and positively weighted graphs G

Sg: Sq(G) is the set of cuts for G

for fo(G,C) is equal to the weight of the cut C for G

optg: min

A more restricted MIN-CUT problem is on flow networks. We say that

(V1, V) is a cut for a flow network G if (V1,V3) is a cut for G when G is
regarded as a directed and positively weighted graph, where the edge weight
equals the edge capacity in G, such that the source s of G is in V7 and

the sink t of G is in V5. We now consider the MIN-CUT problem on flow
networks.

Definition 3.4.1 The capacity of a cut (V1, V3) for a flow network G is the
weight of the cut:

cap(V1,Va) = Z cap(v,w)
ueV ,weVs

A cut for G is minimum if its capacity is the minimum over all cuts for G.

Now we are ready to prove the following classical theorem.

84 MAXIMUM FLOW

Theorem 3.4.1 (Max-Flow Min-Cut Theorem) For any flow network
G = (V, E), the value of a mazimum flow in G is equal to the capacity of a
minimum cut for G.

PROOF. Let f be a flow in the flow network G and let (V1,V2) be a cut for
G. By the definition, we have |f| = 3>, cy f(s,w). By the flow conservation
property, we also have oy f(v,w) = 0 for all vertices v € Vi — {s}.
Therefore, we have

L= Y flswy = > flow)

weV veV,weV
= Y flw+ Y flo,w)
veVi,weVy veV,weVsa

By the skew symmetry property, f(v,w) = —f(w,v) for all vertices v and
w in V7. Thus, the first term in the last expression of the above equation is
equal to 0. Thus,

fl= > flvw) (3.3)

veEV],WEVS

By the capacity constraint property of a flow, we have

1< > cap(v,w) = cap(Vr, Va)
veEV],WEVL

Since this inequality holds for all flows f and all cuts (V1, V2), we conclude
max{|f|: fis a flow in G} < min {cap(Vi,V2) : (V1,V2) is a cut for G}

To prove the other direction, let f be a maximum flow in the network
G and let G be the residual network. By Theorem 3.1.4, there is no path
from the source s to the sink ¢ in the residual network Gy. Define Vi to be
the set of vertices that are reachable from the source s in the graph Gy and
let V5 be the set of the rest vertices. Then, s € V; and t € V5 so (V1, Va) is
a cut for the flow network G. We have

cap(Vy,Va) = Z cap(v,w) = Z cap(v,w)
veVi,weVs [v,w|EE VeV ,wEVS

Consider an edge [v,w] in G such that v € V; and w € V5. Since [v,w] is
not an edge in the residual network G (otherwise, the vertex w would be
reachable from s in Gy), we must have f(v,w) = cap(v,w). On the other

3.4. FINAL REMARKS 85

hand, for v € V; and w € Vs suppose (v,w) is not an edge in G, then we
have cap(v,w) = 0 thus f(v,w) < 0. However, f(v,w) < 0 cannot hold
since otherwise we would have cap(v,w) > f(v,w) thus [v, w] would have
been an edge in the residual graph G, contradicting the assumption v € V3
and w € Va. Thus, in case (v, w) is not an edge in G and v € V; and w € V5,
we must have f(v,w) = 0. Combining these discussions, we have

ap(Vy,Va) = Z cap(v,w) = Z f(v,w)

[v,wleEweVi,weVs veV,weVs
By equation 3.3, the last expression is equal to |f|. This proves
max {|f| : f is a flow in G} > min {cap(V1,V2) : (V1,V2) is a cut for G}
The proof of the theorem is thus completed. []

The Max-Flow-Min-Cut theorem used to be used to show that a max-
imum flow in a flow network can be found in finite number of steps (since
there are only 2" — 2 cuts for a flow network of n vertices). With more ef-
ficient maximum flow algorithms being developed, now the theorem can be
used in the opposite direction — to find a minimum cut for a flow network.
In fact, the proof of Theorem 3.4.1 has described such an algorithm: given
a flow network G = (V| E), construct a maximum flow f in G, let Vi be
the set of vertices reachable from the source s in the residual network G
and let Vo =V — Vj, then (V1,V3) is a minimum cut for the flow network
G. Thus, the MIN-CUT problem on flow networks can be solved in time
O(n?), if we use, for example, Karzanov’s maximum flow algorithm to solve
the MAXiMUM FLOW problem.

The MIN-CUT problem for general graphs can be solved via the algo-
rithm for the problem for flow networks: given a general directed and posi-
tively weighted graph G, we fix a vertex v; in G. Now for each other vertex
w, we construct a flow network G, that is G with v; the source and w the
sink, and construct another flow network G7, that is G with w the source and
v1 the sink. Then we find the minimum cuts for the flow networks G,, and
G,,. Since in a minimum cut (Vj, V2) for G as a general graph, the vertex vy
must be in one of V7 and V5 and some vertex w must be in the other, when
we construct the minimum cuts for the flow networks G, and G, for this
particular w, we will find a minimum cut for G as a general graph. Thus,
the MIN-CUT problem for general graphs can be solved in polynomial time.

We remark that the maximum version of the cut problem, i.e., MAX-
CuT, which finds a cut of maximum weight in a directed and positively

86 MAXIMUM FLOW

Date Authors Time Complexity
1960 Edmonds and Karp O(nm?)
1970 Dinic O(n*m)

(

1974 Karzanov O(

1977 Cherkasky O(

1978 Galil O(n®3m?/3)
1980 Sleator and Tarjan O(

1986 Goldberg and Tarjan O(

2023 Chen et al. O(m!teh)

Figure 3.17: Maximum flow algorithms

weighted graph, is much more difficult that the MIN-CUT problem. The
MaXx-CuT problem will be discussed in more detail in later chapters.

Updated status

Since the introduction of the MAXIMUM FLOW problem by Ford and Fulker-
son about four decades ago, efficient solution of the MAXiMUM FLOW prob-
lem has been a very active research area in theoretical computer science.
In this chapter, we have discussed two major techniques for maximum flow
algorithms. Further extension and improvement on these techniques have
been studied. The table in Figure 3.17 gives a selected sequence of maximum
flow algorithms developed over the past forty years. The research recently
has again gained great excitement because of the breakthrough made by
a group of young researchers [25], who were able to develop an “almost-
linear-time” algorithm for the MAXIMUM FLOW problem under some minor
constraints. The reader is referred to the survey [57] for discussion on max-
imum flow algorithms before the work of [25], and to [117] for a very recent
historical review of the research, including that of [25].

