Chapter 2

Graph Matching

The GRAPH MATCHING problem often arises when we are concerned with
“effective assignments”, which optimally pair up objects based on cer-
tain pre-given requirements. For example, consider the following OPTIMAL
COURSE ASSIGNMENT problem:

OPTIMAL COURSE ASSIGNMENT

Given a set of teachers T and a set of courses C', and a set S of
pairs of the form (¢;,c;) indicating that the teacher ¢; € T' can
teach the course ¢; € C, find a subset A of S that contains the
largest number of pairs in S such that each ¢; in 7" and each c¢;
in C' appears at most once in A. The subset A of S represents a
course assignment in which (1) each teacher t¢; teaches at most
one course that the teacher t; can teach; (2) each course ¢; is
taught by at most one teacher who can teach c¢;, and (3) the
assignment maximizes the number of courses that can get taught.

Similar problems arise in worker/job assignment, person/position decision,
boy/girl engagement, and so forth.

These problems have been formulated into a general fundamental prob-
lem on graphs that has been widely studied. Given a graph G, a matching
M in G is a subset of edges in G such that no two edges in M share a
common end. Assume that the graph G is a weighted graph (i.e., each edge
e of G is associated with a real number wt(e) that is called the weight of
the edge), then the weight of a matching M is defined to be the sum of
the weights of the edges in M. For unweighted graphs, we simply assume
the weigh of every edge is 1. The GRAPH MATCHING problem is to find a
maximum matching in a given graph. Using our formulation, the GRAPH
MATCHING problem is given as a 4-tuple.

31

32 GRAPH MATCHING

GRAPH MATCHING = (Ig, Sq, fg, optg) , where

Ig: the set of all weighted undirected graphs G

Sg: Sq(G) is the set of all matchings in the graph G
fo: fo(G, M) is the weight of the matching M in G
optg: max

For example, the OPTIMAL COURSE ASSIGNMENT problem can be con-
verted into the GRAPH MATCHING problem on unweighted graphs as follows.
We let each teacher and each course be a vertex in the graph G. There is
an edge between a teacher and a course if the teacher can teach the course.
A solution to the GRAPH MATCHING problem on the graph G corresponds
to an optimal course assignment for the school.

The GRAPH MATCHING problem has attracted attention because of its
intuitive nature and its wide applicability. Its solution in the general case in-
volves sophisticated and beautiful combinatorial mathematics. In this chap-
ter, we will concentrate on analysis principles and fundamental algorithms
for the problem. Further applications of the problem will be mentioned in
later chapters.

Throughout this chapter, we will assume that n is the number of vertices
and m is the number of edges in the considered graph. Also, we assume that
the graphs in our discussions are weighted graphs. Unweighted graphs will
be treated as weighted graphs in which the weight of all edges is 1.

2.1 Augmenting paths

Let M be a matching in a graph G = (V, E). A vertex v is matched (with
respect to the matching M) if v is an endpoint of an edge in M, otherwise,
the vertex is unmatched.

Definition 2.1.1 Let M be a matching in a graph G. An alternating path
(with respect to M) is a simple path P = (ug, u1,...up) in G in which the
edges go alternatively between edges in M and edges not in M (the starting
edge [ug, u1] can be either in M or not in M), such that either

(1) P is a cycle (i.e., ug = up) and h is an even number; or
(2) P is not a cycle. In this case, if the end-edge [ug, u1] (resp. [up_1, up))
of P is not in M then the end-vertex ug (resp. wuyp) is unmatched.

Recall that the symmetric difference of two sets A and B is defined as
AAB = (A\ B)U (B \ A). In particular, if we also regard the alternating

AUGMENTING PATHS 33

path P with respect to the matching M in the graph G as a set of edges,
then PAM is the set of edges obtained from M by removing all edges in
PN M then adding all edges in P\ M.

Definition 2.1.2 An alternating path P (w.r.t. M) is an augmenting path
(w.r.t. M) if the gain g(P) of P is positive, where the gain g(P) of the path

P is defined as g(P) = Y p\p wt(e) = X oreprnr wi(e').

Figure 2.1 shows a graph G and a matching M in G, where heavy lines
[v1,v4] and [va,vs] are edges in the matching M and light lines are edges
not in M. The number near each edge is the weight of the edge. The
paths (v, v2, vs, v1,v4), (V2, V5,01, V4, v2), and (v3, vs, V2, vs) are all alternat-
ing paths, in which (ve,vs,v1,v4,v2) is also an augmenting path while the
other two alternating paths are not augmenting paths.

Figure 2.1: Alternating paths and augmenting paths
This is straightforward to see the following fact:

Lemma 2.1.1 Let M be a matching in a graph G and let P be an alternat-
ing path w.r.t. M in G, then PAM is also a matching in the graph G.

The following theorem serves as a fundamental theorem in the study of
graph matching and graph matching algorithms.

Theorem 2.1.2 Let G be a weighted graph and let M be a matching in G.
M is of the maximum weight if and only if there is no augmenting path
w.r.t. M in the graph G.

PROOF. Suppose that there is an augmenting path P w.r.t. M in the graph
G. By Lemma 2.1.1, M’ = PAM is also a matching in G. Moreover, the
weight wt(M’) of the matching M’ is equal to wt(M)+ g(P), where the gain
g(P) of the augmenting path P, by definition, is positive. As a result, the

34 GRAPH MATCHING

weight wt(M’) of the matching M’ is strictly larger than the weight wt(M)
of M, and the matching M is not of the maximum weight.

Conversely, suppose that the matching M is not of the maximum weight.
Let Miyax a matching of the maximum weight. Then wt(Myax) > wt(M).
Consider the graph Gg = Mp.xAM that consists of the edges in G that
belong to exactly one of My, and M. No vertex in Gy has degree larger
than 2. In fact, if a vertex v in Gy had degree larger than 2, then at least two
edges incident on v belong to either M or My,.x, contradicting the fact that
both M and My, are matchings in GG. Therefore, each component of Gg
must be either a simple path, or a simple cycle. Note that each component
of Gy must be an alternating path w.r.t. M, whose edges go alternatively
between edges in M (in fact, in M \ Mpax) and edges not in M (i.e., in
Miax \ M). Since wt(Mpyax) > wt(M), at least one C of the components
of Go must satisfy Y cconns,,, wte) = ey wt(e) > Xoeonn wi(e).
Thus, this component C' makes an augmenting path w.r.t. M in G. This
proves that if M is not of the maximum weight, then there is an augmenting
path w.r.t. M in G, thus, completes the proof of the theorem. [

Based on Theorem 2.1.2, a general graph matching algorithm can be
derived. The algorithm is given in Figure 2.2. Most algorithms for GRAPH
MATCHING are essentially based on this basic algorithm. Naturally, to de-
velop fast algorithms based on this framework, we will focus on reducing the
number of times for the while loop in step 2 to be executed, and developing
efficient algorithms for constructing the augmenting paths in step 2.1.

Algorithm. Matching

INPUT: a weighted graph G = (V, E)
OUTPUT: a matching M of the maximum weight in G

1. M =0
2. while (there are augumenting paths w.r.t. M in G) do
2.1 construct a set A of vertex-disjoint augmenting paths;

2.2 M = MAA.

Figure 2.2: General algorithm for graph matching

2.2 Matching in bipartite graphs

In this section, we present an algorithm for the GRAPH MATCHING problem
on a special class of graphs, the bipartite graphs. We will explain how aug-

BIPARTITE GRAPHS 35

menting paths can be constructed for a matching in a bipartite graph. Then
a maximum matching in the bipartite graph can be constructed using the
algorithm Matching in Figure 2.2. Our discussion will be on unweighted bi-
partite graphs, which can be extended to weighted bipartite graphs without
principle difficulties.

Definition 2.2.1 A graph G = (V| E) is bipartite if the vertex set V of G
can be partitioned into two disjoint subsets V = V; U V5 such that every
edge in GG has one end in V; and the other end in V5.

The bipartiteness of a graph can be tested using a standard graph
traversing algorithm such as depth first search or breadth first search, which
try to color the vertices of the given graph by two colors such that no two
adjacent vertices are colored with the same color. Obviously, a graph is
bipartite if and only if it can be colored in this way with two colors, which
also implies that a bipartite graph G contains no cycles of odd length.

Let M be a matching in a bipartite graph G. The idea of constructing
an augmenting path w.r.t. M is fairly natural: we pick each unmatched
vertex vg, and try to find an augmenting path starting from vg. For this, we
perform a process similar to breadth first search, starting from the vertex vy.
The vertices encountered in the search process are classified into odd-level
vertices and even-level vertices, depending upon their distance to the vertex
vg in the search tree, assuming that the vertex vy is at level 0. For an even-
level vertex v, the process tries to extend the augmenting path by adding an
edge not in M. The vertex v may be incident on several edges not in M and
we do not know which is the one we want. Thus, we record all of them —
just as in breadth first search we record all unvisited neighbors of the current
vertex v. For an odd-level vertex w, the process either concludes with an
augmenting path (when w is unmatched) or tries to extend the augmenting
path by adding an edge in M (note that if w is a matched vertex then
there is a unique edge in M that is incident on w). Note that in case of an
odd-level vertex w, the search process is different from the standard breadth
first search: the vertex w may have several unvisited neighbors, but we only
record the one that matches w in M and ignore the others.

The drawback of the above process is that if the starting vertex vg is
not an end of an augmenting path, then the process will fail and have to
try other unmatched vertices. This wastes time. Instead, we will start from
all unmatched vertices, and extend the paths from them in the manner as
described above. However, once we find out that two of these paths are
connected to make an augmenting path, we stop with the augmenting path.

36 GRAPH MATCHING

Algorithm. Bip-Augment(G, M) \\M is a matching in bipartite graph G
1. @ =0;\\ Q is a queue
2. for (each vertex v) do lev[v] = —1;
3. for (each unmatched vertex v) do { lev[v] =0; Q < v; }
4. while (Q # 0) do
U+ Q5

4.1 if (lev[u] is even)

for (each edge [u,w]) do
4.1.1 if (levjw] = =1) { lev[w] = lev[u] +1; dad[w] =u; Q + w; }
4.1.2 else if (lev[w] = lev[u]) an augmenting path is found; stop;
4.2. else \\ lev[u] is odd

let [u,w] be the edge in M;
4.2.1 if (lev[w] = —=1) { lev[w] =lev[u] +1; dadlw] =u; Q + w; }
4.2.2 else \\ lev|w] = lev[u] an augmenting path is found; stop;

5. return(’no augmenting path in G.”).

Figure 2.3: Finding an augmenting path in a bipartite graph

A formal description of this search process is given in Figure 2.3.

According to the algorithm, each vertex v is assigned a level number
lev(v) > 0 such that either v is an unmatched vertex and lev(v) = 0, or v
has a vertex dad(v) at level lev(v) — 1 as its parent. In particular, if lev(v)
is odd, then the edge [dad(v),v] is an edge not in M while if lev(v) is even
then v is the unique child of its parent dad(v) and the edge [dad(v),v] is an
edge in M. The level is also used to record whether a vertex v has been
visited in the process. A vertex v is unvisited if and only if lev(v) = —1.

The algorithm Bip-Augment builds a leveled hierarchy H, starting
from level 0 that consists of all unmatched vertices. Each vertex w at a level
larger than 0 has a parent at level lev[w] — 1, given by dad[w]. Therefore,
starting from a vertex w in the hierarchy H, we can trace by following the
array dad[+] a (unique) path from w to an unmatched vertex at level 0.

Theorem 2.2.1 On a bipartite graph G and a matching M in G, the algo-
rithm Bip-Augment stops at step 4.1.2 or 4.2.2 if and only if there is an
augmenting path in G with respect to M.

PrOOF. We first show that for an odd-level vertex w, if we reach step 4.2.2,
then we must have lev[w] = lev[u], where [u, w] is an edge in M. Because of

BIPARTITE GRAPHS 37

step 4.2.1, lev[w] # —1 if we are at step 4.2.2. Also note that lev[w] # 0 since
w is a matched vertex. If lev[w] > lev[u], then w must already have a parent
dad[w] # u at level lev[u] and [dad[w], w] is an edge in M, contradicting the
assumption that [u,w] is an edge in M. Now assume lev[w] < lev[u]. If
lev[w] is even then since w is matched, lev[w] > 0 so [dad[w], w] is an edge
in M and the vertex dad[w] is at level lev|w] — 1 < lev[u]. If lev[w] is odd
then w is matched with its unique child at level lev[w] + 1 < lev[u] (this is
because both lev[w] and lev[u] are odd). Thus, in either case, we would get a
contradiction that w is matched with a vertex that is not u. In consequence,
we must have lev[w] = lev[u] if we are at step 4.2.2.

Thus, if the algorithm Bip-Augment stops at step 4.1.2 or 4.2.2, we
must encounter an edge [u,w] with lev[u] = lev[w]. If lev[u] is even, then
the edge [u,w] is not in M because u is either unmatched and at level 0 or
matched with its parent at level lev[u] — 1. If lev[u] = lev[w] = 0, then the
single edge [u,w] is an augmenting path w.r.t. M. If lev[u] = lev[w] > 0,
then both edges [dad[u], u] and [dad[w], w] are in M, and by following the
array dad[*], we can go from u and from w to get two paths P, and P,,
respectively, that go alternatively between edges in M and edges not in M.
Note that the paths P, and P, cannot share a common vertex v: otherwise,
the two subpaths from u to v and from w to v, respectively, plus the edge
[u, w] would give a cycle of odd length in the graph G, contradicting the
fact that the graph G is bipartite. Thus, the two paths P, and P, must be
disjoint and ended at two different unmatched vertices at level 0. Now these
two paths plus the edge [u, w| give an augmenting path w.r.t. M.

On the other hand, if lev[u] is odd, then the edge [u,w] is in M, and
both edges [dad[u],u] and [dad[w], w] are not in M. By following the array
dad[*], we can go from u and from w to get two disjoint paths P, and P,,
respectively, that go alternatively between edges not in M and edges in
M, and end at two different unmatched vertices at level 0 (here again the
disjointness of the paths P, and P, is because of the bipartiteness of the
graph G). These two paths plus the edge [u,w] in M give an augmenting
path w.r.t. M.

This proves that if the algorithm Bip-Augment stops at step 4.1.2 or
4.2.2, then there is an augmenting path in G w.r.t. M. Moreover, the above
discussion explained how the augmenting path could be constructed using
the array dad[*] in this case.

Now we prove that if there is an augmenting path P w.r.t. M, then
the algorithm Bip-Augment must stop at step 4.1.2 or step 4.2.2 (and
construct an augmenting path). For this, we only need to prove that there
is an augmenting path P that contains an edge [u, w] for which the vertices u

38 GRAPH MATCHING

and w get their level numbers assigned by the algorithm satisfying lev[u] =
lev[w] and the edge is caught at step 4.1.2 or step 4.2.2 by the algorithm.

Let P = (v1,v9,...,v9) be a shortest augmenting path, i.e., an aug-
menting path with the fewest edges among all augmenting paths. So P
starts and ends at unmatched vertices v; and wvok, respectively, which are
at level 0 in the algorithm. Now trace the path P in the leveled hierarchy
H, starting from the vertex v; at level 0. Since the path P has to go back
to the vertex vgy that is also at level 0, there must be an edge [v;, vi11] in
the path P such that lev[v;] > lev[v;y1]. Without loss of generality, assume
that [v;, v;41] is the first such an edge in P. We show that we must have
lev[v;] = lev[viy1].

If [vi,vi+1] is an edge in M, then lev[v;] is odd. Note that if lev[v;y1] =
—1 at the time when we examine the edge [v;, v;41] at step 4.2 of the algo-
rithm, then step 4.2.1 would set lev[v;11] = lev[v;]+1 > lev[v;], contradicting
our assumption that lev[v;] > lev[vi1+1]. Thus, we must have lev]v;1] # —1.
Now, as we have shown in the first paragraph in this proof, in this case, we
will reach step 4.2.2 and the equality lev[v;] = lev[v;y1] holds true.

The only case left is that [v;,v;+1] is an edge not in M and lev]v;] >
lev[viy1]. In this case, lev[v;] is even and lev[v;] > 0. The level number
lev[vi41] cannot be even: otherwise, we would have lev]v;] > lev[viy1] + 2.
In this case, when vertex v;;1 is examined at step 4.1, the edge [vit1,v;]
would make the vertex v; to have a level number bounded by lev[viy1] +
1 < levly;]. Thus, lev[vit1] must be odd. Let P’ be the path from an
unmatched vertex v" at level 0 to the vertex v;y1, obtained by tracing the
array dad[*] from v;11. Then, because lev[v;] > lev[vit1], the path P’ plus
the path (vi11,vi12,. .., vo) would give a shorter augmenting path w.r.t. M,
contradicting the assumption that P is a shortest augmenting path.

Therefore, we must have lev|v;] = lev[v;y1]. Moreover, as shown above,
if [v;,vi41] is an edge in M, then lev[v;] is odd, so that the edge [v;, vi11]
must be caught by step 4.2.2, and if [v;,v;11] is an edge not in M, then
lev[v;] is even, and the edge [v;,v;11] is caught by step 4.1.2. In conclusion,
if there is an augmenting path w.r.t. M, then an augmenting path will be
constructed by step 4.1.2 or step 4.2.2 of the algorithm.

This completes the proof of the lemma. [

Based on Theorem 2.1.2, the algorithm Matching in Figure 2.2, the
algorithm Bip-Augment in Figure 2.3, and Theorem 2.2.1, an algorithm
can be developed for the GRAPH MATCHING problem on bipartite graphs,
as given in the following theorem.

UNWEIGHTED GRAPHS 39

Theorem 2.2.2 The GRAPH MATCHING problem on bipartite graphs can
be solved in time O(nm).

PROOF. We can use an array M|[1..n] to represent a matching in the graph
such that M[u] = w if and only if [u, w] is an edge in the matching M. Thus,
checking whether an edge is in the matching, adding an edge to the matching,
and deleting an edge from the matching can all be done in constant time.

The algorithm Bip-Augment processes each edge in the graph at most
twice, once from each end of the edge, and the process on an edge takes
constant time. Moreover, once the algorithm stops at step 4.1.2 or 4.2.2,
the found augmenting path can be easily constructed by tracing the array
dad[*] from the two vertices u and w of the current edge [u, w] to vertices at
level 0, as explained in the proof of Theorem 2.2.1. Therefore, the running
time of the algorithm Bip-Augment is bounded by O(m).

Mow we consider the algorithm Matching in Figure 2.2, which solves
the GRAPH MATCHING problem. Each execution of the while loop in step
4 of the algorithm Matching calls the algorithm Bip-Augment to find
an augmenting path and constructs a larger matching for the graph G.
Since a matching in a graph of n vertices contains no more than n/2 edges,
we conclude that the algorithm Matching runs in time O(nm) if it uses
the algorithm Bip-Augment as a subroutine to find augmenting paths.
By Theorem 2.1.2, the algorithm Matching solves the GRAPH MATCHING
problem in time O(nm). [

2.3 Matching in general unweighted graphs

We now get back to the GRAPH MATCHING problem on general graphs,
i.e., graphs that are not necessarily bipartite. In this section, we will be
focused on the GRAPH MATCHING problem on unweighted graphs. Thus,
unless indicated explicitly, all graphs in the discussion of this section are
assumed to be unweighted graphs. As we mentioned, unweighted graphs are
treated as weighted graphs in which all edge have weight 1. As a result,
the weight of a matching M in an unweighted graph G is equal to the
number of edges in M, and an augmenting path w.r.t. M in G is of the form
P = (ug,u1,...,usps1), consisting of an odd number of edges such that
ug # uspy1 and both are unmatched vertices, the edges [ug;—1, ug;] are in M
fori =1,...h, and the edges [ug;j_2,us;—1] are not in M, fori=1,...h+1.
That is, an augmenting path P w.r.t. M in the unweighted graph G is not a
cycle, and is an alternating path starting and ending at unmatched vertices.

40 GRAPH MATCHING

As a result, the number of edges in P\ M is exactly one larger than that in
PN M, and the matching M AP has one more edge than the matching M.

For a set S of edges, we denote by |S| the number of edges in S. In
particular, for a matching M in an unweighted graph, |M| is the weight of
M, and for a path P, |P| is the length of P.

Let P, ..., P. be aset of vertex-disjoint augmenting paths w.r.t. a mach-
ing M in an unweighted graph G. Then it is easy to see that MAP| A --- AP,
is also a matching in G with |M |+ r edges. Therefore, if in step 2.1 of the
algorithm Matching in Figure 2.2, we are able to construct many vertex-
disjoint augmenting paths, then we will result in a faster matching algorithm.
In the following, we show that this is possible for unweighted graphs based
on the idea of shortest augmenting paths, which are the augmenting paths
whose length is the shortest over all augmenting paths.

Lemma 2.3.1 Let M and M’ be matchings in a graph G such that |[M| <
|M'|. Then the graph MAM' contains at least |M'| — |M| vertex-disjoint
augmenting paths w.r.t. M.

PrROOF. Let Cy, ..., C, be the components of MAM'. As explained in
the proof of Theorem 2.1.2, each of these components is either a cycle or a
simple path. Each of these components either (1) contains the same number
of edges in M and in M’, or (2) has one more edge in M than that in M’,
or (3) has one more edge in M’ than that in M. Since the matching M’
has |M'| — |M| more edges than M, at least |M’'| — |M| of the components
Cy, ..., C, must be of the structure (3), and each of these components is
an augmenting path w.r.t. M. Moreover, all these augmenting paths are
vertex-disjoint. []

Lemma 2.3.1 implies an upper bound on the length of the shortest aug-
menting paths, as given in the following lemma:

Lemma 2.3.2 Let M be a matching in a graph G and let Mg be a mazimum
matching in G, |M| < |My|. Then the shortest augmenting path w.r.t. M
has its length bounded by 2||M|/(|Mo| — |M]|)] + 1.

PROOF. Lemma 2.3.1 shows there are at least |My|—| M| vertex-disjoint aug-
menting paths w.r.t. M. Since the matching M has | M| edges, at least one of
these | My|—|M | augmenting paths contains no more than ||M|/(|Mo|—|M])]
edges in M. As as result, the length of this augmenting path is bounded by
2[|M/(IMo| — [M])] +1. [

UNWEIGHTED GRAPHS 41

The following lemma shows that if we repeatedly augment a matching
using shortest augmenting paths, then the length of the augmenting paths
will not decrease.

Lemma 2.3.3 Let Py be a shortest augmenting path w.r.t. a matching My,
and let Py be an augmenting path w.r.t. the matching My, = MoAP,, then
|P1| > |Pol + |Po N P1|. In particular, |Pi| > |Pol.

PRrROOF. Consider the matching My = M;AP;. We have | M| = |My|+2. By
Lemma 2.3.1 (and its proof), My has two vertex-disjoint augmenting paths
Pj and PjJ that are contained in MsAMj. Note that MaAMy = PyAP;
(you may want to verify this equality). Thus,

2|Py| < |PY| + |PY| < IMaAMy| = |PoAPy| = |By| + |P1| — | Py N Py,

where the first inequality is because Py is a shortest augment path w.r.t. My,
and the second inequality is because Pj and Py are vertex-disjoint paths in
the graph MsAMjy. From this, the lemma is derived. [

Consider the following procedure: for a given graph G, start with the
trivial matching My = (), and for each 7 > 0, construct a shortest augmenting
path P; w.r.t. M; to get a larger matching M, = M;AP;. This procedure
gives a sequence of paths, which stops when a maximum matching is achieve:

Po, P, Py, ... (2.1)
By Lemma 2.3.3, we have |P;| < |P,4;| for all i > 0.

Lemma 2.3.4 For any two paths P; and Pj in the sequence (2.1), if |P;| =
|Pj|, then the paths P; and P; are vertex-disjoint.

PROOF. Assume to the contrary that there are paths P; and P; with |P;| =
|P;| that are not vertex-disjoint, where i < j. Without loss of generality, we
pick such P; and P; so that the value j — 7 is minimized.

If j > i+1, then by Lemma 2.3.3, |P;| = |Pi41| = - -- = |Pj—1| = | Pj|, and
each P, with ¢ < h < j is vertex-disjoint with both P; and P;. Therefore, P;
is also an augmenting path w.r.t. M;;1 = M;AP;. Thus, under the assumed
conditions, P; is always an augmenting path w.r.t. M;,;. By Lemma 2.3.3,
|Pj| > |P;| + |P; N Pj|. Since |P;| = |P;j|, P, N P; = (0. However, this would
imply that P; and P; share no common vertex: every vertex v in the path
P; becomes matched in the matching M;,1 = M;APF; and is an end of an

42 GRAPH MATCHING

edge e, in M;41 N P;. Thus, if v is also in P;, which is w.r.t. M;,1, then the
edge e, must be also in P;, which would contradict the fact P, N P; = 0.
This completes the proof that paths P; and P; are vertex-disjoint. [l

Now suppose that we divide the sequence (2.1) into segments:
S1 = (Po, ce 7Ph1)a SS9 = (Ph1+17 ce ,Ph2), ey (22)

such that each segment is a maximal subsequence of paths that have the
same length. Then we have the following theorem.

Theorem 2.3.5 Suppose that the size (i.e., the weight) of a maximum
matching in the unweighted graph G is s. Then the number of segments
in sequence (2.2) is bounded by 2\/s + 1.

PROOF. Letr = |s—+/s|. Then for each i < r, |M;| < r, so by Lemma 2.3.2,
|P;| < 2r/(s—r)+1 < 2y/s. Note |P;| must be an odd number bounded
by 24/s. Thus, the first r paths in the sequence (2.1) can have at most
/s different path lengths, thus make at most /s segments. On the other
hand, because the maximum matching of the graph G contains s edges, the
sequence (2.1) contains exactly s paths. Therefore, the last s — 7 < /s + 1
paths in the sequence (2.1) can make at most /s+1 segments. In conclusion,
the number of segments in the sequence (2.2) is bounded by 21/s + 1. [J

By Lemma 2.3.4, the paths in each segment in the sequence (2.2) are
vertex-disjoint. This fact enables the construction of all paths in each seg-
ment in parallel, as shown in the algorithm given in Figure 2.4, where “a
maximal set A of vertex-disjoint shortest augmenting paths” is a set to which
no further vertex-disjoint shortest augmenting path can be added.

Algorithm. U-Matching
INPUT: an unweighted graph G
OUTPUT: a maximum matching M in G

1. M =0;

2. while (there are augmenting paths w.r.t. M in G) do

2.1 construct a maximal set A of vertex-disjoint shortest augmenting paths w.r.t. M;
2.2 Let M = MAA.

Figure 2.4: Maximum matching based on shortest augmenting paths

UNWEIGHTED GRAPHS 43

Let A = {P1,... Py} be the maximal set of vertex-disjoint shortest
augmenting paths w.r.t. M constructed in step 2.1 of the algorithm U-
Matching. Since all paths in A are vertex-disjoint, each path P; is also
an augmenting path w.r.t. the matching M; = MAP/A---AP,_{. By
Lemma 2.3.3, P; is also a shortest augmenting path w.r.t. M;. More-
over, let P,11 be a shortest augmenting path w.r.t. the matching MAA =
MAP,A---APy,. Then by Lemma 2.3.3, |Py41| > |Py|. In fact, we must
have |Pyi1| > |Prl: if |Pht1| = |Prl, then by Lemma 2.3.4, Pp,1; is vertex-
disjoint with all paths in A thus is also a shortest augmenting path w.r.t.
M, which would contradict the assumption that the set A is a maximal set
of vertex-disjoint shortest augmenting paths w.r.t. M. This enables us to
conclude that step 2.1 of the algorithm U-Matching constructs an entire
segment in the sequence (2.2). By Theorem 2.3.5, the while-loop of step 2 of
the algorithm U-Matching is executed at most 2/s + 1 times, where s is
the size of a maximum matching in the graph G, thus, s < n/2. As a result,
if step 2.1 runs in time O(a(n)), then the algorithm U-Matching solves
the GRAPH MATCHING problem on unweighted graphs in time O(«a(n)y/n).

Theorem 2.3.5 is due to Hopcroft and Karp [70], who applied the theorem
and proposed the algorithm U-Matching on bipartite graphs. Essentially,
finding a maximal set of vertex-disjoint shortest augmenting paths w.r.t. a
maching M in a bipartite graph can be achieved by finding a flow that
saturates all shortest paths in a flow-network in which all edges have capacity
1. Using Dinic’s algorithm [35], such a flow can be constructed in time O(m).
Combining this result with Theorem 2.3.5 and algorithm U-Matching, we
obtain an algorithm for GRAPH MATCHING on unweighted bipartite graphs
that runs in time O(m+/n). We will give a detailed description of this
algorithm in the next chapter on maximum flow, after the discussion on
Dinic’s maximum flow algorithm on general flow-networks.

GRAPH MATCHING algorithms for general unweighted graphs turn out to
be much more difficult. While constructing an augmenting path in a bipar-
tite graph is rather straightforward and intuitive, constructing augmenting
paths in a general graph will need to deal with a complicated graph struc-
ture called “blossom”. Edmond [36] studied the properties of blossoms and
proposed a polynomial-time algorithm for GRAPH MATCHING on general
unweighted graphs. Much following-up work has been done on improving
Edmond’s algorithm (e.g., [47]). Eventually, Micali and Vazirani [99] were
able to take advantage of Theorem 2.3.5 and algorithm U-Matching, and
developed an O(m)-time algorithm that constructs a maximal set of vertex-
disjoint shortest augmenting paths in a general unweighted graph (see also
[119]). This implies that GRAPH MATCHING on general unweighted graphs

44 GRAPH MATCHING

can also be solved in time O(m+/n). We summarize the above discussion in
the following theorem.

Theorem 2.3.6 The GRAPH MATCHING problem on unweighted general
graphs can be solved in time O(my/n).

2.4 Matching in general weighted graphs

Now we consider the general GRAPH MATCHING problem on weighted
graphs, which, for the convenience of discussion, will be named WEIGHTED
MATCHING. Let G be an undirected and weighted graph in which the weight
for each edge e is given by wt(e). Let M be a matching in G. The weight of M
is defined by wt(M) = Y.y wt(e). The objective of WEIGHTED MATCH-
ING is to construct a mazimum weighted matching in G, i.e., a matching
whose weight is maximized over all matchings in G. We will use the word
“size” |M| of a matching M to denote the number of edges in the matching,
to distinguish it from the weight of the matching M.

Introducing weights in the matching problem makes the problem much
harder. In particular, neither must a maximum weighted matching have the
largest size nor must matchings of maximum size be maximum weighted.
As a result, augmenting a matching with an augmenting path does not
guarantee increasing of the matching size. Therefore, the number of times
the while-loop of step 2 of the algorithm Matching in Figure 2.2 is executed
now becomes harder to control. Moreover, Theorem 2.3.5 no longer holds
true, thus, algorithm U-Matching is no longer applicable. Nevertheless,
we will see in this section that the concepts such as augmenting paths and
blossoms can still be carried over. Due to the space limit, we will only
give a brief introduction to the theory and algorithms for the WEIGHTED
MATCHING problem. For more thorough and detailed descriptions, readers
are referred to more specialized literature [48, 91, 106, 116].

2.4.1 Theorems and algorithms

Without loss of generality, we can assume that the weighted graph G, which
is an instance of the WEIGHTED MATCHING problem, has no edges of weight
less than or equal to 0. In fact, any matching M in G minus the edges of
nonpositive weight gives a matching in G whose weight is at least as large as
wt(M). Again we fix a weighted graph G, and let n and m be the number
of vertices and the number of edges in G, respectively.

WEIGHTED GRAPHS 45

Definition 2.4.1 For each k > 0, a k-matching in a graph G is a matching
of size k. If there are k-matchings in G, then denote by M}, a(ny) k-matching
in G whose weight is the maximum over all k-matchings in G, and call My,
a mazimum k-matching. If there is no k-matching in G, define M;, = ().

Therefore, for some k, the matching M} is a maximum weighted match-
ing in the graph G. We first characterize the index k such that M} makes a
maximum weighted matching in G.

Lemma 2.4.1 If the index k satisfies wt(My) > wt(My_1) and wt(My) >
wt(Mg11), then My is a mazimum weighted matching in the graph G.

PRrROOF. Assume the opposite, that the matching M} is not a maximum
weighted matching in G. Let Mpyax be a maximum weighted matching in
G. Consider the graph Gg = MAMpax. As we explained in the proof for
Theorem 2.1.2, each component of Gy is either a simple path or a simple
cycle, and in each connected component of G, the number of edges in My,
and the number of edges in My, differ by at most 1.

Since wt(Mmax) > wt(My), there must be one connected component Cy
in the graph Gy such that

Z wt(e) < Z wt(e)

eeCoNMy e€CoNMmax

Note that M’ = M;ACy is also a matching in G and wt(M') > wt(My).
Now a contradiction is derived: (1) if Cp contains the same number of edges
in My, and in M.y, then the matching M’ has exactly k edges, contradicting
the assumption that M}, is a maximum k-matching in G; (2) if Cp contains
one more edge in My than in My,y, then M’ is a (k — 1)-matching with
wt(M') > wt(My,) > wt(Mjy_1), contradicting the assumption that My_q is
a maximum (k — 1)-matching in G; and (3) if Cy contains one more edge in
Mmax than in My, then M’ is a (k + 1)-matching with wt(M') > wt(My) >
wt(Mpy1), contradicting the assumption that My, q is a maximum (k + 1)-
matching in G. [

Thus, if we start with the trivial matching My =), construct a sequence
Mo, My, My, . ..,

of matchings, and stop at the first M; such that wt(M;) > wt(M;4+1), then
by Lemma 2.4.1, the matching M; is a maximum weighted matching in the

46 GRAPH MATCHING

graph G. Now the problem remaining is to construct a maximum (k + 1)-
matching My, from a maximum k-matching My, for each £ > 0. This is
given in the following theorem. For this, we define a maximum augmenting
path w.r.t. a matching M to be an augmenting path P such that its differ-
ential weight dwys(P), defined by dwp(P) = wt(P \ M) — wt(P N M), is
the largest over all augmenting paths w.r.t. M.

Theorem 2.4.2 Let k > 0, and suppose wt(Mp_1) < wt(My). Let P be a
mazimum augmenting path w.r.t. My. Then M' = MpAP is a mazimum
(k + 1)-matching in G.

PROOF. Since P is an augmenting path w.r.t. My, dwy, (P) > 0. Note
that we must have |P\ My| = |P N M| + 1: if |P\ M| = |P N My, then
MpAP would be a k-matching whose weight is larger than the maximum
k-matching My; while if |P \ My| = |P N M| — 1, then M;AP would be a
(k —1)-matching whose weight is larger than the maximum (k — 1)-matching
My._1. Thus, M’ = M;AP is a (k + 1)-matching. Moreover, the maximum
(k + 1)-matching My ;1 exists and its weight is larger than that of Mj,.

Consider the graph Gog = MiAMj1, in which each component is an
alternating path w.r.t. My, (as well as w.r.t. My,1), which is either a simple
path or a simple cycle. Since |Mj11| = | M|+ 1, there must be a component
Cy of Gy such that |Co N Myy1| = |Co N My| 4+ 1. Let Gj = Gy \ Cy. Note
that G, contains the same number edges in M} and in Mj4q. That is,
|Gy N M| = |Gy N My41].

We claim that wt(GyN M) = wt(Gy N My41). In fact, if wt(GyN M) <
wt(GH N My41), then (G N Myy1) U (Co N My) U (My, N Mg41) would give
a k-matching whose weight is larger than that of the maximum k-matching
M., while if wt(GyN My) > wt(G{N Mgy1), then (G{N M) U (CoN My11)U
(M N M) would give a (k+ 1)-matching whose weight is larger than that
of the maximum (k + 1)-matching My ;. As a consequence, we have

wt(Mk-+1) — wt(Mk) = wt(C() N Mk+1) — wt(Co N Mk)
wt(Co \ Mk) — ’LUt(C() N Mk) > 0.

Thus, Cj is an augmenting path w.r.t. M. Since P is a maximum augment-
ing path w.r.t. My, we have

dek(P) = wt(P\Mk) — wt(PﬂMk)

> dek (C()) = 'wt(CQ \ Mk) — wt(C() N Mk)
= wt(Mk-+1) — wt(Mk).

WEIGHTED GRAPHS 47

This immediately gives
wt(M') = wt(MpAP) = wt(My) + dw(P) > wt(Mj41),
i.e., the matching M’ = M;AP is a maximum (k + 1)-matching in G. []

Lemma 2.4.1 and Theorem 2.4.2 suggest the algorithm in Figure 2.5 for
the WEIGHTED MATCHING problem. Theorem 2.4.2 guarantees the con-
structed matching My, to be a maximum k-matching in G, and Lemma 2.4.1
ensures the matching M} returned by the algorithm to be a maximum
weighted matching in G. Also note that if there is no (k + 1)-matching
in the graph G, then by definition My, = (), so wt(My) > wt(My1), and
the algorithm stops with the maximum weighted matching M.

Algorithm. W-Matching
INPUT: an undirected and weighted graph G
OUTPUT: a maximum weighted matching M in G

1. Mo=0; k=0
2. while there is an augumenting path w.r.t My do
find a maximum augmenting path P w.r.t. My;
My41 = M AP;
if wt(My) > wt(My41)
then return(My); \\ My is the maximum weighted matching
else k =k + 1;

Figure 2.5: An algorithm for WEIGHTED MATCHING

By the algorithm W-Matching, the problem WEIGHTED MATCHING
is reduced to the problem of finding a maximum augmenting path w.r.t. a
maximum k-matching. If the graph G is bipartite, then finding such an
augmenting path can be reduced to solving the SHORTEST PATH problem,
using the well-known Dijkstra’s algorithm [30]. However, finding a maximum
augmenting path in a general graph is, though still possible [36], much harder
because of, not surprisingly, the existence of the blossom structure.

The best algorithm for the WEIGHTED MATCHING problem is due to
Gabow, with his recently published article [48], in which he showed how
to construct a maximum augmenting path w.r.t. a maximum k-matching
in time O(m + nlogn). This algorithm, combined with the algorithm W-
Matching in Figure 2.5, gives the following result.

Theorem 2.4.3 The WEIGHTED MATCHING problem on general weighted
graphs can be solved in time O(nm + n?logn).

48 GRAPH MATCHING

Theorem 2.4.3 is the best known bound for the WEIGHTED MATCHING
problem on general weighted graphs.

2.4.2 Minimum perfect matchings

The WEIGHTED MATCHING problem has a number of interesting variations
that have nice applications in computational optimization. In this subsec-
tion, we discuss one of these variations, which will be used in our later
discussion.

Let M be a matching in a graph G. The matching M is perfect if every
vertex in GG is matched. In other words, the matching M contains exactly
n/2 edges in G if G has n vertices. The MIN PERFECT MATCHING problem
is to look for a minimum weighted perfect matching in a given weighted
graph, formally defined as follows.

MIN PERFECT MATCHING = (I, S, fq,optq)

I: the set of all undirected weighted graphs G

Sg: Sq(G) is the set of all perfect matchings in the graph G
for fo(G, M) is the weight wt(M) of the matching M

optg: min

Of course, not all graphs have perfect matchings. In particular, a graph
of odd number of vertices has no perfect matchings. Therefore, the MIN
PERFECT MATCHING problem is only defined on weighted graphs that have
perfect matchings. By Theorem 2.3.6, whether a graph, regarded as an
unweighted graph, has perfect matchings can be detected in time O(m+/n).
Thus, the validity of the problem instances can be checked in time O(m+/n).

We show how the MIN PERFECT MATCHING problem is reduced to the
WEIGHTED MATCHING problem. Let GG be an instance of the MIN PERFECT
MATCHING problem. For each edge e in G, let wt(e) be the weight of e in G.
We construct a new weighted graph G’ as follows. Let wy be the maximum
|wt(e)| over all edges e of G (here |wt(e)| is the absolute value of wt(e)).
The graph G’ has the same vertex set and edge set as G. For each edge e
in G', the weight wt'(e) of e in G’ is equal to wt'(e) = (m + n)wy — wt(e).

Lemma 2.4.4 Let M’ be a maximum weighted matching in the graph G'.
Then the same set of edges in M' constitutes a minimum perfect matching
in the graph G.

WEIGHTED GRAPHS 49

PRrROOF. By our assumption, the graph G has perfect matchings. Thus, the
number n of vertices of GG is an even number.

First we show that any imperfect matching in G’ has weight strictly less
than that of any perfect matching in G’. Let M; be an imperfect matching
in G’ and let M, be a perfect matching G’. We have

wt' (M;) = Z wt'(e) = Z ((m + n)wy — wt(e))

e€M; e€M;
< > (m+n+ 1w
eceM;
n
< (5 - 1)(m +n+ 1)w07

where the first inequality is because of wy > |wt(e)| for all edges e, and the
last inequality is because M; is imperfect thus contains at most 5 — 1 edges.
On the other hand,

wt' (M) = > wt'(e)= Y ((m+n)wy — wt(e))

e€M, ec M,

= > ((m+n—1)w+ (wo — wt(e)))
ecMp

> Y (m+n—1w
ecMp

n
= §(m +n — 1wy,
where the inequality is because wo—wt(e) > 0 for all edges e. Since §(m+n—
1) > (§ —1)(m+n+1), we derive that the perfect matching M, has weight
strictly larger than that of the imperfect matching M;. In consequence,
every maximum weighted matching in G’ is a perfect matching.
Now for any perfect matching M, in the graph G’ we have

wt' (Mp) = > wt'(e)= > ((m+n)wo — wt(e))

ec M, ec M,
n
= —(m+n)wy — g wt(e)
2
e€eM,

= g(m + n)wy — wt(Mp).

Thus, for any two perfect matchings M, and M, in G', wt' (M) > wt'(M,)
if and only if wt(M,) < wt(M,). In conclusion, the maximum weighted

50 GRAPH MATCHING

matching M’ in the graph G’ must constitute a minimum weighted perfect
matching in the graph G. []

Combining Theorem 2.4.3 and Lemma 2.4.4, we obtain

Theorem 2.4.5 The MIN PERFECT MATCHING problem can be solved in
time O(nm + n?logn).

