
Chapter 1

Introduction

This chapter starts with some examples of optimization problems and in-
troduces the formal definition of an optimization problem. Necessary back-
ground in computer algorithms will be reviewed. We then discuss in de-
tail two important optimization problems: the Minimum Spanning Tree

and the Matrix-Chain Multiplication problems. Algorithms for solving
these two problems are given with analysis of their running time. Through
these given algorithms, two basic techniques in the design of algorithms are
illustrated: the greedy method and the dynamic programming method. Fi-
nally, we give a brief discussion on NP-completeness theory, which will be
essential for the topics covered throughout the book.

1.1 Optimization problems

Most computational optimization problems arise from practical problems in
industry and science. The concept of optimization is now well rooted as
a principle underlying the analysis of many complex decision or allocation
problems. In general, an optimization problem consists of a set of instances,
which take a certain well-specified form. Each instance is associated with a
set of solutions such that each solution has a value. Solving the optimization
problem means finding for each given instance a best (i.e., optimal) solution
which has either the largest or the smallest associated value, depending on
the description of the optimization problem.

Let us start with some examples of optimization problems. We will try
to keep the discussion informal at the beginning so that the reader gains an
intuitive understanding of optimization problems before the formal model is
introduced.

1

2 Introduction

One of the most famous optimization problems is theTraveling Sales-

man problem (abbr. TSP).

Traveling Salesman (TSP)

Given a set of cities and the cost of traveling between each pair of
cities, find a traveling tour that visits all the cities and minimizes
the cost.

Here each instance of the problem consists of a collection of cities and the
costs of traveling between the cities, a solution to the instance is a traveling
tour that visits all the cities, the value associated with the solution is the cost
of the corresponding traveling tour, and the objective is to find a traveling
tour that minimizes the traveling cost.

Another optimization problem comes from mathematical programming,
the Linear Programming problem, which has played a unique role in
the study of optimization problems. In fact, a vast array of optimization
problems can be formulated as instances of Linear Programming.

Linear Programming (LP)

Given a vector (c1, . . . , cn) of real numbers, and a set of linear
constraints

a11x1 + a12x2 + ...+ a1nxn ≥ a1
...

ar1x1 + ar2x2 + ...+ arnxn ≥ ar

b11x1 + b12x2 + ...+ b1nxn ≤ b1
... (1.1)

bs1x1 + bs2x2 + ...+ bsnxn ≤ bs

d11x1 + d12x2 + ...+ d1nxn = d1
...

dt1x1 + dt2x2 + ...+ dtnxn = dt

find a vector (x1, . . . , xn) of real numbers such that the value

c1x1 + · · ·+ cnxn

is minimized.

Optimization Problems 3

Here an instance consists of a vector (c1, . . . , cn) of real numbers plus a set
of linear constraints of the form given in (1.1), a solution to the instance is
a vector (x1, . . . , xn) of real numbers satisfying the linear constraints, the
value associated with the solution is c1x1 + · · ·+ cnxn, and the objective is
to find a solution (x1, . . . , xn) that minimizes the value c1x1 + · · ·+ cnxn.

Both problems above are minimization problems. Below we give an
example of maximization problems.

Optimal Course Assignment

Given a set of teachers T = {t1, . . . , tp} and a set of courses
C = {c1, . . . , cq}, and a set of pairs (ti, cj) indicating that teacher
ti can teach the course cj , where ti ∈ T and cj ∈ C, find a course
assignment in which each teacher teaches at most one course and
each course is taught by at most one teacher, and such that the
maximum number of courses get taught.

Here an instance x consists of the set of the pairs (ti, cj), a solution y to the
instance x is a subset A of the pairs in x in which each teacher appears at
most once and each course appears at most once, the value associated with
the solution y is the number of pairs in the subset A, and the objective is
to find such a subset A with the maximum number of pairs.

Formally, an optimization problem is defined as follows.

Definition 1.1.1 An optimization problemQ is a 4-tuple 〈IQ, SQ, fQ, optQ〉,
where IQ is the set of input instances, SQ is a function such that for each
input x ∈ IQ, SQ(x) is the set of solutions to x, fQ is the objective function
that for each pair x ∈ IQ and y ∈ SQ(x), associates the real number fQ(x, y),
and optQ ∈ {max,min} specifies whether the problem is a maximization
problem or a minimization problem.

Solving the optimization problem Q means for each given input instance
x in IQ, to find a solution y in SQ(x) such that the objective function value
fQ(x, y) is optimized (maximized or minimized depending on optQ) over all
solutions in SQ(x).

Based on this formulation, we list a few more examples of optimization
problems. The list shows that optimization problems arise naturally in many
applications.

The Minimum Spanning Tree problem arises in network communica-
tion, in which we need to find a cheapest subnetwork that connects all nodes
in the network. A network can be modeled as a weighted graph, in which

4 Introduction

each vertex represents a node in the network, and each edge represents a
connection between two corresponding nodes in the network. The weight of
an edge indicates the cost of the corresponding connection.

Minimum Spanning Tree (MSP)

IQ: the set of all weighted (undirected) graphs G

SQ: SQ(G) is the set of all spanning trees of the graph G

fQ: fQ(G, T) is the weight of the spanning tree T of G.

optQ: min.

A problem that often arises in the domain of network communication,
is to find the shortest path from a given starting position to a given final
position. This problem is formulated as the Shortest Path problem

Shortest Path

IQ: the set of all weighted graphs G with two specified
vertices s and t in G

SQ: SQ(G, s, t) is the set of all paths connecting s and t in G

fQ: fQ(G, s, t;P) is the weight of the path P (i.e., the sum of
weights of the edges in P) connecting s and t in G

optQ: min.

The following problem is a “dual” of the Shortest Path problem, which
looks for a “longest” path in a graph. We will see soon in this chapter that
this problem, even restricted to graphs of very simple structures, has im-
portant applications in areas such as scheduling and computational biology.
Recall that a simple path in a graph is a sequence of non-repeating vertices
(v1, v2, . . . , vk) in the graph where for all i, 1 ≤ i ≤ k − 1, [vi, vi+1] is an
edge in the graph.

Longest Path

IQ: the set of all weighted graphs G

SQ: SQ(G) is the set of all simple paths P in G

fQ: fQ(G,P) is the weight of the path P (i.e., the sum of
weights of the edges in P)

optQ: max.

Optimization Problems 5

Note that the condition that the paths are simple in the definition of
Longest Path is necessary to make the problem meaningful: otherwise,
an arbitrarily long path can be formed by repeatedly looping around a cycle
in the graph.

Now we consider an optimization problem induced from the research in
computational biology. In biological applications, people are often interested
in knowing the “similarity” of two biological sequences, which can be either
DNA sequences or protein sequences. The biological similarity can be de-
fined in many ways, here in this example we consider the measure that is the
length of a longest sequence that is “shared” by the two sequences. Formally,
let A = a1a2 · · · an be a sequence of symbols in a given alphabet Σ. For any
subset {t1, t2, . . . , tk} of indices in {1, 2, . . . , n} with t1 < t2 < · · · < tk, the
sequence at1at2 · · · atk is called a subsequence of A. Note that the symbols in
a subsequence do not have to be consecutive in the original sequence. For
example, for the sequence A = a1a2a3a4a5, the sequences a1a2a3, a1a5, and
the “empty sequence” φ are all subsequences of A. Two sequences A1 and A2

are considered similar if they contain a very long subsequence in common.
Therefore, we are interested in knowing the length of the longest sequence
that is a subsequence of both the given sequences A1 and A2. Formally, the
Longest Common Subsequence problem is defined as follows:

Longest Common Subsequence

IQ: the set of all pairs (A1, A2) of sequences in a fixed alphabet
Σ (Σ can be either finite or infinite)

SQ: SQ(A1, A2) is the set of all sequences A′ in Σ that is a
common subsequence of A1 and A2

fQ: fQ(A1, A2;A
′) is the length of A′

optQ: max.

Note for any two sequences A1 and A2, the solution set SQ(A1, A2) is always
non-empty because at least the empty sequence φ is a common subsequence
of A1 and A2.

The Longest Common Subsequence problem can be naturally ex-
tended to the case for more than two sequences.

The next optimization problem takes its name from the following story:
a thief robbing a safe finds a set of items of varying sizes and values that he
could steal, but has only a small knapsack of capacity B that he can use to
carry the goods. The thief tries to choose items for his knapsack in order to
maximize the value of the total take. This problem can be interpreted as a

6 Introduction

job scheduling problem in which each job corresponds to an item. The size
of an item corresponds to the resource needed for finishing the job while the
value of an item corresponds to the reward for finishing the job. Now with
limited amount B of resources, we want to get the maximum reward.

Knapsack

IQ: the set of tuples T = {〈s1, . . . , sn; v1, . . . , vn;B〉}, where si
and vi are for the size and value of the ith item,
respectively, and B is the knapsack size

SQ: SQ(T) is a subset S of pairs of form (si, vi) in T such that
the sum of all si in S is not larger than B

fQ: fQ(T, S) is the sum of all vi in S

optQ: max.

The following optimization problem arises in job scheduling on parallel
processing systems. Suppose that we have a set of jobs J1, . . ., Jn, where the
processing time of job Ji (on a single processor) is ti, and a set of identical
processors P1, . . ., Pm. Our objective is to assign the jobs to the processors
so that the completion time of all jobs is minimized.

Makespan

IQ: the set of tuples T = {〈t1, . . . , tn;m〉}, where ti is the
processing time for the ith job and m is the number
of identical processors

SQ: SQ(T) is the set of partitions P = (T1, . . . , Tm) of the
numbers {t1, . . . , tn} into m subsets

fQ: fQ(T, P) is the largest processing time of a subset in
the partition P , that is, fQ(T, P) = maxi{∑tj∈Ti

tj}
optQ: min.

A partition P = (T1, . . . , Tm) of the job set {t1, . . . , tn} corresponds
to a schedule S of the jobs {t1, . . . , tn} to the m processors so that the
jobs in the subset Ti are assigned to the i-th processor, for 1 ≤ i ≤ m.
Thus, under the schedule S, the processor Ti completes the jobs assigned
to it at time

∑
tj∈Ti

tj . The value maxi{∑tj∈Ti
tj} is the time at which all

processors complete the assigned jobs under the schedule S, which is the
parallel completion time, and also called the makespan of the schedule S.

We close this section with the following graph optimization problem.

Algorithmic Preliminary 7

Independent Set

IQ: the set of undirected graphs G

SQ: SQ(G) is the set of all subsets I of vertices in G such
that no two vertices in I are adjacent

fQ: fQ(G, I) is equal to the number of vertices in I

optQ: max.

The Independent Set problem has been a very important optimization
problem in the study and research in computational optiimizations and has
drawn significant attentions in the research. The problem will also play an
important role in our discussion.

1.2 Algorithmic preliminaries

The objective of this book is to discuss how optimization problems are solved
using computer programs, which will be described as computer algorithms.
The design and analysis of computer algorithms has been a very active re-
search area in computer science since the introduction of the first modern
computer. In this section, we briefly review some fundamentals in the de-
sign and analysis of computer algorithms. For further and more detailed
discussion, the reader is referred to the excellent books in the area, such as
Aho, Hopcroft, and Ullman [1], Cormen, Leiserson, Rivest, and Stein [29],
and Knuth [85, 86].

Algorithms

The concept of algorithms came far earlier than modern computers. In fact,
people have been using algorithms as long as they have been solving prob-
lems systematically. However, since the introduction of modern computers
in the middle of the 20th century, it has become a common practice to refer
by “algorithms” to “computer algorithms”. Informally, an algorithm is a
high level description of a computer program, which is a finite step-by-step
specification of a halting procedure for solving a given problem. Each step
of an algorithm consists of a finite number of operations, which in general
include arithmetical operations, logical comparisons, transfer of control, and
retrieving or storing data from/in computer memory.

We say that an algorithm A solves an optimization problem Q =
〈IQ, SQ, fQ, optQ〉 if on each input instance x ∈ IQ, the algorithm produces

8 Introduction

an optimal solution y ∈ SQ(x) (by “optimal solution” y we mean that the
solution y satisfies the condition fQ(x, y) = optQ{fQ(x, z) | z ∈ SQ(x)}).

Encodings

To study the computational complexity of an algorithm, we first need to
discuss how input instances and solutions of an optimization problem are
represented in a computer. In general, an input instance or a solution to
an input instance can be given as a sequence of symbols in a finite al-
phabet Σ. For example, an input instance of the Makespan problem is a
sequence starting with the symbol “(”, then a sequence of integers separated
by commas, then a symbol “;” followed by an integer m, and closed with
the symbol “)”. Thus, the alphabet for the input instances of Makespan is
Σ = {0, . . . , 9, (,), ; , [,]), (where [,] means the symbol “,”). Another exam-
ple is the input instances of the Traveling Salesman problem, which are
weighted graphs, and can be given by the adjacency matrix of the graphs
organized in row major as a sequence of numbers. Now suppose that the
finite alphabet Σ is fixed, then we can encode each sequence in Σ into a
binary sequence as follows. Let q be the number of symbols in Σ, then each
symbol in Σ can be encoded into a distinct binary string of length �log q�.
Therefore, each sequence of length n in Σ can be encoded into a binary se-
quence of length n�log q�. Since q is in general a small constant, the binary
representation of the sequence is not significantly different in length from
the original sequence. Moreover, it is straightforward to convert a sequence
in Σ into the corresponding binary sequence and vice versa. It is convincing
that in general, input instances and solutions of an optimization problem,
even when they are compound objects such as polygons, graphs, or formulas,
can be effectively and efficiently encoded into binary sequences.

Therefore, we will use the size or length of an object w, denoted |w|, to
refer to the length of the binary representation of the object w, where the
object w can be an input instance, a solution to an input instance, or some
other component of an optimization problem.

Asymptotic notations

Suppose that A is an algorithm that solves an optimization problem Q. It
is reasonable to assume that for input instances of large size, the algorithm
A spends more computational time. We will evaluate the performance of
the algorithm A in terms of the size of input instances.

It is in general difficult and improper to calculate the precise number

Algorithmic Preliminary 9

of basic operations the algorithm A uses to find an optimal solution for a
given input instance. There are several reasons for this. First, the machine
(computer) model underlying the algorithm is not well-defined. For exam-
ple, the operation “a++” (add 1 to a) can be implemented in one basic
operation (using the C compiler) or three basic operations (retrieve a, add
1, and store the value back to a). Second, the time complexity for each
different basic operation may vary significantly. For example, an integer
multiplication operation is much more time-consuming than an integer ad-
dition operation. Third, one may not be happy to be told that the running
time of an algorithm is 37|x|3+13|x| log(|x|)−4723 log2(|x|). One would be
more interested in: “roughly what is the complexity of algorithm A?”

It has become standard in computer science to use asymptotic bounds
in measuring the computational resources needed for an algorithm in order
to solve a given problem. The following notations have been very useful in
the asymptotic bound analysis. Given a function t(n) mapping integers to
integers, we denote by

• O(t(n)): the class C1 of functions such that for each g ∈ C1, there is
a constant cg such that t(n) ≥ cgg(n) for all but a finite number of
values of n. Roughly speaking, O(t(n)) is the class of functions that
are at most as large as t(n) asymptotically.

• o(t(n)): the class C2 of functions such that for each g ∈ C2,
limn→∞ g(n)/t(n) = 0. Roughly speaking, o(t(n)) is the class of func-
tions that are asymptotically less than t(n).

• Ω(t(n)): the class C3 of functions such that for each g ∈ C3, there is
a constant cg such that t(n) ≤ cgg(n) for all but a finite number of
values of n. Roughly speaking, Ω(t(n)) is the class of functions which
are asymptotically at least as large as t(n).

• ω(t(n)): the class C4 of functions such that for each g ∈ C4,
limn→∞ t(n)/g(n) = 0. Roughly speaking, ω(t(n)) is the class of func-
tions that are asymptotically larger than t(n).

• Θ(t(n)): the class C5 of functions such that for each g ∈ C5, g(n) =
O(t(n) and g(n) = Ω(t(n)). Roughly speaking, Θ(t(n)) is the class of
functions which are asymptotically of the same order as t(n).

Complexity of algorithms

There are two common scenarios under which an algorithm can be analyzed:
worst case and expected case scenarios. For the worst case analysis, we seek

10 Introduction

the maximum amount of time used by the algorithm over all possible inputs.
For the expected case analysis we normally assume a certain probability dis-
tribution on the input instances and study the performance of the algorithm
for any input instance drawn from the distribution. Mostly, we are interested
in the asymptotic analysis, i.e., the behavior of the algorithm as the input
size approaches infinity. Since expected case analysis is usually harder to
tackle, and moreover the probabilistic assumption sometimes is difficult to
justify, emphasis will be placed on the worst case analysis. Unless otherwise
specified, we shall consider only worst case analysis.

The running time of an algorithm on an input instance is defined to
be the number of basic operations performed during the execution of the
algorithm.

Definition 1.2.1 Let A be an algorithm solving an optimization problem
Q and let f(n) be a function. The time complexity of algorithm A is O(f(n))
if there is a function f ′(n) ∈ O(f(n)) such that for every integer n ≥ 0, the
running time of A is bounded by f ′(n) for all input instances of size n.

Now we are ready for presenting an important terminology.

Definition 1.2.2 An algorithm A is a polynomial-time algorithm if there
is a fixed constant c such that the time complexity of the algorithm A is
O(nc). An optimization problem can be solved in polynomial time if it can
be solved by a polynomial-time algorithm.

Note that this terminology is invariant for a large variety of encoding
schemes and different definitions of input size, as long as these schemes and
definitions define input size that are polynomially related. As we have seen
above, the binary representation and the original representation of an input
instance differ only by a small constant factor. Thus, the running time of a
polynomial-time algorithm is not only bounded by a polynomial of the length
of its binary representation, but also bounded by a polynomial of the length
of its original representation. Even more, consider the Independent Set

problem for example. Let n be the number of vertices in the input instance
graph G. Then n is polynomially related to the binary representation of
the graph G – if we use an adjacency matrix for the graph G, the binary
representation of the matrix has length Θ(n2). Therefore, the running time
of an algorithm solving Independent Set is bounded by a polynomial in
n if and only if it is bounded by a polynomial in the length of the input
instance.

Sample Problems 11

We must be a bit more careful however. For example, consider the
problem Factoring for which each input instance is an integer n and we
are asked to factor n into its prime factors. For this problem, it is obviously
improper to regard the input size as 1 or as n. The standard definition of
the input size for Factoring takes the input length as �log n� = O(log n),
which is the length of the binary representation of the integer n, and is not
polynomially related to the quantities 1 and n.

Further assumptions on optimization problems

Polynomial-time algorithms are regarded as “easy”, or feasible, computa-
tions. In general, given an optimization problem, our main concern is
whether an optimal solution for each input instance can be found in poly-
nomial time. For this, we shall assume that the other unimportant compu-
tational parts of the optimization problem can be ignored, or can be dealt
with easily. In particular, we make the following assumptions using the ter-
minology of polynomial-time computability. Let Q = 〈IQ, SQ, fQ, optQ〉 be
an optimization problem. Throughout the book, we assume that

• there is a polynomial-time algorithm that can identify if a given string
x represents a valid input instance in IQ;

• there is a polynomial-time algorithm that, given an input instance
x ∈ IQ and a string y, can test if y represents a valid solution to x,
i.e., if y ∈ SQ(x);

• there is a polynomial-time algorithm that, given x ∈ IQ and y ∈ SQ(x),
computes the value fQ(x, y).

1.3 Sample problems and their complexity

To illustrate the ideas for solving optimization problems using computer
algorithms, we consider in this section the computational complexity for
two sample optimization problems, and introduce two important techniques
in designing optimization algorithms. We present an algorithm, using the
greedy method, to solve the Minimum Spanning Tree problem, and an
algorithm, using the dynamic programming method, to solve the Matrix-

Chain Multiplication problem.

12 Introduction

1.3.1 Minimum spanning trees

As described in Section 1.1, an input instance to the Minimum Spanning

Tree problem is a weighted graph G = (V,E), and a solution to the input
instance G is a spanning tree T in G. The spanning tree T is evaluated by
its weight, i.e., the sum of weights of the edges in T . Our objective is to find
a spanning tree with the minimum weight, which will be called a minimum
spanning tree.

Suppose that we have constructed a subtree T1 and that we know that
T1 is entirely contained in a minimum spanning tree T0. Let us see how we
can expand the subtree T1 into a minimum spanning tree. Consider the set
E′ of edges that are not in T1. We would like to pick an edge e in E′ and
add it to T1 to make a larger subtree. For this, the edge e must satisfy the
following two conditions:

1. T1 + e must remain a tree. That is, the edge e must keep T1 + e
connected but not introduce a cycle in T1 + e; and

2. the larger subtree T1 + e should be still contained in some minimum
spanning tree.

The first condition can be easily tested. In fact, the condition is equivalent to
the condition that the edge e has exactly one end in the subtree T1. We will
call an edge e a fringe edge if it satisfies this condition. Now let us consider
the second condition. Since we have no information about any minimum
spanning trees (we are attempting to construct one of them), how can we
justify that a new edge e plus T1 is still contained entirely in a minimum
spanning tree? Naturally, a person working on this problem would think
“well, since I am looking for a spanning tree of minimum weight, I guess I
should pick the lightest fringe edge to keep the weight of my new subtree
T1 + e small.” This presents the main idea for an important optimization
technique: the greedy method. In general, the greedy method always makes
the choice that looks best at the moment hoping that this choice will lead
to an optimal final solution for the problem.

It is conceivable that the greedy method does not always yield optimal
solutions for a given problem. However, for quite a few optimization prob-
lems, it does. The Minimum Spanning Tree problem fortunately belongs
to this class of problems, as shown by the following theorem.

Theorem 1.3.1 Suppose that the subtree T1 is entirely contained in a min-
imum spanning tree of G. Let e be the fringe edge of minimum weight. Then
the subtree T1 + e is entirely contained in a minimum spanning tree of G.

Sample Problems 13

Figure 1.1: A cycle C in T0 + e, where heavy lines are for edges in the
constructed subtree T1, and dashed lines are for edges in the minimum
spanning tree T0 that are not in T1.

Proof. Let T0 be a minimum spanning tree that contains T1. If the edge
e is in T0, then we are done. Thus, we assume that the edge e is not in
the spanning tree T0. Suppose that e = [u, v], where the vertex u is in the
subtree T1 while the vertex v is not in T1.

Then there is a cycle C in T0+ e that contains the edge e = [u, v]. Since
u is in T1 and v is not in T1, and T1 is entirely contained in T0, there must be
another edge e′ = [u′, v′] in the cycle C, e′ 	= e, such that u′ is in T1 while v′

is not in T1. (See Figure 1.1, where heavy lines are for edges in the subtree
T1, dashed lines are for edges in T0 that are not in T1). In other words, e′

is also a fringe edge. Moreover, T ′0 = T0 + e− e′ is also a spanning tree for
the graph G. Since T0 is a minimum spanning tree, we conclude that the
weight of the tree T0 is not larger than the weight of the tree T ′0.

On the other hand, since e′ is also a fringe edge, by the choice we made in
selecting the fringe edge e, we must have weight(e) ≤ weight(e′). Therefore,
the weight of the tree T0 is not smaller than the weight of the tree T ′0 =
T0 + e− e′.

In conclusion, the tree T ′0 is also a minimum spanning tree for the graph
G. Since the subtree T1 + e is entirely contained in T ′0 (note that the edge
e′ is not in T1), the theorem is proved.

Therefore, starting with a smaller subtree contained in a minimum span-
ning tree, the greedy method will lead to a larger subtree contained in a min-
imum spanning tree. Since a spanning tree has exactly n − 1 edges, where

14 Introduction

n is the number of vertices in the graph G, applying the greedy method
n − 1 times gives us a subtree T of n − 1 edges which is entirely contained
in a minimum spanning tree. In other words, the tree T itself is a minimum
spanning tree.

What remains is to indicate how the above process can be started, i.e.,
what is the first such subtree. This is easy: pick any vertex v in G and let
v be the first such a subtree. The vertex v is obviously contained in every
minimum spanning tree of G.

We implement all these ideas into the following algorithm. Each vertex
in the graph G can be either an “in-tree” vertex if it is contained in the
currently constructed subtree T1, or an “out-tree” vertex if it is not. Each
edge in G may have one of the following four statuses: “tree-edge” if it
is contained in the currently constructed subtree T1, “cycle-edge” if it is
not a tree-edge but both ends of it are in-tree vertices, “fringe-edge” if it
has exactly one end in the currently constructed subtree T1, and “unseen”
otherwise. The formal algorithm is presented in Figure 1.2.

Algorithm. MST-PRIM

1. pick any vertex w and make it an in-tree vertex;

2. for each edge e incident on w do make e a fringe-edge;

3. let T1 be the single-vertex tree consisting of the vertex w;

4. loop n− 1 times

pick a fringe-edge e = [u, v] of minimum weight, where u is

an in-tree vertex and v is an out-tree vertex;

4.1 T1 = T1 + e; make e a tree-edge;

4.2 for each edge e′ incident on v do

if e′ is a fringe-edge

then make e′ a cycle-edge

else if e′ is an unseen-edge then make e′ a fringe-edge

4.3 make v an in-tree vertex.

Figure 1.2: Prim’s Algorithm for Minimum Spanning Tree.

This algorithm is called Prim’s Algorithm and is due to R. C. Prim
[109]. We give some explanations on the detailed implementation of Prim’s
Algorithm. Suppose that the graph G has n vertices and m edges. We use
an array of size n for the vertices and an array of size m for the edges. The
status of a vertex is recorded in the vertex array and the status of an edge is
recorded in the edge array. To find the fringe-edge of the minimum weight,

Sample Problems 15

we only need to scan the edge array (the weight of an edge can be directly
read from the adjacency matrix for G). Moreover, to update the status of
the edges incident to a vertex v, we can again scan the edge array and work
on those edges of which one end is v. Therefore, each execution of the loop
body of the loop in Step 4 takes time O(m). Since the loop body is executed
exactly n− 1 times, we conclude that the running time of Prim’s Algorithm
is bounded by O(nm), which is certainly bounded by a polynomial of the
length of the input instance G. In conclusion, the Minimum Spanning

Tree problem can be solved in polynomial time.

It is possible to improve the running time of the algorithm. For example,
the edge array can be replaced by a more efficient data structure, which
supports O(log n)-time operations for finding the minimum weight edge and
for updating the weight for an edge. Then since each edge is selected as
the fringe-edge of minimum weight at most once, and the status of each
edge is changed at most twice (from an unseen-edge to a fringe-edge and
from a fringe-edge to a tree-edge or to a cycle-edge), we conclude that the
Prim’s Algorithm can be implemented so its running time is O(m log n).
More detailed description of this improvement can be found in [29].

1.3.2 Matrix-chain multiplication

In this subsection, we study another important optimization technique: dy-
namic programming method. We illustrate the technique by presenting an
efficient algorithm for the Matrix-Chain Multiplication problem. An
instance of the Matrix-Chain Multiplication problem is a list of n+ 1
positive integers D = (d0, d1, . . . , dn), representing the dimensions for n ma-
trices M1, . . ., Mn, where Mi is a di−1×di matrix. A solution to the instance
D is an indication R of the order of the matrix multiplications for the prod-
uct M1 ×M2 × · · · ×Mn. The value for the solution R is the number of
element multiplications performed to compute the matrix product according
to the order R. Our objective is to find the computation order so that the
number of element multiplications is minimized.

We start with a simple observation. Suppose that the optimal order
is to first compute the matrix P1 = M1 × · · · ×Mk and the matrix P2 =
Mk+1×· · ·×Mn, and then compute the final product by multiplying P1 and
P2. The number of element multiplications for computing P1 × P2 is easy:
it should be d0dkdn since P1 is a d0 × dk matrix and P2 is a dk × dn matrix.
Now how do we decide the minimum number of element multiplications
for computing the matrices P1 and P2? We notice that the corresponding
matrix chains for the matrices P1 and P2 are shorter than the chain in

16 Introduction

the original instance. Thus, we can apply the same method recursively to
find the numbers of element multiplications for computing P1 and P2. The
numbers of element multiplications found by the recursive process plus the
number d0dkdn give the number of element multiplications for this optimal
order.

However, how do we find the index k? We have no idea. Thus, we try all
possible indices from 1 to n− 1, apply the above recursive process, and pick
the index that gives us the minimum number of element multiplications.

This idea is also applied to any subchain in the matrix-chain M1×M2×
· · ·×Mn. For a subchain Mi×· · ·×Mj of h matrices, we consider factoring
the chain at the first, the second, . . ., and the (h−1)st matrix multiplication
“×” in the subchain. For each factoring, we compute the desired number for
each of the two corresponding smaller subchains. Note that this recursive
process must terminate — since for subchain of one matrix, the desired
number is 0 by the definition of the problem.

We organize the idea into the recursive algorithm given in Figure 1.3,
which computes the minimum number of element multiplications for the
subchain Mi × · · · ×Mj . We use ind to record the index for the best fac-
toring we have seen so far, and use num to record the number of element
multiplications based on this factoring.

Algorithm. Recursive-MCM(i, j)

1. if i ≥ j then return (i, 0); Stop;

2. num = ∞; ind = 0;

3. for k = i to j − 1 do

3.1 \\ recursively work on Mi × · · · ×Mk:

(ind1, num1) = Recursive-MCM(i, k);

3.2 \\ recursively work on Mk+1 × · · · ×Mj :

(ind2, num2) = Recursive-MCM(k + 1, j);

3.3 if (num > num1 + num2 + di−1dkdj)

then ind = k; num = num1 + num2 + di−1dkdj ;

4. return (ind, num).

Figure 1.3: Recursive algorithm for Matrix-Chain Multiplication

What is the time complexity of this algorithm? Let T (h) be the running
time of the algorithm Recursive-MCM when it is applied to a matrix
chain of h matrices. On the matrix chain of h matrices, the algorithm needs
to try, for k = 1, . . . , h− 1, the factoring at the kth “×” in the chain, which

Sample Problems 17

Figure 1.4: The order for computing the elements in NUM and IND.

induces the recursive executions of the algorithm on a chain of k matrices
and on a chain of h− k matrices. Thus, we have.

T (h) ≥ [T (1) + T (h− 1)] + [T (2) + T (h− 2)] + · · ·+ [T (h− 1) + T (1)]

= 2[T (1) + T (2) + · · ·+ T (h− 1)]

≥ hT (h/2),

with a terminating condition T (h) = O(1) for h ≤ 1.
From the relation T (h) ≥ hT (h/2), it is easy to see that T (h) = hΩ(log h).

Thus, for a chain of n matrices, i.e., if the input instance is a list of n + 1
integers, the running time of the algorithm Recursive-MCM is at least
nΩ(logn), which is much larger than any polynomial of n.

We now discuss how the above idea can be modified to achieve a more
efficient algorithm. Observe that in the above recursive algorithm, for each
subchain, the recursive process is applied on the subchain many times. For
example, suppose we apply the algorithm on the matrix chain M1×· · ·×M7,
then the algorithm Recursive-MCM is applied to the subchain M1 ×M2

at least once when we factor the original chain at each of the ith “×”, for
2 ≤ i ≤ 6. It is the repeatedly applications of the recursive process on the
same subchain that make the algorithm inefficient.

A natural solution to this is to store the intermediate results when they
are computed. Therefore, when next time we need the results again, we
can retrieve them directly, instead of re-computing them. Now let us come
back to the original Matrix-Chain Multiplication problem. We use two

18 Introduction

2-dimensional arrays NUM[1..n, 1..n] and IND[1..n, 1..n], where IND[i, j] is
used to record the index in the subchain Mi × · · · ×Mj at which factoring
the subchain gives the minimum number of element multiplications, and
NUM[i, j] is used to record the minimum number of element multiplications
for computing the product of the subchain.1 Since for computing the values
for NUM[i, j] and IND[i, j], where i ≤ j, we need to know the values for
NUM[i′, j′], for i′ = i and j′ < j and for i′ > i and j′ = j, the values
for the two 2-dimensional arrays IND and NUM will be computed from
the diagonals of the arrays then moving toward the upper right corner (See
Figure 1.4). Note that the values for the diagonal elements in the arrays
IND and NUM are obvious: NUM[i, i] = 0, and IND[i, i] has no meaning.

The algorithm is presented in Figure 1.5.

Algorithm. Dyn-Prog-MCM

1. for i = 1 to n do NUM[i, i] = 0;

2. for diag = 1 to n− 1 do

for i = 1 to n− diag do

j = i+ diag;

num = ∞;

for k = i to j − 1 do

if num > NUM[i, k] + NUM[k + 1, j] + di−1dkdj

then num = NUM[i, k] + NUM[k + 1, j] + di−1dkdj ;

IND[i, j] = k;

NUM[i, j] = num;

Figure 1.5: Dynamic programming for Matrix-Chain Multiplication

The analysis of the algorithm Dyn-Prog-MCM is straightforward:
Step 2 dominates the running time and consists of loops of depth 3. Each ex-
ecution of the inner loop body takes constant time. Thus, the running time
of the algorithm is O(n3). This concludes that the problem Matrix-Chain

Multiplication can be solved in polynomial time.
We make a final remark to explain how a solution can be obtained from

the results of the algorithmDyn-Prog-MCM. With the values of the arrays
NUM and IND being available, by reading the value IND[1, n], suppose
IND[1, n] = k, we know that input matrix chain M1 × · · · ×Mn should be
factored at the index k. Now with the values IND[1, k] and IND[k + 1, n],

1Here we use the word “2-dimensional array” instead of “matrix” to distinguish
NUM[1..n, 1..n] and IND[1..n, 1..n] from the matrices in the input instances.

NP-completeness 19

we will know where the two subchains M1 × · · · ×Mk and Mk+1 × · · · ×Mn

should be factored, and so on. A simple recursive algorithm can be written
that, with the array IND as input, prints the expression, which is the chain
M1×· · ·×Mn with proper balanced parentheses inserted, indicating the order
for computing the matrix product with the minimum number of element
multiplications.

The algorithm Dyn-Prog-MCM illustrates the principle of an impor-
tant technique for optimization algorithms — the dynamic programming
method. A dynamic programming algorithm stores intermediate results
and/or solutions for small subproblems and looks them up, rather than
recomputing them when they are needed later for solving larger subprob-
lems. In general, a dynamic programming algorithm solves an optimization
problem in a bottom-up fashion, which includes charactering optimal so-
lutions to a large problem in terms of solutions to smaller subproblems,
computing the optimal solutions for the smallest subproblems, saving the
solutions to subproblems to avoid re-computations, and combining solutions
to subproblems to compute optimal solution for the original problem.

1.4 NP-completeness theory

NP-completeness theory plays a fundamental role in the study of optimiza-
tion problems. In this section, we give a condensed description for NP-
completeness theory. For a more formal and detailed discussion, the reader
is referred to Garey and Johnson [52].

NP-completeness theory was motivated by the study of computational
optimization problems, in the hope of providing convincing lower bounds on
the computational complexity for certain optimization problems. However,
for discussion convenience and for mathematical accuracy, NP-completeness
theory is developed to be applied only to a class of simplified optimization
problems — decision problems. A decision problem is a problem for which
each instance has one of two possible answers — “yes” or “no”. An instance
with the answer “yes” will be called a yes-instance for the problem, and an
instance with the answer “no” will be called a no-instance for the problem.

The following Satisfiability (abbr. Sat) problem is a very well-known
example of decision problems.

Satisfiability (Sat)

Given a Boolean formula F in the conjunctive normal form (sim-
ply, a CNF formula F), is there an assignment to the variables
in F so that the formula F evaluates to True?

20 Introduction

Thus, a CNF formula that is satisfiable (i.e., takes the value True on some
assignment) is a yes-instance for Satisfiability, while a CNF formula that
is not satisfiable is a no-instance for Satisfiability.

An optimization problem Q can be converted into a decision problem
by introducing a parameter to be compared with the optimal value of an
instance. For example, a decision version of Traveling Salesman can
be formulated as follows. An instance of the decision problem is of the
form (G, k), where G is a weighted complete graph and k is an integer. The
question the decision problem asks on instance (G, k) is: “Is there a traveling
tour in G that visits all vertices of G and has weight bounded by k?”

In general, the decision version of an optimization problem is somehow
easier than the original optimization problem. Therefore, the computational
hardness of the decision problem implies the computational hardness for the
original optimization problem. NP-completeness theory provides strong ev-
idence for the computational hardness for a large class of decision problems,
which implies convincingly the computational difficulties for a large variety
of optimization problems.

We say that an algorithm A accepts a decision problem Q if on every
yes-instance x of Q, the algorithm A returns “yes” (i.e., “accepts” x), while
on all other inputs x′ (including the inputs that do not encode an instance
of Q), the algorithm A returns “no” (i.e., “rejects” x′).

Definition 1.4.1 A decision problemQ is in the class P if it can be accepted
by a polynomial-time algorithm.

In a more general and extended sense, people also say that a problem
Q is in the class P if Q can be solved in polynomial time, even through
sometimes the problem Q is not a decision problem. For example, people do
say that the Minimum Spanning Tree problem and the Matrix-Chain

Multiplication problem are in the class P. Thus, the class P represents the
class of computational problems that are “feasible” in practical computing.

Unfortunately, many decision problems, in particular many decision
problems converted from optimization problems, do not seem to be in the
class P. A large class of these problems seem to be characterized (note:
not “solved”) by polynomial-time algorithms in a more generalized sense, as
described by the following definition.

Definition 1.4.2 A decision problem Q is in the class NP if it can be char-
acterized by a polynomial time algorithm A in the following manner. There
is a fixed polynomial p(n) such that

NP-completeness 21

1. If x is a yes-instance for Q, then there is a binary string y of length
≤ p(|x|) such that on input (x, y) the algorithm A returns “yes”;

2. If x is a no-instance for Q, then for any binary string y of length
≤ p(|x|), on input (x, y) the algorithm A returns “no”.

Thus, a problem Q in NP is the one whose yes-instances x can be easily
(i.e., in polynomial time) verified (by the algorithm A) when a short proof
(i.e., y, whose length is bounded by the polynomial p of |x|) is given. The
polynomial time algorithm A works in the following manner. If the input
x is a yes-instance for the problem Q (this fact is not known to the algo-
rithm A in advance), then with a correct proof or “hint” y, the algorithm
A will be convinced and correctly conclude “yes”. On the other hand, if
the input x is a no-instance for the problem Q, then no matter what hint
y is given, the algorithm A cannot be fooled to conclude “yes”. In other
words, the polynomial-time algorithm A simulates a proof checking process
for theorems with short proofs. The polynomial-time algorithm A can be
regarded as an experienced college professor. If a true theorem x is given
together with a correct (and short) proof y, then the professor will conclude
the truth for the theorem x. On the other hand, if a false theorem x is
presented, then no matter what “proof” is provided (it has to be invalid!)
the professor would not be fooled to conclude the truth for the theorem x.

We should point out that although the polynomial-time algorithm A can
check the proof y for an instance x, A has no idea how the proof y can be
developed. Alternatively, the class NP can be defined to be the set of those
decision problems that can be accepted by nondeterministic polynomial-time
algorithms, which can guess the proof. Therefore, on an input x that is a yes-
instance, the nondeterministic polynomial-time algorithm guesses a proof y,
checks the pair (x, y), and accepts x if y is a correct proof of x; while on
an input x that is a no-instance, with any guessed proof y (that has to be
incorrect), the algorithm checking the pair (x, y) would conclude “no”.

The decision version of theTraveling Salesman problem, for example,
is in the class NP: an instance (G, k), where G is a weighted complete graph
and k is an integer, asks whether there is a traveling tour in G that visits
all vertices and has weight bounded by k. A polynomial-time algorithm A
can be easily designed as follows. On input pair (x, y), where x = (G, k),
the algorithm A accepts if and only if y represents a tour in G that visits
all vertices and has weight not larger than k. Thus, if x = (G, k) is a yes-
instance, then with a proof y, which is a tour in G that visits all vertices and
has weight not larger than k, the algorithm A will accept the pair (x, y). On

22 Introduction

the other hand, if x = (G, k) is a no-instance, then no matter what proof y
is given, the algorithm A will find out that y is not the desired tour (since
there does not exist a desired tour in G), so A rejects the pair (x, y).

We also point out that every decision problem in the class P is also in
the class NP: suppose that Q is a problem in the class P and that A is a
polynomial-time algorithm solving Q. The algorithm A can be modified so
that the new algorithm ignores the hint y and computes the correct answer
for a given instance x directly.

Unlike the class P, it is not that natural and obvious how the concept NP
can be generalized to problems that are not decision problems. On the other
hand, based on the characterization of “having a short proof y”, people did
extend the concept NP to optimization problems, as given in the following
definition. This definition has become standard.

Definition 1.4.3 An optimization problem Q = 〈IQ, SQ, fQ, optQ〉 is an NP
optimization (or shortly NPO) problem if there is a polynomial p(n) such
that for each instance x ∈ IQ, there is an optimal solution y ∈ SQ(x) whose
length |y| is bounded by p(|x|).

Most interesting optimization problems are NPO problems. In partic-
ular, all optimization problems listed in Section 1.1 plus all optimization
problems we are studying in this book are NPO problems. In general, if an
optimization problem is an NPO problem, then it has a decision problem
version that is in the class NP.

Now let us go back to NP-completeness theory. A very important concept
in NP-completeness theory is reducibility, which is defined as follows.

Definition 1.4.4 Let Q1 and Q2 be decision problems. Problem Q1 is
polynomial-time (many-one) reducible to problem Q2 (written as Q1 ≤p

m Q2)
if there is a function r computable in polynomial time such that for all x, x
is a yes-instance for Q1 if and only if r(x) is a yes-instance for Q2.

The relation Q1 ≤p
m Q2 indicates that, up to a polynomial time compu-

tation, the problem Q2 is not easier than the problem Q1 (or equivalently,
the problem Q1 is not harder than the problem Q2). Therefore, the rela-
tion Q1 ≤p

m Q2 sets a lower bound for the computational complexity of the
problem Q2 in terms of that of problem Q1, and also sets an upper bound
for the computational complexity for the problem Q1 in terms of that of the
problem Q2. In particular, we have the following consequence.

NP-completeness 23

Lemma 1.4.1 Let Q1 and Q2 be two decision problems. If Q1 ≤p
m Q2 and

Q2 is in the class P, then the problem Q1 is also in the class P.

Proof. Let r be the function that is computed by an algorithm A1 of
running time O(nc), such that x is a yes-instance for Q1 if and only if r(x)
is a yes-instance for Q2, and let A2 be another algorithm that accepts the
decision problem Q2 and has running time O(nd), where both c and d are
fixed constants. An algorithm A3 for the problem Q1 can be designed as
follows. On an input x, A3 first computes r(x) by calling the algorithm A1

as a subroutine. This takes time O(|x|c). Note since the running time of A1

is bounded by O(|x|c), the length |r(x)| of the output of A1 is also bounded
by O(|x|c). The algorithm A3 calls the algorithm A2 to check whether
r(x) is a yes-instance for the problem Q2. This takes time O(|r(x)|d) =
O(((O(|x|))c)d) = O(|x|cd). Now the algorithm A3 concludes that x is a
yes-instance for Q1 if and only if r(x) is a yes-instance for Q2. According
to the definitions, the algorithm A3 correctly accepts the decision problem
Q1. Moreover, since the running time of the algorithm A3 is bounded by
O(|x|c) + O(|x|cd), which is bounded by a polynomial of |x|, we conclude
that the problem Q1 is in the class P.

We give an example of a polynomial-time reduction by showing how
the Satisfiability problem is polynomial-time reducible to the following
decision version of the Independent Set problem.

Independent-Set(D)

Given a graph G and an integer k, is there a set I of at least k
vertices in G such that no two vertices in I are adjacent?

The algorithm A computing the reduction function r from the Satisfi-

ability problem to the Independent-Set(D) problem works as follows.
Let F = C1 ∧C2 ∧ · · · ∧Cm be an instance of the Satisfiability problem,
where each Ci (called a clause) is a disjunction Ci = (li,1∨ li,2∨ · · · ∨ li,ni) of
boolean literals (a boolean literal is either a boolean variable or its negation).
The algorithm A constructs a graph GF that has

∑m
i=1 ni vertices such that

each vertex in GF corresponds to a literal appearance in the formula F (note
that each literal may have more than one appearance in F). Two vertices
in GF are adjacent if one of the following two conditions holds: (1) the
two corresponding literal appearances are in the same clause, or (2) the two
corresponding literal appearances are opposite to each other, i.e., one is the
negation of the other. Now, for the instance F for the Satisfiability prob-
lem, the value of the function r(F) is (GF ,m), which is an instance for the

24 Introduction

Independent-Set(D) problem. It is easy to see that given the instance
F for Satisfiability, the instance (GF ,m) for Independent-Set(D) can
be constructed in polynomial time by the algorithm A.

We show that F is a yes-instance for Satisfiability if and only if
(GF ,m) is a yes-instance for Independent-Set(D). Suppose that F is
a yes-instance for Satisfiability. Then there is an assignment α to the
variables in F that makes F True. Thus, for each clause Ci, the assign-
ment α sets at least one literal appearance li,hi

in Ci True. Now pick the
set I of the m vertices in GF that correspond to the m literal appearances
li,hi

, i = 1, . . . ,m. No two of these m vertices in I are adjacent by the con-
struction of the graph GF since (1) they are not in the same clause and (2)
the assignment α cannot set two opposite literals both to True. Therefore
r(F) = (GF ,m) is a yes-instance for Independent-Set(D).

Now suppose that r(F) = (GF ,m) is a yes-instance for Independent-
Set(D). Let I = {v1, . . . , vm} be a set of m vertices in GF such that
no two vertices in I are adjacent. Let I corresponds to the set LI =
{l1,h1 , . . . , lm,hm} of m literal appearances in F . Since any two literal ap-
pearances in the same clause in F correspond to two adjacent vertices in
GF , each clause in F has exactly one literal appearance in the set LI . More-
over, no two literal appearances in LI contradict each other — otherwise
the two corresponding vertices in I would have been adjacent. Therefore,
an assignment α to the variables in F can be constructed that sets all the
literal appearances in LI True: if a boolean variable x is in LI , then α(x) =
True; if the negation x of a boolean variable x is in LI then α(x) = False;
and if neither x nor x is in LI , then α sets x arbitrarily. Note that the
assignment α sets at least one literal in each clause in F True, thus making
the formula F True. Consequently, F is a yes-instance for Satisfiability.

This completes the polynomial-time reduction from the Satisfiability

problem to the Independent-Set(D) problem.

The foundation of NP-completeness theory was laid by the following
theorem.

Theorem 1.4.2 (Cook’s Theorem) Every decision problem in the class
NP is polynomial-time many-one reducible to the Satisfiability problem.

Proof. A formal proof for this theorem involves a very careful investigation
on the precise definitions of algorithms and of the underlying computational
models supporting the algorithms. Here we give a proof for the theorem
that explains the main proof ideas but omits the detailed discussion related
to computational models. A more complete proof for the theorem can be

NP-completeness 25

found in Garey and Johnson [52].

Suppose that Q is a decision problem in NP, and that A is a polynomial-
time algorithm such that for any instance x of Q, if x is a yes-instance, then
there is a binary string yx of length polynomial in |x|, such that the algorithm
A accepts (x, yx), and if x is a no-instance, then for any binary string y, the
algorithm A rejects (x, y), where the length of the binary string y is bounded
by a polynomial of |x|. We show how the problem Q is polynomial-time
reducible to the Satisfiability problem.

The algorithm A can be converted into a boolean formula F (this state-
ment needs a thorough justification but is not surprising: computer algo-
rithms are implementable in a digital computer, which basically can only do
boolean operations.) Moreover, the formula F can be made in the conjunc-
tive normal form. The input to the formula F is of the form (x, y), where
both x and y are binary strings (i.e., sets of Boolean vairables), such that
F (x, y) = True if and only if the algorithm A accepts the pair (x, y). Now
for a given instance x0 for the problem Q, the instance for Satisfiability
is F0 = F (x0, y). That is, the formula F0 is obtained from the formula
F (x, y) with the first parameter x assigned to the value x0 and the second
parameter y left unassigned. Thus, with the parameter x0 that is an in-
stance of the problem Q, F0 = F (x0, y) is a CNF formula whose variables
correspond to the unassigned parameter y. It can be proved that there is a
polynomial-time algorithm that given x0 constructs F0.

Now if x0 is a yes-instance for the problem Q, then by the definition,
there is a binary string y0 such that the algorithm A accepts (x0, y0). Thus,
on this assignment y0 to F0, the formula F0(y0) = F (x0, y0) gets value True,
i.e., the formula F0 is satisfiable and is a yes-instance for Satisfiability.
On the other hand, if x0 is a no-instance, then the algorithm A does not
accept any pair (x0, y), i.e., the formula F0(y) = F (x0, y) is notTrue for any
y. Therefore, F0 is not satisfiable and is a no-instance for Satisfiability.

This completes the polynomial-time reduction that for an instance x0 of
Q produces an instance F0 = (x0, y) of Satisfiability such that x0 is a
yes-instance of Q if and only if F0 is a yes-instance of Satisfiability. Thus,
the problem Q in NP is polynomial-time reducible to the Satisfiability

problem. Since Q is an arbitrary problem in NP, the theorem is proved.

According to the definition of polynomial-time reducibility, Theo-
rem 1.4.2 indicates that no problems in the class NP is essentially harder
than the Satisfiability problem. This gives a (relative) lower bound on
the computational complexity for the Satisfiability problem. Motivated
by this theorem, we have the following definition.

26 Introduction

Definition 1.4.5 A decision problem Q is NP-hard if every problem in the
class NP is polynomial-time many-one reducible to Q.

A decision problem Q is NP-complete if Q is in the class NP and Q is
NP-hard.

In particular, the Satisfiability problem is NP-hard and NP-complete
(it is easy to see that the Satisfiability problem is in the class NP).

According to Definition 1.4.5 and Lemma 1.4.1, if an NP-hard problem
can be solved in polynomial time, then so can all problem in NP. On the
other hand, the class NP contains numerous hard problems, such as the deci-
sion version of theTraveling Salesman problem and of the Independent
Set problem. It can be shown that if these decision versions can be solved
in polynomial time, then so can the corresponding optimization problems.
People have worked very hard for decades to derive polynomial-time algo-
rithms for these decision problems and optimization problems without much
success. This fact somehow has convinced people that there are problems in
the class NP that cannot be solved in polynomial time. Therefore, if we can
show that a problem is NP-hard, then it should be a very strong evidence
that the problem cannot be solved in polynomial time. This essentially is
the basic philosophy behind the development of the NP-completeness theory.

However, how do we show the NP-hardness of a given problem? It is
in general not feasible to examine all problems in NP and show that each
of them is polynomial-time reducible to the given problem. Techniques
used in Theorem 1.4.2 do not seem to generalize: Theorem 1.4.2 is kind
of fortuitous because the Satisfiability problem is a logic problem and
algorithms happen to be characterized by logic expressions. Thus, to prove
the NP-hardness for other problems, it seems that we need new techniques,
which are, actually not new, the reduction techniques we have seen above.

Lemma 1.4.3 Let Q1, Q2, and Q3 be decision problems. If Q1 ≤p
m Q2 and

Q2 ≤p
m Q3, then Q1 ≤p

m Q3.

Proof. Suppose that r1 is a polynomial-time computable function such
that x is a yes-instance for Q1 if and only if r1(x) is a yes-instance for Q2,
and suppose that r2 is a polynomial-time computable function such that
y is a yes-instance for Q2 if and only if r2(y) is a yes-instance for Q3. It
is easy to verify that the function r(x) = r2(r1(x)) is also polynomial-time
computable. Moreover, x is a yes-instance for Q1 if and only if r1(x) is a yes-
instance for Q2, which is true if and only if r(x) = r2(r1(x)) is a yes-instance
for Q3. Thus, Q1 ≤p

m Q3.

NP-completeness 27

Corollary 1.4.4 Let Q1 and Q2 be decision problems such that the problem
Q1 is NP-hard and that Q1 ≤p

m Q2. Then the problem Q2 is NP-hard.

Proof. LetQ be any problem in NP. SinceQ1 is NP-hard, by the definition,
Q ≤p

m Q1. This, together with Q1 ≤p
m Q2 and Lemma 1.4.3, implies Q ≤p

m

Q2. Since Q is an arbitrary problem in NP, we conclude that the problem
Q2 is NP-hard.

Since we already know that the Satisfiability problem is NP-hard
(Theorem 1.4.2) and that the Satisfiability problem is polynomial-time
reducible to the Independent-Set(D) problem, Corollary 1.4.4 enables us
to conclude directly that the Independent-Set(D) is NP-hard. In conse-
quence, it is unlikely that the Independent-Set(D) problem can be solved
in polynomial-time.

The idea of Corollary 1.4.4 has established an extremely useful working
system for proving the computational hardness for problems: suppose we
want to show a given problem Q is computationally hard, we may pick
a known NP-hard problem Q′ (well, we already have two here) and show
Q′ ≤p

m Q. If we succeed, then the problem Q is NP-hard and hence it
is unlikely that Q can be solved in polynomial time. Moreover, now the
problem Q can be added to the list of NP-hard problems, which may be
helpful later in proving the NP-hardness of other problems. In the last
four decades, people have successfully used this technique and derived NP-
hardness for over thousands of problems. Thus, all these numerous problems
are unlikely to be solved in polynomial time. Of course, this working system
is completely based on the following assumption:

Working Conjecture in NP-completeness Theory

P 	= NP, that is, there are problems in NP that are not solvable
in polynomial time.

No proof for this working conjecture has been derived. In fact, very little
is known for a proof for the conjecture. On the other hand, the conjecture
is strongly believed by most people working in computational sciences.

In the following, we give a list of some NP-complete problems, whose
NP-hardness will be used in our latter discussion. The proof for the NP-
hardness for these problems can be found in Garey and Johnson [52]. For
those problems that also have an optimization version, we attach a “(D)” to
the end of the problem names to indicate that these are decision problems.

28 Introduction

Partition

Given a set of integers S = {a1, a2, . . . , an}, can the set S be
partitioned into two disjoint sets S1 and S2 of equal size, that is,
S = S1 ∪ S2, S1 ∩ S2 = ∅, and ∑

ai∈S1
ai =

∑
aj∈S2

aj ?

Graph Coloring (D)

Given a graph G and an integer k, can the vertices of G be
colored with at most k colors so that no two adjacent vertices in
G are colored with the same color?

Graph Edge Coloring (D)

Given a graph G and an integer k, can the edges of G be colored
with at most k colors so that no two edges sharing a common
vertex are colored with the same color?

Planar Graph Indep-Set (D)

Given a planar graph G and an integer k, is there a subset I of at
least k vertices of G such that no two vertices in I are adjacent?

Planar Graph Vertex-Cover (D)

Given a planar graph G and an integer k, is there a subset C of
at most k vertices of G such that every edge in G has at least
one end in C?

Hamiltonian Circuit

Given a graph G, is there a simple cycle in G that contains all
vertices of G?

Euclidean Traveling Salesman (D)

Given a set S of n points in the plane and a real number k, is
there a tour of length bounded by k that visits all points in S?

Maximum Cut (D)

Given a graph G and an integer k, is there a partition of the
vertices of G into two sets V1 and V2 such that the number of
edges with one end in V1 and the other end in V2 is at least k?

NP-completeness 29

3-D Matching

Given a set of triples M = X × Y × Z, where X, Y , and Z are
disjoint sets having the same number q of elements, is there a
subset M ′ of M of q triples such that no two triples in M ′ agree
on any coordinate?

